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SU(N ) symmetry is incompatible with the many-body localized (MBL) phase, even when strong disorder
is present. However, recent studies have shown that finite-size SU(2) systems exhibit nonergodic, subthermal
behavior, characterized by the breakdown of the eigenstate thermalization hypothesis, and by the excited
eigenstates entanglement entropy that is intermediate between area and volume law. In this paper, we extend
previous studies of the SU(2)-symmetric disordered Heisenberg model to larger systems, using the time-
dependent density matrix renormalization group (tDMRG) method. We simulate quench dynamics from weakly
entangled initial states up to long times, finding robust subthermal behavior at stronger disorder. Although we
find an increased tendency towards thermalization at larger system sizes, the subthermal regime persists at
intermediate time scales, nevertheless, and therefore should be accessible experimentally. At weaker disorder, we
observe signatures of thermalization; however, entanglement entropy exhibits slow sublinear growth, in contrast
to conventional thermalizing systems. Furthermore, we study dynamics of the SU(3)-symmetric disordered
Heisenberg model. Similarly, strong disorder drives the system into subthermal regime, albeit thermalizing phase
is broader compared to the SU(2) case. Our findings demonstrate the robustness of the subthermal regime in spin
chains with non-Abelian continuous symmetry, and are consistent with eventual thermalization at large system
sizes and long time scales, suggested by previous studies.
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I. INTRODUCTION

The nonequilibrium dynamics of interacting isolated sys-
tems has recently drawn a lot of attention, both due to its
theoretical significance and experimental applications. In the
absence of an external bath, system’s dynamics is determined
by the intrinsic interactions between its constituents. Ergodic
isolated systems, for which all microstates are accessible,
evolve towards thermal equilibrium. Such a system itself acts
as a thermal bath for its subsystems, as long as they are small
enough. In this case, the local observables of the system reach
their thermal expectation values at long enough times for ar-
bitrary physical initial states—the behavior that is understood
in terms of the celebrated eigenstate thermalization hypothesis
(ETH) [1–3].

The presence of strong disorder can drastically change
this behavior, and lead to a breakdown of ergodicity. The
first evidence of localization due to disorder is described in
the seminal paper of P. W. Anderson [4], the so-called An-
derson localization, referring to a single-particle localization.
Furthermore, recent theoretical [5–17] and experimental stud-
ies [18–28] of isolated systems have discovered that strong
disorder can suppress thermalization in a many-body set-
ting. Thus, a recently emerged phenomenon, the many-body
localization (MBL) (for reviews, see [29,30]) and its transi-
tions [31–38], have drawn much attention. An MBL phase

constitutes a new dynamical phase of matter, where ergodicity
is broken and information about the initial state is preserved
throughout the evolution of the system. The key characteristic
of the MBL phase is that such systems exhibit a complete set
of quasilocal integrals of motion (LIOMs) [11,12]. This leads
to an area-law scaling of the entanglement entropy S(�) =
−Tr(ρ (�) ln ρ (�) ) for a contiguous block of size � for excited
eigenstates, as well as a logarithmic growth of entanglement
entropy with time in a quantum quench [8–13].

While the MBL phenomenology in finite-size systems has
been firmly established, in a recent exact diagonalization
study [39], the stability of the MBL phase in 1d in the limit
where both system size and time go to infinity was challenged,
based on a specific extrapolation of the finite-size numerical
results to this limit. This interpretation was, however, ques-
tioned in subsequent papers, see Refs. [40,41]. Furthermore,
Ref. [38] argued that accessible system sizes may not be
sufficient to draw conclusions regarding the MBL-thermal
transition (or its absence). We note that in 2d, there are
arguments suggesting that rare thermal inclusions lead to ex-
tremely slow thermalization of the system [42]. The avalanche
instability is, however, not effective for 1d systems at strong
disorder. We emphasize that the important issues of eventual
stability of the MBL phase are beyond the scope of this paper.

In this paper, we address the interplay between SU(N )
symmetry, thermalization, and localization. To that end, we
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investigate whether disordered, SU(N )-symmetric Heisen-
berg chains thermalize or instead show signatures of ergodic-
ity breaking. The motivation for our study is twofold. Firstly,
previous studies established that ergodicity breaking depends
on the symmetry of a disordered system. While Abelian
symmetries allow the existence of the MBL phase, with the
example of the Heisenberg chain in a random magnetic field
being arguably the most well-studied system in the MBL
phase [8,31,43,44], non-Abelian symmetries impose strong
constraints on ergodicity breaking [45]. For models with
discrete non-Abelian symmetries, two scenarios have been
discussed. The first possibility is that such systems form an
MBL phase, in which the symmetry is spontaneously bro-
ken down to an Abelian subgroup [46]. Alternatively, they
may exhibit a symmetry-preserving quantum critical glass
(QCG) [47]; however, this latter phase was recently argued to
be perturbatively unstable to the proliferation of resonances,
which lead to an eventual thermalization [48]. Continuous
non-Abelian symmetry groups with infinite-dimensional rep-
resentations were argued to be inconsistent with the standard
MBL with a complete set of LIOMs [45,49].

