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Automated atomistic simulations of dissociated dislocations with ab initio accuracy
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In a previous work [M. Hodapp and A. Shapeev, Mach. Learn.: Sci. Technol. 1, 045005 (2020)], we proposed
an algorithm that fully automatically trains machine-learning interatomic potentials (MLIPs) during large-scale
simulations, and successfully applied it to simulate screw dislocation motion in body-centered-cubic tungsten.
The algorithm identifies local subregions of the large-scale simulation region where the potential extrapolates,
and then constructs periodic configurations of 100–200 atoms out of these nonperiodic subregions that can
be efficiently computed with plane-wave density functional theory (DFT) codes. In this work, we extend this
algorithm to dissociated dislocations with arbitrary character angles and apply it to partial dislocations in face-
centered-cubic aluminum. Given the excellent agreement with available DFT reference results, we argue that our
algorithm has the potential to become a universal way of simulating dissociated dislocations in face-centered-
cubic and possibly other materials, such as hexagonal-closed-packed magnesium, and their alloys. Moreover,
it can be used to construct reliable training sets for MLIPs to be used in large-scale simulations of curved
dislocations.

DOI: 10.1103/PhysRevB.109.094120

I. INTRODUCTION

Dislocations in metals are atomistic defects and, there-
fore, simulation methods that operate on the atomic scale
are necessary in order to predict their behavior with the best
possible accuracy. Simulating a dislocation requires config-
urations of at least 100–200 atoms and the currently most
accurate method that allows one to simulate such configura-
tions is considered to be Kohn-Sham density functional theory
(DFT). To date, the arguably most popular implementations
of DFT use plane-wave basis sets, as implemented in codes
such as VASP [1]; for instance, the Materials Project database
[2] is almost entirely based on plane-wave DFT calculations.
With such configurations, dislocations in body-centered-cubic
(bcc) metals can be simulated as dipoles, subject to periodic
boundary conditions, because dislocations in bcc metals have
a compact core structure (see, e.g., [3,4]). For dislocations in
face-centered-cubic (fcc) metals, the situation is different: fcc
dislocations dissociate into partial dislocations, with a split-
ting distance of several times the magnitude of the Burgers
vector b (cf. [5]). For example, for nickel, the partial splitting
is around 8–10b (see, e.g., [6]), which requires supercells
of at least 2000–3000 atoms to accommodate a dislocation
dipole. Presently, such a large number of atoms still appears
to be prohibitively expensive using plane-wave DFT because
plane-wave DFT scales cubically with the number of particles.
However, to be predictive, simulation methods must be able
to simulate the partial splitting very accurately as it influences
other mechanisms, such as dislocation cross slip. To that end,

*laura.mismetti@epfl.ch
†Corresponding author: maxludwig.hodapp@mcl.at

e.g., several groups [7–9] used quantum mechanics/molecular
mechanics (QM/MM) methods that resolve only the disloca-
tion core fully atomistically and use elasticity in the far field.
Other works, by Iyer et al. [10] and Das and Gavini [11], have
used more efficient orbital-free (OF-DFT) methods that allow
one to simulate much larger cells with more than 5000 atoms.

However, none of the previous methods presently appears
to be tractable to solve more complex problems that require
millions of atoms, e.g., dislocations in high-entropy alloys,
or long curved dislocations. QM/MM methods using plane-
wave DFT as the QM model would still require too many
atoms to resolve the dislocation core; moreover, they require
additional buffer and vacuum regions to be included in the
DFT supercell to ensure accurate force fields in the vicinity
of the dislocation core. In general, OF-DFT methods have,
to date, not been able to accurately predict the energetics of
dislocations in alloys (e.g., [12]). Newer state-of-the-art im-
plementations of Kohn-Sham DFT with finite-element basis
sets offer a high scalability compared to plane-wave DFT,
allowing for configurations with 10 000–100 000 atoms, while
achieving the same accuracy (cf. [13,14]). However, they still
require supercomputers to simulate such a large number of
atoms.

In this work, we approach the problem of simulating
fcc dislocations with machine-learning interatomic potentials
(MLIPs) [15–24], parametrized using plane-wave DFT calcu-
lations. Contrary to empirical interatomic potentials, which
are in general not quantitatively accurate, MLIPs have a
flexible functional form that allows one to systematically
approximate local DFT energies down to the usual noise in
numerical DFT codes [18]. In practice, it is observed that
electronic effects in many metals decay sufficiently fast so
that properties that are relevant for computational metallurgy,
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such as dislocation core structures, core energies, etc., are
not quantitatively impacted when replacing DFT with an
interatomic interaction model. Next-generation MLIPs even
include nonlocal interactions or charges (e.g., [24–26]) that
allow one to account for more complex quantum mechani-
cal effects if, e.g., the assumption of local interactions does
not hold. All of this makes MLIPs a very promising candi-
date for predictive large-scale simulations for dislocations in
alloys.

One of the success stories of MLIPs is their ability to
generalize to large systems: they can be trained on sets of
configurations of a few-hundred atoms, yet they still make
excellent predictions when simulating much larger configura-
tions of tens of thousands of atoms (see, e.g., [27–29], and
for some recent mathematical analysis of this observation,
see [30,31]). On the other hand, one of the major challenges
in constructing a good MLIP is the construction of such
a training set. The vast majority of works are focusing on
developing so-called general-purpose potentials that must be
trained on huge datasets containing various defects (vacan-
cies, stacking faults, grain boundaries, etc.) [32–36]. Such
potentials are predictive as long as their range of application
is not too far from the training data, but not necessar-
ily DFT accurate in regions where it has not been trained
(e.g., [37]).

