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This paper undertakes a comprehensive exploration of multiphysics phenomena involving electromagnetic
(EM) radiation emitted by a nanospherical piezoelectric scatterer embedded in a polymer matrix, subjected
to P waves within the THz frequency spectrum. A nanosized piezoelectric scatterer as a potential antenna
possesses a significant surface-to-volume ratio. Consequently, it becomes imperative to meticulously account
for the nanoscopic polarization vector, residual polarization vector, stress field, and residual stress field at its
interface with the surrounding matrix. The conventional electrodynamics theory falls short in addressing the
problem of interest, primarily due to its oversight of the magneto-electro-elastic interface. One of the aims of
the current work is to extend the previously devised mathematical framework of surface/interface elasticity
theory for purely elastic medium at the nanoscale, to magneto-electro-elastic (MEE) medium. By harnessing
the versatility of spherical harmonics, we have simultaneously solved the fully coupled elastodynamics and
Maxwell’s equations within the mathematical framework of spectral MEE surface/interface theory. In this
study, we scrutinize specific nuances related to the introduced surface/interface characteristic lengths. This
exploration enables us to examine the influence of size on EM radiated power, the fundamental resonance
frequency, and the distribution of the magnetic field. The insights gained from our findings hold promise for the
design of acoustically actuated nanospherical antennas, nanosensors, and nanoresonators utilizing piezoelectric
nanospheres.
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I. INTRODUCTION

Antennas play a critical and pervasive role in devices
such as smartphones, tablets, radio frequency identification
systems, and radars, converting alternating electric currents
into electromagnetic (EM) wave radiation. Recent years have
witnessed a surge in the applications of ultra-compact wireless
communication systems [1], driving considerable efforts to
downsize their components. Among these components, the
antenna stands out as a crucial facilitator of EM wave trans-
mission and reception. Consequently, there is a heightened
demand for antennas that combine a compact size with high
efficiency.

The forefront of antenna technology faces a significant
challenge in the miniaturization of these devices [2–5]. Com-
pact antennas, reliant on EM wave resonance, typically
surpass one-tenth of the EM wavelength in size. This poses
a formidable obstacle, particularly in achieving compact an-
tennas and arrays, especially in the terahertz (THz) frequency
ranges where wavelengths are substantial. The struggle for
miniaturization imposes strict constraints on wireless com-
munication systems. To overcome these challenges, it is
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imperative to explore novel antenna concepts. Focusing on
innovative mechanisms for EM wave radiation and reception
becomes crucial for the reduction of antenna size and the
advancement of wireless communication systems.

Another important issue is that a primary goal of commu-
nication systems revolves around achieving the utmost data
transmission speeds. Indeed, the ongoing escalation of data
transfer rates in wireless communication systems, catering to
both business and individual users, is prompting a substan-
tial expansion of the bandwidths in use. Nevertheless, the
ever-increasing user appetite for high-speed wireless com-
munication surpasses the capabilities of existing networks.
Addressing this challenge entails exploring the integration
of communication systems employing terahertz (THz) carrier
frequencies [6].

Hence, considering the factors discussed earlier, there
arises an immediate necessity to develop state-of-the-art ul-
tracompact antennas capable of operating in the THz range.

Analytical and numerical inquiries into the interplay be-
tween acoustic waves and active materials have shed light
on innovative pathways for designing compact antennas [7].
The phenomenon of EM emission from oscillating piezo-
electric materials has a well-established history. In particular,
AT-cut quartz plates have been the subject of several inves-
tigations; quartz crystals are cut to size based on precise
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mathematical calculations, and even slight alterations can sig-
nificantly impact the quality of the resulting part. Among the
various angular cuts, the AT cut is widely employed. This
specific cut is executed at an angle of 35 degrees from the z
axis of the quartz crystal, making it one of the most commonly
chosen cutting angles. Mindlin conducted an evaluation of
EM radiation originating from an AT-cut quartz plate vibrating
in the thickness shear mode [8]. Lee subsequently revisited
Mindlin’s investigation and explored EM radiation arising
from a quartz sheet excited by an electric field [9]. Ballato re-
considered the latter problem by utilizing an equivalent circuit
model [10]. The concept of piezoelectric antennas lay dormant
until it reemerged in the early 2000s. During this period, the
idea of utilizing vertically grown zinc oxide (ZnO) nanowire
arrays to craft piezoelectric antennas gained much attention,
as outlined in various fabrication-oriented papers [11–13].