Secondly, in a recent study [50] of disordered SU(2)-
symmetric Heisenberg systems it was found that when dis-
order is sufficiently strong, an intermediate regime emerges,
which is neither fully MBL nor thermal. This regime, which
we refer to as subthermal below, exhibits entanglement scal-
ing of excited eigenstates that is intermediate between the
area and volume law. In this paper, the authors performed an
exact diagonalization (ED) analysis of chains up to L � 24
sites, and observed that the behavior of the systems is clearly
subthermal. Furthermore, a strong-disorder renormalization
group (SDRG) analysis revealed that long-range resonances
eventually proliferate, leading to the breakdown of nonergodic
structure of eigenstates for very large systems, even subject to
very strong disorder.

In this paper, we extend the work in Ref. [50] by study-
ing the dynamical properties of disordered SU(N )-symmetric
Heisenberg model. Specifically, we check if subthermal
behavior can appear for larger systems and also in SU(3)-
symmetric models. The analysis is based on the time evolution
of short-range entangled initial states, expressed in the
form of matrix product states (MPS), under the disordered
Heisenberg Hamiltonian. The evolution method we use is
the time-dependent density matrix renormalization group
(tDMRG) [51–53]. We compute the equal-time spin-spin
correlations and entanglement entropy of the resulting time-
evolved states, and analyze their scaling with length and
evolution in time.

II. MODEL AND METHODS

We consider the disordered SU(N )-symmetric Heisenberg
model [54] for N = 2 and 3 particle flavors, described by the
Hamiltonian,

H =
L−1∑
i=1

Ji Si · Si+1. (1)

Here, Si are the SU(N ) generators in their fundamental repre-
sentations on site i of a one-dimensional chain of length L with

open boundary conditions. The nearest-neighbor couplings
are chosen antiferromagnetic, throughout, with the values
randomly drawn from the normalized power-law probability
distribution

P(J ) = α

J1−α
θ (1 − J ) (0 < J < 1) (2)

in accordance with early theoretical studies [55–57] and ex-
periments [58]. The real parameter α > 0 controls the strength
of the disorder, where plain random couplings J ∈ [0, 1] are
obtained for α = 1, and uniform couplings for α → ∞. The
unit of energy is set by choosing the upper cutoff J < 1. The
average ratio of the larger over the smaller value of a pair
of sampled coupling constants J1 < J2 diverges for α → 0,
〈 J2

J1
〉 → ∞ (and it has a typical value of exp〈ln J2

J1
〉 = e1/α[50],

which, while smooth across α = 1, also diverges rapidly for
α < 1). This demonstrates the strong nonuniformity of cou-
plings along the chain for the strong disorder regime α < 1,
which also leads to weakly coupled bonds along the chain.

In this paper, we focus on the strong disorder region α � 1,
where for N = 2 subthermal behavior for finite spin chains
has been reported [50]. To verify the advocated subthermal be-
havior, we use the tDMRG to study the real-time dynamics of
weakly entangled initial states whose energy is close to zero.
Such states lie in the middle of the many-body spectrum. The
advantage of our approach is twofold. First, for disordered
systems, tDMRG is a well-controlled exact MPS approach
that allows us to simulate system sizes much larger than those
accessible to exact diagonalization [59] (we study system
sizes up to L = 144). Second, within our MPS framework,
we can not only study the relaxation of local observables in
real-time, but also measure the scaling of the averaged entan-
glement entropies of small subsystems straightforwardly [60].
Both are important indicators of tendencies towards thermal-
ization, subthermalization, or MBL.

Below, we first perform real-time simulations of given ini-
tial states for several disorder realizations via tDMRG with
the second-order Trotter decomposition, time step dt = 0.1
and the effective bond dimension of D∗ = 2048 multiplets.
We use the resulting time-evolved MPSs to study the scaling
of the averaged entanglement entropies for small subsystems
and the nearest neighbor correlators 〈Si · Si+1〉 in real-time as
well as in the long time limit. As discussed below, the decay
of the correlator to a thermal value provides a signature of
thermalization, while its nonthermal value signals a nonther-
mal regime. In order to extract systematic behavior, we will
vary both the system size L and the disorder strength α for the
SU(2)- as well as the SU(3)-symmetric model.