However, for alloy design, it is more tractable to use consti-
tutive models for a mechanical property of interest (strength,
ductility, hardness, etc.) that depend on a set of descriptors,
e.g., the interaction energy of dislocation with a solute, to
screen for the best possible alloy. Therefore, it is also highly
desirable to develop efficient special-purpose potentials in
order to keep the training set small sized and the potential
sufficiently reliable for that specific descriptor. However, it is
difficult to construct such a training set because it is, as out-
lined above, usually not feasible to simulate extended defects,
such as dislocations, with plane-wave DFT alone.

To that end, we have developed an active learning al-
gorithm for large-scale simulations of dislocations using
moment tensor potentials (MTPs) [38]. Our algorithm uses
D-optimality to measure the per-atom uncertainty—the ex-
trapolation grade—of the MTP in the simulation region, and
extracts those subregions in which the extrapolation grade
exceeds some threshold. Then, our algorithm completes these
local (in general, nonperiodic) subregions to periodic configu-
rations that are suitable to be computed with plane-wave DFT.
We have applied this method to simulate screw dislocation
motion in bcc tungsten and obtained excellent agreement with
reference DFT results.

In this work, we extend this algorithm to general disso-
ciated dislocations with arbitrary character angles. The new
challenge, compared to our previous work on compact dis-
locations, is to extract several subregions from the dislocation
core and complete them to periodic configurations of 100–200
atoms. To that end, we develop a method that extracts two
regions, i.e., one around each partial dislocation core, and
completes them to two periodic configurations with a net
partial Burgers vector of zero in which no artificial neighbor-
hoods occur at the periodic cell boundaries that could possibly
degrade the accuracy of the MTP. Using our algorithm, we
train several MTPs on dislocations in fcc aluminum and

compare their core structures and core energies to available
DFT results from the literature.

II. METHODOLOGY

Before explaining our methodology, we fix some notation.
Let {ri}i=1,...,N = {ri} be an arbitrary (possibly nonperiodic)
configuration of N atoms, which represents the system at a
specific step of the atomistic simulation. The neighborhood of
the ith atom is the set N = {ri j} of all relative distances ri j =
r j − ri between ri and atoms r j within a few lattice spacings.
We assume that the total energy Π of {ri} is partitioned into
per-atom contributions E = E (N ) such that

Π = Π ({ri}) =
∑

N ∈{ri}
E (N ). (1)

A. Moment tensor potentials

We model the per-atom energies with moment tensor
potentials (MTPs) [18,39], which are based on a linear com-
bination of basis function Bα ,

E (N ) =
∑

α

θαBα (N ), (2)

where the θα’s are free parameters. The basis functions are
built from scalar contractions of the moment tensors,

Mμ,ν (N ) =
∑

ri j∈N

∑
n

cμn fn(|ri j |)(ri j ⊗ · · · ⊗ ri j︸ ︷︷ ︸
ν times

), (3)

where the cμn’s are additional nonlinear parameters, and the
fn’s are Chebysev radial basis functions that smoothly go to
zero at the potential cutoff. In (3), μ and ν define the moment
tensor level, lev Mμ,ν = 2 + 4μ + ν. An MTP with a given
level levMTP is then constructed using all basis functions that
can be obtained from all scalar contractions of the Mμ,ν’s that
satisfy levMTP � ∑Nm

i=0 lev Mμi,νi , where Nm is the number of
moment tensors included in the contraction. For example, for
an MTP of level 16, there are 92 basis functions, and for an
MTP of level 18, there are 163 basis functions.

The parameters θα and cμn are obtained by minimizing
the MTP’s predictions for energies, forces, and stresses, with
respect to data coming from density functional theory (DFT)
calculations. For further details regarding the training, we
refer the reader to Appendix A.

B. Active learning

Suppose now that we are running a simulation with our
MTP that has been trained on configurations from some
training set T . During the simulation, we come across new
neighborhoods N ∗ not present in the training set and in order
to assess whether we should better add the configuration con-
taining those neighborhoods to our training set, we need active
learning. Active learning is a method of judging whether or
not to add N ∗ to the training set based on some scalar model
uncertainty γ [40]. The algorithm that computes γ is called
the “query strategy,” and there are a number of query strategies
that have been successfully adapted for MLIPs. For example,
Behler [41] and Zhang et al. [42] proposed a query strategy
based on query-by-committee for neural network potentials,
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in which γ is the standard deviation between different model
predictions. Podryabinkin and Shapeev [43] have proposed
D-optimal design for MTPs, in which γ has the meaning of
an extrapolation of the potential. Jinnouchi et al. [44] and
Vandermause et al. [45] proposed Bayesian active learning
for the Gaussian process-based potentials, in which γ is the
predictive variance, which is naturally built into Gaussian
process regression.

1. D-optimal selection of training configurations

In this work, we use the D-optimality criterion to select the
training configurations, which is well established for MTPs.
Hence, we consider γ as the extrapolation grade per atom in
the following.

In order to compute γ , assume for a moment an MTP that
has m coefficients and an active set with m neighborhoods. We
then define the m × m Jacobian

A =

⎛
⎜⎜⎜⎝

∂E (N1;θ )
∂θ1

· · · ∂E (N1;θ )
∂θm

...
. . .

...

∂E (Nm;θ )
∂θ1

· · · ∂E (Nm;θ )
∂θm

⎞
⎟⎟⎟⎠. (4)

The extrapolation grade γ is then defined as the maximum
change in the determinant of A if we would replace any Ni

with N ∗. Fortunately, we do not need to replace all Ni with
N ∗ and compute all determinants individually, but can conve-
niently compute γ as follows:

γ = max
i

|ci| with c =
(

∂E (N ∗;θ )
∂θ1

· · · ∂E (N ∗;θ ))
∂θm

)T
A−1.

In general, our training set contains many more neighbor-
hoods than coefficients, so A would be overdetermined.
Therefore, we select those m neighborhoods that maximize
linear independence between the column vectors of A using
the maxvol algorithm [46].