In recent developments, magnetoelectric (ME) antennas,
integrating the resonance of acoustic waves with the ME ef-
fect, have been showcased in the very-high frequency (VHF:
30-300 MHz) and ultra-high frequency (UHF: 0.3-3 GHz)
bands. This represents a novel approach aimed at overcoming
the constraints related to efficiency and dimensions encoun-
tered by conventional electrically small antennas [14–18].
In contrast to the conventional antennas that rely on oscil-
lating charges to generate EM waves, ME antennas utilize
the oscillation of magnetic dipole moments, which are acti-
vated by acoustic means at their electromechanical resonance
frequency rather than the EM wave resonance frequency. Con-
sidering that acoustic waves propagate at significantly lower
velocities compared to EM waves at the same operational
frequency, this approach can result in a reduction of the size
of antenna by one to two orders of magnitude (see, e.g.,
Ref. [18]).

As widely acknowledged, the size-independent traditional
continuum theory proves inadequate in effectively modeling
the physical and mechanical phenomena which are strongly
influenced by the nanoscopic properties of the medium of
interest. As a result, it is ill-suited for analyzing wave
propagation with wavelengths comparable to the intrinsic
length scales of the medium. These limitations stem from
the intrinsic scale-free nature of classical continuum theories,
rendering them incapable of addressing the discrete nature of
matter and the associated surface/interface effects. Notably,
atoms located in close proximity to a surface/interface ex-
hibit substantial differences in the interatomic bond lengths
and charge density distribution compared to those well
within the bulk of the material. Consequently, understand-
ing the electromechanical behavior of such nanostructures as
nanosized piezoelectric antennas with a significant surface
area-to-volume ratio demands specialized attention. For the
treatment of problems involving purely elastic nanostructures,
mathematical theory of surface/interface elasticity which is
a size-dependent theory with high precision has been de-
vised in Ref. [19]. In this theory which incorporates for
the surface/interface effects exclusively within purely elastic
materials, elastic solids are systematically divided into two
interacting components: the bulk material and its complemen-
tary surface/interface domain.

The mathematical framework of surface/interface elastic-
ity theory, as presented in [19,20] is concerned with the purely

elastic media encapsulated by elastic surfaces/interfaces,
and hence in its original context cannot be used to treat
magneto-electro-elastic (MEE) media with bounding MEE
surfaces/interfaces. Several researchers have employed an
extended surface/interface model inspired by Gurtin and
Murdoch [19] to explore piezoelectric effects [21–23]. Nev-
ertheless, it is worth noting that all of these studies rely on
the electroquasistatic approximation. A major drawback of
the exclusion of Maxwell’s equations is the limiting ability
of their mathematical models to predict the electromagnetic
wave propagation accurately. In order to circumvent this
limitation, a recent study on the scattering of anti-plane
shear waves by a piezoelectric nanofiber [24] has taken a
different approach by treating its bounding interface as a
separate piezoelectric domain in conjunction with the fully
dynamic Maxwell’s equations. However, the surface/interface
piezoelectric theory in Ref. [24] is well-suited for the electro-
quasistatic approximation and, moreover, their theory does not
account for the surface/interface magnetization. Therefore the
generalization of interface elasticity [19,20] to tackle fully
dynamic problems involving nanosized piezoelectric antenna
with MEE interface becomes indispensable, as such is one
of the aims of the present work. In the literature, the electric
current has been considered through the interface of a bima-
terial, regardless of the size [25]. The concepts like surface
electric polarization as discussed in Ref. [26], and magne-
tization, as detailed in Refs. [27,28] are instrumental in the
development of the current theory. In the present work, we are
dealing with a nanosized piezoelectric particle embedded in a
polymer matrix. As we shall see, the alteration of the applied
time-dependent strain field, due to the time-harmonic incident
P waves, results in moving polarization, inducing effective
magnetization density.