III. SU(2)-SYMMETRIC MODEL

In this section, we focus on the disordered SU(2) Heisen-
berg model. First, we introduce an initial state and study its
time evolution. Second, we present the results of the entangle-
ment entropy and spin-spin correlations measurements.

A. Initial state

In the context of thermalization, the choice of initial states
for the real-time evolution is important because different parts
of the energy spectrum can exhibit qualitatively different
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FIG. 1. (a) A schematic depiction of the structure of the initial
state for the SU(2) model. Neighboring spins form triplets on odd
bonds, and pairs of neighboring triplets are coupled to form sin-
glets. (b) Spin-spin correlations 〈Si · S j〉 color-plots for the SU(2)
initial state. Correlations between spins forming triplets or singlets
yield 〈Si · S j〉 = +0.25 (dark red) or −0.75 (dark blue) respectively.
(c) Ground state (GS), initial state, and highest energy of 25 ran-
dom configurations for disorder strength α = 0.3 (left) and 1 (right),
where Ehighest (J ) = −EGS(−J ).

dynamics. When disorder is introduced, the states near both
edges of the energy spectrum generally localize before the
states in the middle of the spectrum, where the density of
states is high. If such transitions do occur as a function of
energy density, it signifies the appearance of mobility edges
that separate thermal and MBL states in the energy spectrum.
In this paper, we shall restrict our attention to the middle of
the spectrum by preparing initial states with energies close
to zero. Such states are expected to exhibit the strongest ten-
dency to thermalization. Furthermore, since the total spin is
a conserved quantity, hereafter we focus on the singlet sector
with Stot = 0. Such a choice is relevant for the experimental
setup of strongly interacting fermions at half-filling [20].

Concretely, we always prepare the initial MPS |ψt=0〉 as
depicted in Figs. 1(a) and 1(b): Every pair of nearest-neighbor

spins on odd bonds is combined into a triplet, S = 1, with two
neighboring such triplets then fused into a spin singlet. Thus
the total spin of a chain with length of a multiple of 4 is zero.
The initial MPS prepared in this way has a small bond dimen-
sion. Importantly, the energy of this initial state is always close
to zero for any disorder realizations, as shown in Fig. 1(c).

B. Entanglement entropy scaling

The behavior of the entanglement entropy at a subsystem
level is a useful indicator of the thermal or localized fate of the
system. In particular, if the system is (close to) thermalized at
the final time of evolution, we expect S(�)/ ln 2, with � being
the subsystem size, to follow volume-law behavior, growing
linearly with � with a slope close to 1, corresponding to an
infinite-temperature state. In contrast, for an MBL system,
S(�)/ ln 2 exhibits logarithmic growth in time, at t → ∞ sat-
urating at a value that is linear in �, but with a slope that is
smaller than one and depends on the initial state [10,13].

In our analysis, we compute the averaged entanglement
entropy over all the subsystems of block size � (1 � � � 8)
as a function of time t , up to the maximum simulation time
tf . As the systems we study are disordered, we would not like
to restrict ourselves to the half-chain entanglement entropy,
as this corresponds to the entanglement entropy of only the
two subsystems with length L/2. Instead we are interested
in studying the behavior of our disordered systems at a sub-
system level, and extract entanglement entropy scaling results
by analyzing subsystems of different sizes. More specifically,
for any fixed disorder realization we compute the averaged
entanglement entropy,

Sent (�) = − 1

N (�)

x f∑
κ=xi

Tr
(
ρ (�)

κ ln ρ (�)
κ

)
. (3)

This averages over N (�) consecutive block locations specified
by the position κ ∈ [xi, x f ] of the first (leftmost) spin within
the block. To reduce finite size effects, we do not include
L/6 spins on the very left and right of the chain in the above
average, thus xi = L/6 + 1 and x f = 5L/6 − � + 1.

In Fig. 2, we plot Sent (�) at the final time tf as a function of
� for each disorder realization in different parameter regimes.
With L = 48 at strong disorder [α = 0.3 in Fig. 2(a), or
α = 0.5 in Fig. 2(b)], we find that the majority of realizations
lie between the volume law and area law, even after a
long time, tf = 500. This indicates that the system has not
thermalized at these evolution times, signaling subthermal
behavior. On the other hand, at weaker effective disorder
(α = 1) we observe that Sent approaches the volume law, with
a slope close to 1, for almost all realizations, already at a
shorter time, t = 150 [Fig. 2(c)].