Now, in order to define whether to add a configuration
{ri}∗ to the training set, we compute the γ ’s for all N ∈ {ri}∗.
Following [47],

γ � 1 indicates interpolation,

1 <γ � 2 indicates accurate extrapolation,

2 <γ � 10 indicates still reliable extrapolation,

10 <γ indicates risky extrapolation.

Then, if the maximum γ is higher than some threshold, we
add this configuration to the training set.

2. Active learning algorithm for large-scale simulations
of fcc dislocations

In general, we are interested in simulating atomic con-
figurations {ri} with tens of thousands of atoms, or even
more. While active learning can reliably detect extrapolative
neighborhoods in such simulations, it is not trivial to con-
struct training configurations containing those neighborhoods
because we cannot afford even one single-point plane-wave
DFT calculation for such a large number of atoms. In fact,
we are only able to simulate small subsets of {ri} with
∼100–200 atoms at a time. However, blindly simulating such

a—generally nonperiodic—subset with plane-wave DFT de-
grades the accuracy of the MTP because the corresponding
training configuration (that must be subject to periodic bound-
ary conditions) contains artificial neighborhoods at the cell
boundaries (cf. [S2] in Fig. 1).

A general way that can, in principle, be applied to any
large-scale simulation is to extract cluster configurations
[48,49]. However, computing clusters with plane-wave DFT
requires buffer and/or vacuum regions to be introduced at the
cell boundaries that can heavily increase the computational
cost. Instead of using buffer or vacuum regions, one could
also optimize the atoms at the cell boundaries to mimic atomic
neighborhoods close to the ones that occur in the large-scale
configuration [38,48,50], but it is yet unclear how this should
be done for general arrangements of atoms.

In [38], we have developed an efficient method for screw
dislocations in bcc metals. In this method, a rectangular clus-
ter around the dislocation core is completed to a periodic
training configuration by symmetrizing the atomic positions
at the periodic cell boundaries. Recently, Zhang et al. [51]
showed that the same idea can also be applied to cracks.

In this work, we extend our algorithm for bcc screw dis-
locations to general dislocations in fcc metals that dissociate
into two Shockley partial dislocations. The added difficulty is
that a training configuration containing a full fcc dislocation
would still require too many atoms, in particular for materials
with a large separation between the two partials. Therefore,
we extend our algorithm as follows. We first train the MTP
on several bulk configurations, and configurations containing
a stacking fault. Then we are left with two regions around each
of the partial cores, {ri}∗lead and {ri}∗trail, where the MTP poten-
tially extrapolates (cf. Fig. 1, [S3]). If the extrapolation grade
in those regions exceeds some threshold, we complete this
configuration to a periodic one by symmetrizing only a rectan-
gular configuration around each partial core—but not around
the full dislocation. This method allows one to construct two
potential training configurations, {ri}tr

lead and {ri}tr
trail, that con-

tain the neighborhoods from the large-scale simulation region,
but do not suffer from artificial neighborhoods that do not
occur in the large-scale simulation region. Details on how this
procedure is implemented are postponed to Sec. II B 3.

The full algorithm is schematically depicted in Fig. 1 and
outlined in the following.

[S0] Define the initial atomistic configuration {ri} that con-
tains a full fcc dislocation composed of two Shockley partial
dislocations. Set the index of the first iteration to nstart = 1.

[S1] Run the simulation for N iterations, starting from
iteration nstart . In each iteration, n = nstart, . . . , nstart + N − 1,
compute the highest extrapolation grades in both {ri}∗lead and
{ri}∗trail.

[S2] Stop the simulation after N iterations—or if an ex-
trapolation grade exceeds some threshold γmax. If any of the
extrapolation grades computed in [S1] exceeds some thresh-
old γmin, add the corresponding configuration to the set of
training candidates.

[S3] If the set of training candidates is not empty, update
the training set using the following query strategy:

[S3.1] Complete all configurations from the set of training
candidates to periodic configurations using the method from
Sec. II B 3.
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FIG. 1. Schematic illustration of the individual steps of the active learning algorithm for fcc dislocations presented in Sec. II B 2. The
coloring of the atoms is due to the centrosymmetry parameter (CSP) [52], in order to visualize their deviation from the ideal crystal.

[S3.2] Move the configuration with the highest extrapola-
tion grade from the set of training candidates to the training
set.

[S3.3] Update the Jacobian A (4) using the maxvol
algorithm.

[S3.4] Recompute the extrapolation grades for all config-
urations that are left in the set of training candidates. If all
grades are < γmin, go to [S4], otherwise go back to [S3.2].

[S4] If new configurations have been added to the training
set, retrain the potential and go back to [S1] to restart the sim-
ulation from iteration nstart . Otherwise, set nstart = nstart + N
and go back to [S1] to continue the simulation.

Steps [S1]–[S4] are then repeated until convergence or
until the maximum number of iterations is reached.

3. Completion of nonperiodic extrapolative neighborhoods
to periodic training configurations

Since we want to use plane-wave DFT as our ab initio
model, we need to apply periodic boundary conditions on our

training configurations. However, the extrapolative configura-
tions containing the partial dislocations, {ri}∗lead and {ri}∗trail,
shown in Fig. 1, are not periodic and computing them with
plane-wave DFT would degrade the reliability of the data and
the accuracy of the MTP.