Scalar, vector, and tensor spherical harmonics are funda-
mental components in diverse areas of mathematical physics.
Notably, they play a critical role in quantum mechanics, serv-
ing as a key tool for characterizing the angular momentum
of particles (as discussed in, for example, Ref. [29]). Addi-
tionally, the utilization of spherical harmonics to expand field
quantities has proven to be a highly effective strategy for
addressing challenges in micromechanics of inhomogeneities
[30,31]. Moreover, these versatile tools exhibit significant
potential in tackling piezoelectric problems characterized by
spherical geometry and a wide range of electromechanical
loadings, as discussed in Ref. [32]. For a more comprehen-
sive exploration of spherical harmonics from a mathematical
perspective, readers can refer to Ref. [33].

In this work, we extend the surface/interface elasticity
theory, originally developed for purely elastic media, to en-
compass electrodynamics in MEE media. Subsequently, given
the spherical geometry of the piezoelectric particle, the formu-
lations are presented in spherical coordinates. Furthermore,
for a rigorous mathematical analysis, we employ the afore-
mentioned spherical harmonics to study the behavior of the
acoustically actuated nanospherical piezoelectric particle em-
bedded in a polymer matrix subjected to THz frequency range.

This paper is structured as follows. Section II provides
a description of the problem statement and the model.
Section III is dedicated to the generalization of the Gurtin-
Murdoch theory to MEE surfaces/interfaces. In Sec. IV an
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FIG. 1. The nomenclature of a proposed media.

introduction of the spectral theory of the MEE fields and
their governing equations is presented. The derivation of the
spectral MEE equations is detailed in Sec. V, while Sec. VI
focuses on presenting the spectral surface/interface boundary
conditions. Section VII provides the solution to the governing
spectral boundary value problem (BVP). In Sec. VIII, the
calculation of electromagnetic radiated power is discussed.
Section IX delves into several examples showcasing the di-
verse applications of the proposed method. Finally, the paper
concludes in Sec. X.

II. STATEMENT OF THE PROBLEM

Consider an isotropic homogeneous polymer matrix, de-
noted by �(2), surrounding a nanospherical piezoelectric shell
with inner radius R1 and outer radius R2, which we denote by
�(1), as shown in Fig. 1. A complete description of the regions
depicted in Fig. 1 is as follows:

r < R1 nanovoid (�(0) )

r = R1 free surface (℘)

R1 < r < R2 piezoelectric shell (�(1) )

r = R2 interface (℘)

r > R2 polymer matrix (�(2) ). (1)

The superscript℘over a field quantity implies that the quantity
is associated with the interface or the free surface. Moreover,
the superscripts “(0),” “(1),” and “(2)” indicate that the given
quantity belongs to the nanovoid, shell, and matrix, respec-
tively. The origin of the Cartesian coordinate system (x, y, z)
and the spherical coordinate system (r, θ, φ) coincide with
the center of the spherical shell as depicted in Fig. 1. Fur-
thermore, for conciseness, we let (�) ≡ (θ, φ). We assume
perfect bonding and coherent shell-matrix interface. The nano
piezoelectric shell is assumed to be spherically isotropic and
at each point the polling direction is radially oriented. The
system is stimulated by a high-frequency mechanical time
harmonic P wave with angular frequency ω propagating in

the positive z-direction. Considering that the problem of inter-
est is concerned with an embedded nanosize spherical shell,
the frequency of the incident P-wave applicable to such a
system must be in THz range. In this work, we will derive
and solve the governing system of differential equations with
the appropriate boundary conditions, describing the fully cou-
pled magneto-electro-elastic (MEE) fields for this problem.
In particular, we will pay careful attention to the effects of the
interface on the determination of field quantities.

Our approach for solving the governing system of par-
tial differential equations will be based on the expansion
method in terms of spherical harmonics and can be viewed
as an extension of the spectral analysis framework developed
by Khorshidi and Shodja in Ref. [34]. The spectral theory
framework in Ref. [34] was shown to be particularly helpful
in treating problems with spherical geometries. Here, in our
augmented framework we will be able to address the case of
nanosize spherically isotropic piezoelectric media.