To further distinguish the subthermal and thermal behavior,
we compute the distribution P(Sent ) and its variance σS for
� = 5 at t = tf [Figs. 2(d) and 2(e)], for system size L = 48
and different disorder strengths. We note that the variance
of the entanglement entropy of system’s eigenstates has also
been used previously to study disordered Ising models [61],
with maximum variance serving as an indicator of the MBL–
thermal crossover in finite-size systems. In our case, we
will focus on the entanglement entropy after the quench and
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FIG. 2. Entanglement entropy S(�)
ent at final evolution time tf for various combinations of the system size L, disorder strength α, and

subsystem size �. We chose tf = 500 for all cases, except for α = 1, L = 48, for which we used tf = 150 due to the high computational cost
of longer times. (Top row) Fixed L = 48, α ∈ {0.3, 0.5, 1}. (Bottom row) Fixed α = 0.5, L ∈ {24, 48, 96} [for ease of comparison, hence the
central panels (b) and (g) are identical]. (a)–(c), (f)–(h) Dependence of Sent on � where each line represents a different disorder configuration,
showing 100 disorder configurations in each panel. (d), (i) Distribution of Sent values for � = 5. (e), (j) Variance of the distributions from
(d) and (i).

the subthermal–thermal crossover. We observe in Fig. 2(d)
that at weaker disorder the distribution narrows and σS

approaches zero with increasing α, while for stronger disorder
the distribution remains broad, with sizable variance σS � 0.1
[Fig. 2(e)], indicating subthermal behavior at studied system
sizes.

To investigate the dependence of the (sub)thermal behavior
on the system size, we perform entanglement entropy cal-
culations for L = 24 and 96 and disorder strength α = 0.5.
In Figs. 2(f)–2(h), clear subthermal behavior is evident at
tf = 500 for all system sizes. However, increasing the system
size enhances the tendency towards thermalization, reflected
in the reduced variance of entanglement entropy σS [Fig. 2(j)].

To analyze the entanglement entropy growth in time, we
studied the time evolution of Sent (t ) at � = 5 for the parameter
combinations discussed above (see Fig. 3). The black data
points show Sent (t ) for a particular disorder realization for
α = 1, that appears to obey the volume law, as seen in
Fig. 2(c). Interestingly, the entanglement entropy grows log-
arithmically in time, in contrast to the linear behavior in
conventional thermalizing systems. Thus, for weaker disorder
(α = 1), we expect that the system can reach a thermal state,
although the dynamics are very slow.

To gain further insight into the structure of subthermal
states, we investigate the entanglement growth of those disor-
der realizations, which do not reach the volume-law scaling
at tf , and therefore show the most pronounced nonergodic
behavior. To that end, we average Sent (t ) over the 25% dis-
order realizations with the lowest S(5)

ent scaling at t = 500 for
the parameter combinations in Fig. 2, and the results are
shown in Fig. 3. We observe a logarithmic growth, Sent ∼
log t , of the entanglement entropy with time, for all the
parameter cases corresponding to strong disorder. At L =
48 (blue lines), the entanglement entropy growth depends

on the disorder strength, with the strongest disorder show-
ing the slowest growth. Additionally, at α = 0.5, we notice
that the entanglement entropy of these realizations grows
slightly faster when the L is increased. Nevertheless, this drift
with respect to system size is very slow, indicating the ro-
bustness of the subthermal regime at experimentally relevant
times. Eventually, we expect the thermalization to take place;

FIG. 3. Entanglement entropy Sent (� = 5)/ ln 2 growth with time
t for the same parameter combinations as in Fig. 2, averaged over the
25 (out of 100) realizations with the lowest entanglement at tf . The
black line refers to a single realization with L = 48 and α = 1 that
shows behavior very close to the volume law with a maximum pos-
sible prefactor, S(�)

ent/ ln 2 � � = 5 (upper axis). For comparison, the
dashed line corresponds to the entanglement growth in the uniform
Heisenberg model (α → ∞, Ji = 1,∀i).
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however, the dynamics are extremely slow, which does not
allow us to precisely determine the very long thermalization
time scale and required system sizes.