In [38], we have developed a method for completing such
extrapolative neighborhoods to periodic configurations by
symmetrizing the displacement field at the boundaries, and
successfully applied it to simulate screw dislocation motion
in bcc tungsten. The algorithm works as follows. First assume
a straight dislocation along the z axis with the glide direction
along the x axis. Let the displacement field of this dislocation
be given by ũ(x), with x ∈ R3, such that ũ(r0,i ) = ri − r0,i,
where r0,i is the position of atom i in its reference (bulk)
configuration, with the dislocation centered at x = 0. Next,
we apply ũ(x) only to the reference position of those atoms
that lie in the rectangular region [−L/2, L/2] × [−L/2, L/2]
with length L. Now, we mirror the displacements at the bound-
aries of this rectangular region and this procedure creates a
displacement field in [−3L/2, L/2] × [−L/2, 3L/2],

u(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũ(x1, x2, x3) ∀ x ∈ [−L/2, L/2] × [−L/2, L/2],

ũ(−x1 − L, x2, x3) ∀ x ∈ [−3L/2,−L/2] × [−L/2, L/2],

ũ(x1,−x2 − L, x3) ∀ x ∈ [−L/2, L/2] × [L/2, 3L/2],

ũ(−x1 − L,−x2 − L, x3) ∀ x ∈ [−3L/2,−L/2] × [L/2, 3L/2],

(5)

which is fully periodic (cf. Fig. 2).
This method is general and can, in principle, be applied to any dislocation with arbitrary Burgers vector b =

(bedge 0 bscrew)T (and possibly even to other types of defects), as shown in Fig. 2. As done in [38], we can additionally
exploit the fact that the displacement field is close-to symmetric up to a constant shift b/2 so that it suffices to consider training
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FIG. 2. Illustration of the solution (5) that is periodic over a rectangular region containing four linear elastic dislocations. Due to symmetry,
the solution is even periodic up to a constant given by half of the magnitude of the Burgers vector over the smaller triclinic cell that contains
only two dislocations.

configurations composed of atoms located in the triclinic region,{
x =

∑
i

αivi + c

∣∣∣∣∣α ∈ [0, 1]

}
with c = (−L 0 −L/2)T, (6)

spanned by the cell vectors

v1 = (2L 0 0)T, v2 = (L + bedge/2 L bscrew/2)T, v3 = (0 0 a3)T,

where a3 is the periodic lattice spacing in the direction of the
dislocation line. In the case of elasticity, the displacement u
is exactly periodic over the triclinic region; for a formal proof
of this statement, the reader is referred to [38] (Appendix B
therein).

The problem we are considering here is more complicated
since there are two (partial) dislocations in our large-scale
configuration. This requires some additional steps to be per-
formed on top of the previous method, which we explain in
detail below.

(1) First, we detect the positions of the two partial dis-
locations since they may move along the glide plane during
energy minimization. We do this by minimizing the difference
between the atomistic solution and the elastic solution with
respect to the positions of the two partial dislocations.

(2) Next, we compute the displacement field around each
of the partial cores and apply it to some rectangular subset of
the reference configuration, as shown in Fig. 3(a).

(3) Now, we extend the length of this region to 2L and
mirror the displacements along the y axis according to (5).

This procedure creates a stacking fault in the center of the cell,
but otherwise no artificial neighborhoods occur in the vicinity
of the cell boundaries, except for the top and bottom layers
[Fig. 3(b)].

(4) In the final step, we modify the periodic cell vectors
to remove the artificial neighborhoods at the top and bottom
layers. Since the atomistic solution is not exactly symmetric,
we compute the shift as the difference of the minima of the
solutions on the top and bottom layers,

Δu = min
x′

1,z
′
1

u(x′
1, L/2, z′

1) − min
x′′

1 ,z′′
1

u(x′′
1 ,−L/2, z′′

1 ).

The cell vector v2 is then given by

v2 = (L + Δu1 + d L Δu3)T,

where d is some additional shift that is required to match the
stacking sequence and depends on the size of the cell; if u
would be the elastic solution, then Δu = −b/2, as in (6). In
practice, the final configuration with the modified cell vector
v2 does not contain any artificial neighborhoods [cf. Fig. 3(c)].
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FIG. 3. Steps of the process of completing extrapolative neighborhoods around both partial dislocations to periodic training configurations.
(a) Extraction of the extrapolative neighborhoods from the large-scale configuration {ri}. (b) Mirroring of the displacement field along the y
axis in order to construct a configuration that is periodic along the dislocation glide direction. (c) Adjustment of the triclinic cell vectors to
remove any artificial neighborhoods near the cell boundaries.

In each iteration, we thus create two training candidate
configurations containing two dislocations that have equal
and opposite partial Burgers vectors (cf. Fig. 4). Of course,
the configurations themselves are not physically meaningful;
however, we point out that we do not attempt to run a full
simulation on them, but only single-point DFT calculations.
Hence, if the influence of electronic interactions decays suf-
ficiently fast, these configurations are suitable for training a
local model of interatomic interaction. We will show in the
following section that the algorithm outlined above allows one
to construct DFT-accurate MLIPs for fcc dislocations with any
character angle.

We further remark that constructing training sets in this
way is supported by the recent analysis of Ortner and Wang
[30], who proved that the MLIP’s error in a large-scale
simulation with respect to a local DFT model converges
exponentially with the size of the periodic training configu-
rations (provided that the MLIP approximates the training set

sufficiently well). This implies that our way of training
directly on neighborhoods extracted from the large-scale sim-
ulations should lead to a nearly optimal training set.