Suppose there are no body forces, electric charges, and
current densities in both the matrix and the shell. The
elastodynamics equation of motion and the Maxwell’s equa-
tions governing the proposed problem are

divR3 σ̄ = ρ
∂2ū
∂2t

, (2)

curlR3 Ē = −∂B̄
∂t

, (3a)

curlR3 H̄ = ∂D̄
∂t

, (3b)

divR3 D̄ = 0, (3c)

divR3 B̄ = 0, (3d)

where ρ, σ̄, ū, Ē, H̄, D̄, and B̄ indicate, respectively, the mass
density, stress field, displacement field, electric field, magnetic
field, electric displacement, and magnetic flux density. Here
we look for solutions where the time variation of all the MEE
field variables (σ̄, ū, Ē, H̄, D̄) is assumed to be harmonic with
angular velocity ω according to ψ̄ (r,�, t ) = ψ (r,�)e−ιωt in
which ι = √−1. That is, we are seeking solutions of the
following form:

ū(r,�, t ) = u(r,�)e−ιωt ,

σ̄(r,�, t ) = σ(r,�)e−ιωt ,

Ē(r,�, t ) = E(r,�)e−ιωt ,

H̄(r,�, t ) = H(r,�)e−ιωt ,

D̄(r,�, t ) = D(r,�)e−ιωt ,

B̄(r,�, t ) = B(r,�)e−ιωt . (4)

Such solutions will be referred to as the time harmonic solu-
tions. As we shall see, it will be demonstrated that there exists
a solution to our boundary value problem (BVP) where all
the MEE fields are time harmonic and so our aforementioned
assumption on the form of the field variables is consistent
with the interrelationships between variables that appear in
the equations. Using Eq. (4), we may rewrite Eqs. (2) and
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(3a)–(3d) as follows:

divR3σ + ρω2u = 0, (5)

curlR3 E = ιωB, (6a)

curlR3 H = −ιωD, (6b)

divR3 D = 0, (6c)

divR3 B = 0. (6d)

It should be noted that Eqs. (6c) and (6d) can be obtained by
taking the divergence of Eqs. (6b) and (6a), respectively.

Assuming that the deformations are small, the strain tensor
ε can be expressed in term of the gradient of the elastic
displacement field u as

ε = 1
2 (∇R3 u + (∇R3 u)T ). (7)

In general,

σ = C : ε − (e)T · E,

D = κ0E + P = e : ε + κ · E,

B = μ0(H + M). (8)

Here, C, e, and κ are the elastic moduli tensor and the piezo-
electric tensor, and the dielectric tensor, respectively. κ0, μ0,
P, and M are vacuum permittivity, vacuum magnetic perme-
ability, electric polarization, and magnetization, respectively.
Hereafter, when any of the superscripts “�,” “I ,” or “�”
appears over a field quantity, it indicates that the quantity cor-
responds to the refracted field, incident field, or scattered field,
respectively. Note that for the problem under consideration the
MEE fields can written as

u =
{

u�(1), R1 < r < R2

uI (2) + u�(2), r > R2
, (9a)

E =

⎧⎪⎨
⎪⎩

E�(0), r < R1

E�(1), R1 < r < R2

E�(2), r > R2

, (9b)

H =

⎧⎪⎨
⎪⎩

H�(0), r < R1

H�(1), R1 < r < R2

H�(2), r > R2

. (9c)

In the present work, we assume the displacement field due
to the incident P-wave is given by

uI (2)
x (x, y, z, t ) = 0, (10a)

uI (2)
y (x, y, z, t ) = 0, (10b)

uI (2)
z (x, y, z, t ) = 
eι(Kpz−ωt ), (10c)

that is, we assume that the P wave is a harmonic plane wave
with angular velocity ω and amplitude 
 in the z direction.
Here, Kp is the compressive wave number given by

Kp = ω

Cp
, (11)

where Cp =
√

λ+2μ

ρ
is the velocity of the compressive wave,

and λ and μ are Lame’ constants of the polymer matrix. As we
shall see, the constitutive equations of the spherically isotropic

piezoelectric region can be represented more conveniently
using spherical coordinates (r, θ, φ). Indeed, let us denote
the standard orthonormal basis associated with the spherical
coordinates (r, θ, φ), by er , eθ , eφ . Then the MEE fields can
be expanded as follows:

u = uiei,

ε = εi jei ⊗ e j,

σ = σi jei ⊗ e j,

in �(1) ∪ �(2); (12)

E = Eiei,

D = Diei,

H = Hiei,

B = Biei.