C. Spin-Spin correlations

A defining feature of thermalization is that, in the course
of its time evolution, the system loses the memory of its
initial conditions. That is, if a system is thermal, despite
being in a pure state, after reaching a stationary state, values
of local observables coincide with the thermal expectation
values described by an appropriate Gibbs ensemble. If the
energy density of the initial state is set to be in the middle
of the spectrum, 〈H〉 ∼ 0, the local reduced thermal density
matrix will correspond to an infinite temperature limit T →
∞. Therefore, we expect the nearest-neighbor correlations to
evolve towards 〈Si · Si+1〉 ∼ 0 in the long time limit. On the
other hand, in the MBL phase, certain local observables at
long times will correlate with their initial values, reflecting the
emergence of local integrals of motion. In SU(2) subthermal
disorder spin chains, we expect the spin-spin correlations for
strongly coupled pairs of spins to be approximately conserved
over time [50]. Thus, we expect that some of the spin pairs
initialized as triplets (half of the total pairs in the chain), which
are coupled by strong bonds, will retain the initial triplet
correlations, 〈Si · Si+1〉 
 0.25.

Figure 4 shows the distribution of the nearest-neighbor
spin correlations obtained after a sufficiently long time (t f =
500), focusing only on the spin pairs coupled by odd bonds
that formed triplets at t = 0. We consider systems of size
L = 48 with disorder strength α ∈ {0.3, 0.5, 1}. For the dis-
order value α = 0.5, we also study different system sizes,
L = {24, 48, 96, 144}. At t f = 500, we see strong evidence
of ergodicity breaking at strong disorder (α = 0.3), as the
percentage of bonds remaining in the triplet state is signifi-
cant [Fig. 4(e)], in agreement with the entanglement entropy
results, discussed above. This tendency is reduced as the dis-
order becomes weaker. Similarly, at constant disorder strength
α = 0.5, as the system size increases, the percentage of the
initial triplet bonds that remain localized at 〈SiSi+1〉 
 0.25
slowly decreases [Fig. 4(f)]. In particular, extrapolating this
percentage to the infinite-size limit 1/L → 0, the percentage
of localized bonds appears to remain above P(0.25) � 5%.
When compared to the bulk distributions in the upper pan-
els of Fig. 4, this would suggest that a peak towards the
right boundary at x = 〈SiSi+1〉 
 0.25 remains present and
pronounced even for L → ∞. This may be considered a con-
sequence of so-called weak links in the system [cf. discussion
accompanying Eq. (2)] that lead to very slow convergence
with system size in terms of local (nearest-neighbor) expec-
tation values. The persistence of triplet correlations indicates
the existence of approximate conservation laws, which cor-
respond to a total spin of neighboring spin pairs coupled by
J , which is much larger than their coupling to other neigh-
bors [50]. Yet one can also observe the onset of a downturn for
the two leftmost data points in Fig. 4(f) which thus, eventually,
may further weaken the overall presence of localized bonds.
Overall, for strong disorder (α = 0.5) the ergodicity-breaking
behavior is system-size dependent, with a tendency towards
very slow thermalization as L increases, while for weaker

FIG. 4. Distribution of nearest-neighbour spin-spin correlations
at final time tf for the odd bonds initialized as spin triplets of 100 real-
izations for each combination of system size L and disorder strength
α shown. The data, collected vs x ≡ 〈SiSi+1〉 with uniform bin size
dx = 0.01, is shown here as normalized distributions

∫
P(x)dx = 1.

By construction, at time t = 0, P(x) = δ(x − 1
4 ). We chose tf = 500

for all cases considered, except α = 1, L = 48, for which we used
tf = 150. (a)–(c) Fixed L = 48, α ∈ {0.3, 0.5, 1}. (d) L = 96, α =
0.5. (e), (f) Percentage of bonds that remain localized in triplet states
at final time tf as a function of α or 1/L, which due to the pinning
size is equivalent here to P(x) with x 
 (Si · Si+1)triplet = 0.25, i.e.,
the average weight in the last bin (0.24 < x � 0.25).

disorder (α = 1) the evidence of thermalization is present
already for small systems [Fig. 4(c)].

So far, both the behavior of the entanglement entropy and
the spin-spin correlations at long times have shown evidence
of a subthermal regime that is both disorder- and size de-
pendent. In order to understand the dynamics of this regime,
Fig. 5 illustrates the time evolution of the spin-spin correla-
tions of the bonds initialized as spin triplets. Starting with
the case α = 0.5 and L = 48 (left panels), we plot the time
evolution of 〈Si · Si+1〉 for all the odd bonds [hence 〈Si ·
Si+1〉(t = 0) = 0.25] of realizations with different entropy
scaling (Fig. 2). In particular, in Fig. 5 the top, middle, and

094201-5



DIMITRIS SARAIDARIS et al. PHYSICAL REVIEW B 109, 094201 (2024)