III. COMPUTATIONAL RESULTS

A. Training protocol

We now validate the proposed algorithm for dislocations in
fcc aluminum that dissociate into 1/6〈112〉 Shockley partial
dislocations. We apply the training algorithm to three types
of dislocations: edge dislocations, screw dislocations, and
mixed dislocations with a character angle of 30◦. Our large-
scale simulation region is a cylindrical configuration of atoms
with radius 35b, where b is the magnitude of the Burgers vec-
tor. The simulation region contains ∼9500 atoms for the edge
and the mixed dislocations and ∼5500 atoms for the screw
dislocation. Outside the simulation region, we use Dirichlet
boundary conditions, that is, we set the displacement of the

FIG. 4. Final training configurations {ri}∗
lead (left) and {ri}∗

trail (right) for an edge dislocation. The dislocations have been detected using
the dislocation extraction algorithm (DXA) [53], implemented in OVITO [54]. The net Burgers vector is zero over each configuration, which
follows from mirroring the configuration at the yz plane (cf. Fig. 3). Note that for a better visualization, the configuration has been extended in
the z direction; the actual training configuration is confined to the triclinic cell.
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TABLE I. Mean absolute errors (MAE) and root mean square
errors (RMSEs) of the level-18 MTP that has been trained on con-
figurations computed with DFT containing, e.g., edge, screw, and
mixed dislocations that were found by our active learning algorithm,
as described in Sec. III A. The training errors are close to the ac-
curacy limit of interatomic potentials, indicating that the MTP can
simultaneously predict the core structures of those three dislocations.

Quantity MAE RMSE

Energy (eV/atom) 4.2 ×10−4 7.0 ×10−4

Forces (eV/Å) 2.9 ×10−2 3.6 ×10−2

Stress (GPa) 3.1 ×10−1 4.8 ×10−1

atoms to the linear elastic solution of the corresponding dislo-
cation. As our ab initio model, we use DFT with plane-wave
basis sets, as implemented in the Vienna Ab initio Simulation
Package (VASP) [1]. The corresponding simulation parameters
are given in Sec. III B.

We perform structural relaxation using the fast inertial
relaxation engine (FIRE) [55], as implemented in the atomic
simulation environment (ASE) [56]. We consider a configura-
tion as relaxed when the maximum absolute force on an atom
is less than 10−3 eV/Å.

For the training simulations, we use level-16 MTPs. Prior
to running the simulations, we train those MTPs on 10 32-
atom bulk configurations and five 72-atom configurations
containing a stacking fault (including random perturbations
of the atoms). We then start all our simulations with an initial
partial splitting of 3.5b. During the simulation, we detect the
two partial dislocations, compute the extrapolation grades of
the atoms in the vicinity of the partial cores, and construct the
potential training configurations if one per-atom extrapolation
grade exceeds a threshold of γmin = 2; after N = 30 iterations,
or if one per-atom extrapolation grade exceeds γmax = 10, we
stop the simulation and update the training set according to
step [S3] of the algorithm presented in Sec. II B 2. The training
configurations contain 180 atoms, in the case of the edge and
mixed dislocations, and 126 atoms, in the case of the screw
dislocation, respectively.

Upon convergence, the training sets of the three MTPs con-
tained, in total, 24 configurations for the edge dislocation, 44
configurations for the screw dislocation, and 30 configurations
for the mixed dislocation. Hence, training the three potentials
only required 68 single-point DFT calculations in total, which
underlines the efficiency of the proposed training algorithm.
Moreover, the training simulations can be run in parallel; each
of them required ∼5–10 hours on a single 128-core node on
the Vienna Scientific Cluster.

After training the three MTPs, we combine the training
data into one big training set that now contains 68 configura-
tions. We then train a level-18 MTP on this combined training
set and rerun the simulations with active learning switched
off. The training errors of this MTP are shown in Table I.
The accuracy for per-atom energies is excellent, well below
1 meV/atom and, therefore, close to the limit of accuracy
that can be achieved with interatomic potentials (cf. [57]).
The force and stress errors are also within the range of high

TABLE II. Partial splitting distances (in Å) for the edge and
screw dislocations predicted by the MTP and various DFT methods;
the splitting distances are computed using three different methods:
the Nye tensor method, differential displacements, and the DXA.
Overall, the agreement between MTP and DFT is very good, in
particular, in view of the uncertainty about the distance between two
atomic planes’ spacing that is inherent in all dislocation detection
methods.

Nye tensor Differential displacements DXA

Dislocation MTP QM/MM MTP QM/MM OF-DFT MTP

Edge 6.6 7.0 [7] 14.3 9.5 [7] 12.8 [10] 15.0
Screw 4.6 5.0 [7] 8.2 7.5 [7] 8.2 [11] 8.6

accuracy, i.e., of the order of 10 meV/Å for forces and of the
order of 10−1 GPa for stresses.

In the following, we analyze the core structure and dis-
location energies predicted by this level-18 MTP. Prior to
training on DFT, we have tested our algorithm by training on
embedded atom method (EAM) potentials. The corresponding
results are in excellent agreement with the exact solutions
and can be found in Appendix C. Considering that the DFT
training errors (Table I) are not significantly worse than the
EAM training errors (Table IV) is one indication that our
training algorithm captures the right training data, and the
MTP trained on DFT data with our active learning algorithm
should also give very accurate results.

B. DFT calculations

In the following, we compare the core structures
of the edge and screw dislocations, predicted by our
MTP, with the core structures predicted by the quan-
tum mechanics/molecular mechanics (QM/MM) method of
Woodward et al. [7]. We have used a DFT setup similar
to theirs, namely, we have used projector-augmented wave
pseudopotentials [58,59] within the generalized gradient ap-
proximation [60]. Moreover, we use an energy cutoff of
480 eV, a Gaussian smearing of 0.08 eV, and a minimum
k-point spacing of 0.15 Å−1. Electronic relaxation is per-
formed using the preconditioned minimal residual method.
We consider a configuration as converged when the energy
difference between two subsequent iterations is less than 5 ×
10−7 eV. With these parameters, we obtain a lattice constant
of 4.042 Å. For setting up the boundary conditions using the
linear elastic solution of a dislocation [5], we have used a
finer grid of k points (36 × 36 × 36) to accurately predict
the elastic constants, in agreement with real experiments (cf.
Table III).

TABLE III. Cubic elastic constants (in GPa) predicted by DFT,
MTP, OF-DFT (isotropic Voigt average), and real experiments.