in �(0) ∪ �(1) ∪ �(2). (13)

Here, i, j = r, θ, φ. In order to write the constitutive relations,
we will make use of the following notation for the components
of the elastic moduli tensor C, the piezoelectric tensor e, and
the dielectric tensor κ:

C11 = C22 = Cθθθθ = Cφφφφ, C12 = Cθθφφ,

C13 = C23 = Cθθrr = Cφφrr, C33 = Crrrr,

C44 = Crφrφ = Crθrθ , e31 = e32 = erθθ = erφφ,

e33 = errr, e15 = eφφr = eθθr,

κ11 = κ22 = κθθ = κφφ, κ33 = κrr,

μ11 = μ22 = μθθ = μφφ, μ33 = μrr . (14)

Subsequently, the constitutive relations (8) for the spherically
isotropic piezoelectric shell can be conveniently expressed as
follows (see, e.g., Ref. [35]):

σθθ = C11εθθ + C12εφφ + C13εrr − e31Er,

σφφ = C12εθθ + C11εφφ + C13εrr − e31Er,

σrr = C13εθθ + C13εφφ + C33εrr − e33Er,

σrθ = 2C44εrθ − e15Eθ ,

σrφ = 2C44εrφ − e15Eφ,

σθφ = (C11 − C12)εθφ, in �(1)

Dθ = 2e15εrθ + k11Eθ ,

Dφ = 2e15εrφ + k11Eφ,

Dr = e31εθθ + e31εφφ + e33εrr + k33Er,

Bθ = μ11Hθ ,

Bφ = μ11Hφ,

Br = μ33Hr . (15)

Moreover, the constitutive relations for the elastic polymer
matrix may be written as

σi j = 2μεi j + λtr(ε)δi j,

Di = κmEi,

Bi = μmHi,

in �(2). (16)

Here, i, j = r, θ, φ, and λ and μ are Lame’ constants, κm is
the dielectric constant of the matrix, and μm is the magnetic
permeability for the matrix.
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FIG. 2. Two adjacent MEE regions V1 and V2 with boundary
surfaces S1 and S2.

III. GENERALIZATION OF THE GURTIN-MURDOCH
THEORY TO MEE SURFACES/INTERFACES

Since the embedded piezoelectric shell considered herein
is nanosize, the effects of its MEE interface with the polymer
matrix and its MEE free inner surface are nonnegligible. To
this end, the mathematical framework of surface elasticity de-
veloped by Gurtin and Murdoch in Ref. [19] for purely elastic
surfaces/interfaces is generalized to MEE surfaces/interfaces
in the present work. In particular, in what follows, we will de-
velop a surface/interface theory in which the electromagnetic
effects of the interface are taken into account.

Consider two adjacent MEE regions V1 and V2 with bound-
ary surfaces S1 and S2 bonded across an surface/interface S12

as shown in Fig. 2. For example, think of S12 as a portion of
interface, V1 as a portion of the polymer matrix, and V2 as a
portion of the piezoelectric shell (or think of S12 as a portion
of free surface, V1 as a portion of the nanovoid, and V2 as a
portion of the piezoelectric shell). Let L denote the boundary
of S12 and υ be the outward unit normal vector to L.

According to Gurtin-Murdoch surface elasticity theory, as-
suming that the displacement field u on the surface has the
form ū℘ = u℘e−ιωt , the corresponding elastodynamic equa-
tions of motion of an surface/interface with unit outward
normal vector n is given by

div℘σ
℘ + [σ.n] = −ρ℘ω2u℘, (17)

where σ℘ is the interface stress tensor, ρ℘ denotes the in-
terface mass density, and [σ.n] = (σ.n)out − (σ.n)in denotes
the jump in the quantity σ.n across the surface/interface,
and div℘ denotes the surface divergence (see Appendix D).
The surface/interface equation of motion (17) was originally
given in Ref. [20] for purely elastic media in the absence of

electromagnetic effects. Now, by using Eqs. (6a), and (8) for
V1 and V2, respectively, we have∫∫∫

V1

(curlR3 E1)dV =
∫∫∫

V1

ιωμ0(H1 + M1)dV , (18a)

∫∫∫
V2

(curlR3 E2)dV =
∫∫∫

V2

ιωμ0(H2 + M2)dV . (18b)