FIG. 5. Time evolution of 〈Si · Si+1〉 of the odd bonds of single
disorder realizations of L = 48 systems with different Sent behavior
as indicated top to bottom: the labels lowest, intermediate or highest
Sent indicate that from all the disorder realizations in Figs. 2(a)–
2(c) for the specified α the ones were picked that have the lowest,
intermediate, or highest Sent scaling, respectively, where we define
as lowest Sent: S(8)

ent < 4, intermediate Sent: 4 � S(8)
ent � 6, and highest

Sent: S(8)
ent > 6. Blue (red, or yellow) lines correspond to bonds that

approach values of 〈Si · Si+1〉 close to the maximum +0.25 (around
zero, or else), respectively.

bottom panels correspond to disorder realizations from Fig. 2
having the lowest, intermediate, or the highest entanglement
scaling, respectively. We can distinguish three different dy-
namical behaviours. Firstly, there are bonds with correlations
well conserved over time (blue lines), suggesting emergent
local integrals of motion. For realizations that exhibit higher
entanglement entropy, a majority of bonds show correlations
oscillating in the vicinity of 0 (red lines), indicative of corre-
sponding local observables reaching equilibrium. In all cases,
there are also bonds with other nontrivial dynamics exhibiting
oscillations of different frequencies and amplitudes (yellow
lines). This reflects the complex dynamics of the system due
to strong nonuniformity of the couplings.

The case α = 0.3 [right panels in Fig. 5] shows similar
phenomenology. The realization with the lowest entangle-
ment entropy, Fig. 5(d), contains both bonds with conserved
correlations and the ones showing nontrivial dynamics. For
α = 0.3, we observe realizations with intermediate entropy
scaling at most. Such a realization [Fig. 5(e)] shows similar
dynamics as those in Fig. 5(b), as both of them have similar
entropy scaling. On the other hand, for weaker disorder α = 1,
for the realization with the highest entanglement entropy, the
vast majority of bonds show oscillations around 0 (thermal
bonds), consistent with the entanglement entropy reaching a
thermal volume law.

The results described above provide an intuitive picture
of the dynamics in the subthermal regime, consistent with
previous findings [45,50,62]. Specifically, the absence of

thermalization within accessible evolution times stems from
the existence of pairs of strongly coupled spins, the total spin
of which is an approximate integral of motion.

IV. SU(3)-SYMMETRIC MODEL

Next, we consider the dynamics of a disordered SU(3)-
symmetric Heisenberg model. First, we need to understand
the range of values expected for the spin-spin correlations. We
assume individual spins in the N-dimensional fundamental
irreducible representation of SU(N ). For an SU(N ) invariant
state, the two-site density matrix of dimension N2 × N2 has
a symmetric subspace of dimension dS ≡ N (N + 1)/2 and
an antisymmetric subspace of dimension dA ≡ N (N − 1)/2.
Then the spin-spin correlations are given by

〈Si · S j〉 = 1

2

(
pS − pA − 1

N

)
(4)

where pS and pA are the total weights of a two-spin state in
the symmetric or antisymmetric subspace, respectively. For a
thermal state at infinite temperature, 〈Si · S j〉 = 1

2 ( dS
N2 − dA

N2 −
1
N ) = 0 for any N . For N = 3, a fully symmetric state of two
nearby spins has a correlation 〈Si · S j〉 = +1/3, while a fully
antisymmetric state has 〈Si · S j〉 = −2/3.

A. SU(3) model initial state

Similar to the SU(2) case, we choose an initial state with
energy lying close to the middle of the spectrum (〈H〉 ∼ 0).
The choice of the subspaces for each site is also restricted by
the fact that the total MPS is again assumed to be in the singlet
sector (00).

In what follows we use the standard multiplet labels for
SU(3) based on Young tableaus [63,64]. Specifically, SU(3)
requires two labels for each multiplet, q ≡ (q1, q2) ≡ (q1q2),
which specify the Young tableaux of two rows with q1 + q2

and q2 boxes in the first (second) row, respectively. The defin-
ing representation is thus 3 ≡ (10), and its dual 3̄ ≡ (01).
The spin operators transform in the adjoint representation 8 =
(11), which derives from (10) ⊗ (01) = (00) + (11), with the
(00) ≡ 1 being the scalar singlet. Furthermore, (10) ⊗ (10) =
(20) + (01), with (20) ≡ 6 the symmetric, and (01) ≡ 3̄ the
antisymmetric subspace.