Component DFT MTP OF-DFT [10,11] Experiments [71]

C11 113.4 112.0 95.3 116.3
C12 60.0 63.4 51.3 64.8
C44 32.9 30.4 22.0 30.9
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FIG. 5. Visualization of the edge dislocation core structure predicted by the MTP, QM/MM [7], and OF-DFT [10], using the edge and
screw components of the Nye tensor, and differential displacements. Overall, the agreement between the MTP and DFT core structures is very
good, and the splitting distances between the partial dislocations closely coincide, up to the usual uncertainty of about the distance between
two atomic planes. The QM/MM and OF-DFT figures are reproduced from [7] and [10] with permission.

In addition, we compare the dislocation core structures
and dislocation energies, predicted by our MTP, to the
orbital-free DFT (OF-DFT) method of Iyer et al. [10] and
Das and Gavini [11] that uses the local density approx-
imation for the exchange-correlation energy [61], and the
Goodwin-Needs-Heine pseudopotential [62]. This OF-DFT
method uses the Wang-Govind-Carter kinetic-energy func-
tional [63], which has been shown to be in good agreement
with (Kohn-Sham) DFT for bulk properties and vacancy for-
mation energies of aluminum (see, e.g., [64]).

C. Core structure and partial splitting

We first compare the core structures of the edge and
screw dislocations, predicted by our MTP, with the core
structures predicted by pure-DFT methods, namely, the quan-
tum mechanics/molecular mechanics (QM/MM) method of
Woodward et al. [7], and the orbital-free DFT (OF-DFT)
method of Iyer et al. [10] and Das and Gavini [11]. For
comparison, we use the Nye tensor methodology of [65] and
differential displacements (cf. [66]) in order to estimate the
splitting distance between the partial dislocations.

From Figs. 5 and 6, it follows that the Nye tensor dis-
tributions are comparable for both the edge and the screw
dislocations. The splitting distance of the edge dislocation is
computed by taking the distance between the locations of the
two extrema of the screw component of the Nye tensor along
the glide direction, and the splitting distance of the screw
dislocation is computed by taking the distance between the
locations of the two extrema of the edge component of the Nye
tensor along the glide direction. Our results for both the edge
and the screw coincide with those computed by Woodward
et al. [7] (cf. Table II), who used the same methodology for
computing the Nye tensor.

Using differential displacements, the agreement between
MTP, QM/MM, and OF-DFT is very good for the screw
dislocation. For the edge dislocation, the MTP splitting is
close to the OF-DFT splitting (up to the numerical uncertainty
of approximately a distance of atomic planes in the glide di-
rection due to the discreteness of the problem), but is slightly
larger than the QM/MM prediction. While this difference is
still small, and well within the range of tolerable deviation, it
motivates further discussion. One possibility for the difference
can be the size of the DFT region used in QM/MM. The size
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FIG. 6. Visualization of the screw dislocation core structure predicted by the MTP, QM/MM [7], and OF-DFT [11], using the edge and
screw components of the Nye tensor, and differential displacements. Overall, the agreement between the MTP and DFT core structures is very
good, and the splitting distances between the partial dislocations remarkably coincide. The QM/MM and OF-DFT figures are reproduced from
[7] and [11] with permission.

of the DFT region in [7] is less than one-hundred atoms, while
ours and OF-DFT contain more than one-thousand atoms. In
general, for coupled methods such as QM/MM, there can be
non-negligible spurious effects on the motion of the disloca-
tion up to ∼3–4b from the boundary [67], and those effects
may also influence the partial splitting. Olmsted et al. [68]
have analyzed the spurious boundary stress on dislocations
and their results show that this boundary stress is much larger
for edge dislocations than for screw dislocations. This result
supports our argument of attributing the differences in the
partial splitting to the size of the DFT region since the split-
ting distances coincide when computed using the Nye tensor
method, which uses the screw component of the Nye tensor,
and by the fact that the splitting distances coincide across
different model predictions for the screw dislocation, where
the edge components of the partial dislocations are much
smaller than the screw components.

The different results found in the literature, e.g., Lu et al.
[69] report a partial splitting of 5.6 Å for the edge dislocation,
show that this topic seems not to be completely settled yet.
However, we anticipate that our methodology of using MLIPs
and active learning, in addition to emerging mathematical
analysis [30], now provides a systematic and tractable way
for analyzing dislocation core structures in fcc metals.

We have also computed a 30◦-mixed dislocation using our
MTP. The predicted core structure and partial splitting is in
agreement with the previous results for the edge and screw

dislocations, i.e., the partial splitting is in between the partial
splitting for the edge and screw dislocations. The correspond-
ing results are reported in Appendix B.

D. Energy differences

In order to validate whether our MTP can predict en-
ergy differences, we compute the dislocation energy ΔΠ =
ΔΠ (R), i.e., the difference between the energy of a con-
figuration with and without the dislocation in a cylindrical
region with radius R around the dislocation. Our results for
the edge and screw dislocations and those reported in [10,11]
for OF-DFT are shown in Fig. 7.

For the edge dislocation, the agreement between the MTP
and OF-DFT dislocation energies is very good. The small
difference between 4 � R/b � 10 could be due to the
boundary conditions used for OF-DFT that are set up with the
isotropic elastic constants, which differ from the anisotropic
ones (cf. Table III). This is supported by the fact that the
OF-DFT curve is approximately linear in ln(R/b) in the range
4 � R/b � 10 and its slope, i.e., the energy factor [5], is very
close to that of the MTP curve in this interval. Another reason
could be due to electronic effects present up to R/b ≈ 10, as
argued in [10], that cannot be captured with our local MTP.

For the screw dislocation, the MTP and OF-DFT results
differ qualitatively for small R/b in the range 3 � R/b � 7.
Again, this could be due to the isotropic boundary conditions
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Edge Screw

FIG. 7. Dislocation energies for the edge and screw dislocations predicted by the MTP and OF-DFT. The agreement between the MTP and
OF-DFT is very good and the far-field behavior corresponds to the dislocation energy predicted by linear elasticity (dashed lines) up to some
constant core energy.

used for OF-DFT. Another reason could be the smaller sim-
ulation regions used for OF-DFT; in [10,11], the simulation
region was gradually increased with increasing R, so ΔΠofdft

corresponds to the total energy of a configuration with radius
R, whereas we use a simulation region of 35b and sum up the
per-atom energies up to some R. As shown in [70], the differ-
ence between isotropic and anisotropic boundary conditions
can have a non-negligible influence on dislocations close to
the boundary, even for materials such as aluminum that are
only weakly anisotropic. Moreover, there can be electronic
effects up to 7 R/b, as pointed out in [11], that cannot be
reproduced with a local MLIP. The behavior for smaller R/b
could be similar to the results from [12], which reported os-
cillating dislocation energies close to the dislocation core for
screw dislocations in magnesium using a QM/MM method.

Most importantly, in both cases, the dislocation ener-
gies for OF-DFT and MTP agree well when the OF-DFT
curve enters the linear elastic regime. The asymptotic scal-
ings predicted by the MTP and OF-DFT differ slightly since
the isotropic elastic constants used to set up the boundary
conditions for OF-DFT deviate ∼10–30% from experiments
(cf. Table III). On the other hand, the elastic constants pre-
dicted by the MTP are in excellent agreement with DFT and
the experimental ones. This implies that the MTP can predict
reliable core energies.

We have also computed the dislocation energy for the
30◦-mixed dislocation. As for the partial splitting, the results
are in agreement with the results for the edge and screw in the
sense that the dislocation energy for the mixed dislocation lies
in between those two limiting cases. In the future, it would be
interesting to also compare those results with the dislocation
energies predicted by the QM/MM methods (e.g., [12]) for
further validation.

IV. CONCLUDING REMARKS

A. Discussion and potential applications

Constructing a MLIP which is general and predictive is
commonly referred to as the problem of transferability. One
successful methodology to solve the problem of transferability
is active learning, but it is impractical for large-scale problems

because, in this case, one cannot afford even one single-
point plane-wave DFT calculation, in general. One important
example for such large-scale problems is dislocations in fcc
materials. The particular difficulty that arises in fcc materials
is that the dislocations typically split into two Shockley partial
dislocations and, depending on the material, their separation
can be so large that simulating the full dislocation with plane-
wave DFT alone would be infeasible; for example, Deng et al.
[36] used the configurations of 7200 atoms for simulating
screw dislocations in copper with interatomic potentials in a
quadrupole arrangement.

To overcome this limitation, we have developed an active
learning algorithm for training MTPs during large-scale sim-
ulations of dislocations in fcc materials. Our active learning
algorithm only extracts a small cluster of atoms around each
partial core, computes the per-atom extrapolation grade of
each atom, and, if one of the grades is larger than some
threshold, completes the cluster to a periodic configuration
of 100–200 atoms that can be conveniently computed with
plane-wave DFT. We have validated our algorithm by sim-
ulating dislocations in fcc aluminum, and the MTP, trained
with our algorithm, was able to reproduce all existing DFT
results available in the literature for the core structure, the
partial splitting, and the dislocation core energy.

Hence, we anticipate that our algorithm can be readily used
to construct reliable MLIPs for dislocations to be used for
applications that can go beyond the scope of validity of the
existing empirical interatomic potentials, for example:

(a) One possible application of our algorithm is disloca-
tions in alloys. This, of course, may require larger training
configurations than used here to accommodate solutes and/or
impurities such as hydrogen along the dislocation line, but still
appears feasible. For example, our algorithm could be used
to construct MLIPs for computing dislocation-solute interac-
tions that are inputs to solute-strengthening models (cf. [72]).
This MLIP can then be used within workflows for predictive
high-throughput screening (e.g., [73]) to find the strongest
alloy over a wide range of compositions.

(b) Our algorithm can be readily used to construct training
sets for MLIPs to be used in large-scale simulations of curved
dislocations. This is supported by a recent work of Wang et al.
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Edge component Screw component

FIG. 8. Visualization of the 30◦-mixed dislocation core structure predicted by the MTP using the edge and screw components of the
Nye tensor.

[31], which showed that for bcc metals, a MLIP trained on a
few configurations that contain only straight dislocations with
different character angles can be used to predict the energies
of dislocation loops.

(c) Moreover, we anticipate that the proposed algorithm
is not limited to fcc, but also to dissociated dislocations in
other materials, such as, e.g., basal dislocations in hexagonal-
closed-packed magnesium.

(d) Another potential application where we envision our
algorithm to become valuable is magnetic materials. Including
spins into the functional form of interatomic potentials dou-
bles the size of a neighborhood and this significantly increases
the complexity of constructing a good training set because the
configurational space is now much larger—but active learning
can come to the rescue. Recently, we approached the problem
of training magnetic MTPs using a DFT method in which
spins can be constrained in the same way as atomic posi-
tions [74]. Within this approach, the active learning algorithm
developed here can potentially be applied verbatim to disloca-
tions in magnetic materials.