To construct the initial state, consecutive blocks of three
sites are fused into the fully symmetric multiplet (30), as
shown in Fig. 6(a). Three such neighboring blocks are then
fused into an overall singlet via an intermediate pairing of two
blocks into the (arbitrary but fixed) adjoint (11) representa-
tion. As seen in Fig. 6(b), this state is not symmetrical around
the center of the chain, but neither are the randomized Heisen-
berg couplings. The last three spins on the right boundary of
the chain form a bond in the fully antisymmetric subspace by
themselves, as we wanted to keep the same system sizes L
as in the SU(2) analysis such that we can also use the same
disorder realizations for the Heisenberg couplings Ji.

The average energy of this initial state is around E/L ∼
−0.1, tested for different random disorder configurations
at α = 0.3 and 0.5. In Fig. 6(b), the spin-spin correlations
of the SU(3) initial state is shown, revealing its struc-
ture. The colored boxes with spin-spin correlations values
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FIG. 6. (a) Schematic depiction of the structure of the initial state
for the SU(3) model. (b) Spin-spin correlations 〈Si · S j〉 color plots
for the SU(3) initial state. This state involves nearest-neighbor bonds
in both the fully symmetric and the fully antisymmetric subspace
having 〈Si · S j〉 = +1/3 (red) and −2/3 (blue), respectively.

x ≡ 〈Si · S j〉 = +1/3 (red) and 〈Si · S j〉 = −2/3 (blue) refer
to pairs of spins initially in a fully symmetric and fully an-
tisymmetric subspace, respectively, which we will refer to as
“extremal” bonds below.

B. Results

Similarly to our analysis of the SU(2) model, we always
start with the same initial state as defined above [Fig. 6)],
which typically resides close to the middle of the spectrum.
For the case of SU(3), we focus on L = 48 throughout. We
then apply the tDMRG time evolution with dt = 0.1 Trotter
time step keeping up to D∗ = 1024 SU(3) multiplets (cor-
responding to about D � 18 000 states). For the sake of a
more direct comparison, we employed the same set of disor-
der realizations (i.e. random Ji couplings) for each parameter
combination (L, α) in our SU(3) study as for the SU(2) case.

For the cases α = 0.3, L = 48 and α = 0.5, L = 48, for
which the SU(2) model showed nonergodic behavior, we
calculate the spin-spin correlations of the time-evolved states
under the SU(3)-symmetric Hamiltonian, with the results
shown in Fig. 7. As seen from Fig. 7(a), the percentage
of bonds of the initial state that are localized in the fully
antisymmetric subspace (x = −2/3) is about 15%, and in
the fully symmetric subspace (x = 1/3) about 20%. At t f =
500 this percentage is significantly reduced to <3% [i.e.,
having P(x) < 3 given the binning width dx = 0.01] in
Figs. 7(b) and 7(c) for both cases of strong disorder. Thus, the

(a) (b) (c)

(d) (e) (f)

FIG. 7. Distribution of nearest-neighbour spin-spin correlations
for SU(3)-disordered systems of length L = 48 after time evolution
up to time tf = 500 with the initial state as in Fig. 6 for all (or just
the extremal initial) bonds in the upper panels (a)–(c) [lower panels
(d)–(f)], respectively. Left panels (a), (d): Initial bond distribution at
t = 0. Center panels (b), (e): α = 0.3. Right panels (c), (f): α = 0.5.
The distribution P(x) was obtained similarly to Fig. 4, with the same
binning width dx = 0.01. It is shown as a normalized bar histogram
in the left panels (with bars of width dx), and as a normalized
distribution function in the center and right panels.

subthermal behavior, although still present, is not as pro-
nounced here, as in the SU(2) case, suggesting that SU(3)
chains thermalize somewhat faster.

The upper panels in Fig. 7 show the bond distribution
using the data from all bonds. It is also instructive to study
the behavior of spin pairs initially in a fully symmetric
(〈Si · S j〉 = +1/3) or antisymmetric (〈Si · S j〉 = −2/3) state
[see Fig. 6(a)]. The distribution of spin-spin correlators at tf
for such “extremal” bonds, which constitute approximately
35% of all bonds, is illustrated in the lower panels of Fig. 7.
These plots demonstrate an enhanced probability for such spin
pairs to retain their initial correlations at long times, indicating
that dynamics are not fully ergodic at these evolution times.

Next, we study the dynamics of entanglement entropy.
Figure 8 contrasts the growth of the entanglement entropy
Sent (t )/ ln N in time for the SU(3) case with with that for
SU(2) chains, for the same disorder configurations. Similar
to Fig. 3, we chose the 25% realizations with the lowest Sent

value reached at tf . The logarithmic growth of Sent following
a quench for the SU(3) model, evident in Fig. 8, is suggestive
of a subthermal behavior. Compared to the SU(2) data also
included in Fig. 8, Sent/ ln N reaches a higher value for the
SU(3) case. This, however, can be attributed to the fact that
the initial state we chose is more entangled for the SU(3) case.
The slopes in the semilogarithmic plot in Fig. 8, on the other
hand, are comparable for N = 2 with N = 3 for the same
value of α. This entanglement entropy behavior indicates that
disordered SU(3)-symmetric chains also exhibit nonergodic
dynamics up to relatively long time scales; at the same time,
the above analysis of spin-spin correlations suggests that the
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FIG. 8. Growth of the entanglement entropy of � = 5 subsystems
with time, for SU(2) and SU(3) models and L = 48, α = {0.3, 0.5}.
The data is normalized by ln N , thus having the common upper bound
S(�)

ent/ ln N � � = 5. For each parameter combination, we focused on
the 25% realizations with the lowest entanglement entropy scaling in
Fig. 2 as discussed with Fig. 3.

SU(3) chains show a somewhat stronger tendency to thermal-
ization compared to the SU(2) case.

V. CONCLUSIONS

In conclusion, we have studied the effect of SU(N ) symme-
try on (absence of) thermalization in disordered spin chains.
To that end, we investigated the real-time evolution of the
SU(N )-symmetric disordered Heisenberg model in a quantum
quench, starting from a symmetric weakly entangled state.
Using matrix-product-states based methods exploiting SU(N )
symmetry, we were able to access long-time dynamics of large
systems, with sizes well beyond those considered in previous
studies using exact diagonalization.

For the case of SU(2) model, we found phenomenology
consistent with the results of Ref. [50]: at strong disorder,
the system exhibits a subthermal regime, characterized by
slow entanglement growth and absence of thermalization,
attributed to the emergence of approximate integrals of mo-
tion, given by the total spin of pairs of strongly coupled
neighboring spins. We investigated the distribution of Sent

and correlation functions, finding them to be broad; the slow
narrowing of these distributions with increasing system size
suggests slow eventual thermalization. At weaker disorder, we
observed thermalization evidenced by entanglement entropy
reaching nearly maximum volume-law scaling. Interestingly,
entanglement showed slow dynamics in this regime as well.
Interestingly, in a recent paper [65], the classical equivalent of
the disordered SU(2)-symmetric model was studied, where a
regime of subdiffusive spin transport was observed.

Finally, we studied the SU(3)-symmetric model, not con-
sidered in previous papers, for the parameter regimes in which
the SU(2) model behaves in a nonergodic way. The spin-spin
correlations results indicated that the subthermal behavior,
although present, is less pronounced, compared to the SU(2)

case. Similarly, the entanglement entropy growth remains log-
arithmic, but the Sent reaches values higher than the SU(2)
case for the same disorder strength and system size. Thus, we
conclude that the phenomenology of SU(3)-symmetric chains
is similar to the SU(2) case, but with a stronger tendency to
thermalization.

Taken together with the resonance analysis within strong-
disorder renormalization group for the SU(2) case [50], our
results suggest that SU(N )-symmetric spin chains show even-
tual thermalization for arbitrary N even at strong disorder.
However, the subthermal regime is robust at N = 2, 3, show-
ing a different entanglement pattern compared to either MBL
or thermalizing phase. It would be interesting to observe the
signatures of this nonergodic behavior in quantum simulation
experiments.
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APPENDIX

In this Appendix we provide information about the relia-
bility of the simulations we performed for the analysis above.
For that, we focus on the weaker disorder case with α = 1 and
L = 48. This is the case, which shows entanglement entropy
scaling closer to the volume law, as shown in Fig. 2(c), thus

FIG. 9. Time evolution of the discarded weights for the case of
α = 1 disorder strength and L = 48.
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it would be wise to ensure that the time-evolution results
are not affected by computational errors due to significant
truncation. The most instructive accuracy measure in DMRG
is the reduced density matrix discarded weights [68],

ε = 1 −
M∑

k=1

wk (A1)

where wk are the reduced density matrix eigenvalues and
M is the number of the dominant eigenvalues kept for the

calculation. In Fig. 9, we show the time evolution of the
discarded weights ε for the realizations with parameters
α = 1, Ł = 48. The discarded weights of some of the sim-
ulations have reached values of order 10−6 − 10−5, which is
the reason that we show results only till t f = 150 in Fig. 2(c)
for this particular case. This is, nevertheless, in agreement
with the point we make about the weaker disordered SU(2)-
symmetric model: There is a tendency towards thermalization
already at earlier times than the rest of the parameter cases,
however, with a logarithmic growth of the entanglement en-
tropy, as seen in Fig. 3.
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