B. How to simulate multidefect interactions?

Finally, we remark that presently, our algorithm cannot
be readily applied to problems for which defects cannot be
sufficiently isolated, such as dislocations cutting through pre-
cipitates. For such problems, we currently recommend to first
train a potential on configurations that appear to be relevant

FIG. 9. Dislocation energies for the mixed dislocation predicted
by the MTP. The far-field behavior corresponds to the dislocation en-
ergy predicted by linear elasticity (dashed lines) up to some constant
core energy.

for the physical problem to be solved, e.g., bulk configu-
rations, stacking faults, antiphase boundaries, etc., or on an
existing dataset, e.g., from Ref. [75]. Afterwards, we recom-
mend to run several simulations of straight dislocations and
add additional configurations with high uncertainties to the
training set using our algorithm. When starting the actual sim-
ulation of, say, a dislocation interacting with precipitate, one
may leave active learning switched on and, if the uncertainty
becomes too high in parts of the simulation region, run plane-
wave DFT calculations on those parts using clusters [48], or
periodic completion of fragments [76], and add them to the
training set. Those methods can be more expensive than ours
and pose the danger of introducing artificial neighborhoods
polluting the training set, but if the initial training set is al-
ready diverse enough, such calculations would be only rarely
triggered. In the future, another approach could be training on
many small systems combined with training on a few large
systems using more efficient ab initio methods such as those
DFT methods that use finite-element basis sets to improve the
MLIP’s predictions for large arrangements of defects.
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TABLE IV. Errors of the level-16 MTP that has been trained on
configurations computed with the EAM containing, edge, screw, and
mixed dislocations, that were found by our active learning algorithm,
as described in Appendix C.

Quantity MAE RMSE
Energy (eV/atom) 1.0 ×10−4 1.9 ×10−4

Forces (eV/Å) 3.5 ×10−3 5.9 ×10−3

Stress (GPa) 2.0 ×10−2 2.7 ×10−2
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FIG. 10. Visualization of the dislocation cores predicted by EAM
and MTP using the common neighbor analysis and the DXA.

Promotion Agency (FFG), and the federal states of Styria,
Upper Austria, and Tyrol.

APPENDIX A: MTP TRAINING

Suppose we are given a training set T =
{{ri} j,Π

qm
j , { f i}qm

j , σ
qm
j } j=1,...,M that contains M atomic

configurations {ri} j and its associated quantum mechanical
energies Π

qm
j , forces { f i}qm

j , and stresses σ
qm
j . We then

identify the MTP coefficients C = {θα, cμn} by minimizing
the loss functional,

L (T ,C ) =
M∑

j=1

⎧⎨
⎩we

[
Π

mtp
j (C ) − Π

qm
j

]2

+ wf

[
N∑

i=1

∥∥ f mtp
i (C ) − f qm

i

∥∥2

]

+ wσ

∥∥σ
mtp
j (C ) − σ

qm
j

∥∥2

⎫⎬
⎭, (A1)

with respect to C , with the energies, forces, and stresses
weighted as follows:

we = 1, wf = 1e-02, wσ = 1e-03.

To minimize (A1), we use SCIPY’s BFGS solver. For our initial
training, we use a limit of 500 iterations; for retraining during
active learning, we use a limit of 200 iterations; and for re-
training the potential on the entire training set after gathering
all data, we use a limit of 2000 iterations (cf. Sec. III A).

TABLE V. DXA partial splitting distances (in Å) for the EAM
reference model and a level-16 MTP.

Dislocation EAM MTP

Edge 15.2 14.7
Mixed (30◦) 11.1 10.7
Screw 8.9 8.1

APPENDIX B: MTP PREDICTIONS
FOR THE MIXED DISLOCATION

The core structure of the 30◦-mixed dislocation predicted
by the MTP that has been trained according to Sec. III A is
shown in Fig. 8. We have computed the splitting distance
of the mixed dislocation by taking the distance between the
locations of the two maxima of the screw component of
the Nye tensor along the glide direction. Using this method,
the splitting distance is 5.4 Å, which is in between the values
for the edge (6.6 Å) and the screw (4.6 Å). Using the DXA,
the partial splitting of the mixed dislocation is 10.8 Å, which
is also in between the values for the edge (15 Å) and the screw
(8.6 Å).

The dislocation energy for the mixed dislocation is shown
in Fig. 9. As for the partial splitting, the result is in agreement
with the dislocation energies for the edge and screw disloca-
tions (cf. Fig. 7).

APPENDIX C: VALIDATION OF THE TRAINING
ALGORITHM USING EAM AS A REFERENCE MODEL

For validation, we also ran our training algorithm using the
EAM potential of Ercolessi and Adams [77] as a reference
model instead of the expensive DFT. Following our train-
ing protocol from Sec. III A, we first trained three separate
level-16 MTPs on the edge, screw, and mixed dislocations,
respectively. Upon convergence, the training sets of the three
MTPs contained 22 configurations for the edge dislocation, 33
configurations for the screw dislocation, and 28 configurations
for the mixed dislocation. After training the three MTPs, we
combine the training data into one big training set that now
contains 53 configurations. We then train a level-16 MTP
on this combined training set and rerun the simulations with
active learning switched off.

FIG. 11. Dislocation energies for the edge, mixed, and screw dislocations predicted by the MTP and the EAM potential.
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The training errors, shown in Table IV, are very low, which
is not surprising since an MTP is able to approximate an EAM
potential exactly.

The core structures predicted by the MTP and the EAM
potential are visualized in Fig. 10 using the common neighbor
analysis (CNA) [78]. For the edge and mixed dislocations,
there is no visible difference between MTP and EAM and
the partial splitting distances coincide (cf. Table V). For
the screw dislocation, the MTP core appears to be slightly
more narrow than the EAM core, but note that the CNA

assignment of structure types is very sensitive to small atomic
displacements; so, both cores can be considered to be in good
agreement.

The corresponding dislocation energies are shown in
Fig. 11. Again, the quantitative agreement between MTP and
EAM is very good in the vicinity of the dislocation core; in
the far field, they even agree almost exactly. Moreover, the far-
field behavior corresponds to the dislocation energy predicted
by linear elasticity (dashed lines) up to some constant core
energy.
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