In the above equations, the subscripts “1” and “2” indicate
that the given quantity belongs to V1 and V2, respectively. If
we apply the Stokes’ theorem to Eqs. (18a) and (18b), we will
obtain ∫∫

S1

(n × E1)dS −
∫∫

S12

(n1 × E1)dS

=
∫∫∫

V1

ιωμ0(H1 + M1)dV , (19a)

∫∫
S2

(n × E2)dS +
∫∫

S12

(n1 × E2)dS

=
∫∫∫

V2

ιωμ0(H2 + M2)dV . (19b)

Let V = V1 ∪ V2 and S = S1 ∪ S2. In the presence of
surface/interface magnetization M℘ ([27,28]), we have B =
μ0(H + M) where analogous to Ref. [25] we may write∫∫∫

V
MdV =

∫∫∫
V1

M1dV +
∫∫∫

V2

M2dV +
∫∫

S12

M℘dS,

∫∫∫
V

HdV =
∫∫∫

V1

H1dV +
∫∫∫

V2

H2dV . (20)

It follows from Eqs. (19a), (19b), and (20) that∫∫
S

(n × E)dS −
∫∫

S12

n1 × (E1 − E2)dS

=
∫∫∫

V
ιωBdV −

∫∫
S12

ιωμ0M℘dS. (21)

Similarly, it follows from Eqs. (8) and (6b), the Stokes’
theorem, and the following relation for the total electric po-
larization in the presence of surface/interface polarization P℘

([26]):∫∫∫
V

PdV =
∫∫∫

V1

P1dV +
∫∫∫

V2

P2dV +
∫∫

S12

P℘dS,

(22)
that ∫∫

S
(n × H)dS −

∫∫
S12

n1 × (H1 − H2)dS

=
∫∫∫

V
−ιωDdV +

∫∫
S12

ιωP℘dS, (23)

Under the assumption that the field quantities are contin-
uous everywhere in V , the integral forms of Faraday’s law
and Ampere’s law are expressed as ([36])

∫∫
S (n × E)dS =∫∫∫

V ιωBdV and
∫∫

S (n × H)dS = ∫∫∫
V −ιωDdV . Now, in

the presence of the electric and magnetic field discontinu-
ities across surface/interface, if we postulate the subsequent
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boundary conditions at the surface/interface S12 [25]:

n1 × [E] − ιωμ0M℘ = 0, (24a)

n1 × [H] + ιωP℘ = 0, (24b)

then these conditions will guarantee that
∫∫

S (n × E)dS =∫∫∫
V ιωBdV , and

∫∫
S (n × H)dS = ∫∫∫

V −ιωDdV , main-
taining the same form as in the continuous case, but now,
due to our postulates, we see that they are still applica-
ble even when the fields exhibit discontinuities across the
surface/interface. From a physical standpoint, it is noteworthy
from (24a) and (24b) that an effective magnetic polariza-
tion current can be induced in a surface/interface without
magnetic polarizability, and similarly, an electric polariza-
tion current can be generated in a surface/interface without
electric polarizability. We note that, alternatively, one could
express equivalently the boundary conditions (24a) and (24b)
on the surface/interface in terms of B and D (instead of E
and H). Following Ref. [24], we make the assumption that the
tangential component of the electric field is continuous across
the surface/interface S12, that is n1 × [E] = 0. Considering
Eq. (24a), this assumption immediately tells us that the inter-
face magnetization M℘ vanishes on S12. Of course, note that
the magnetization in the bulk is not necessarily zero.

At this point, let us summarize the governing equations for
our free surface/interface. Assuming coherent MEE interface,
we have

[u] = 0, on r = R2, (25a)

[σ.n] + div℘σ
℘ = −ρ℘ω2u℘, on r = R1, and r = R2,

(25b)

n × [E] = 0, on r = R1, and r = R2, (25c)

n × [H] + ιωP℘ = 0, on r = R1, and r = R2. (25d)

These equations serve as boundary conditions with which
the governing equations of the medium (5), (6a), and (6b) are
equipped.

Now, we will describe the strain-displacement relations for
our spherical surface/interface. First note that the displace-
ment field on the surface/interface can be expressed as

u℘(�) = u℘
r (�)er + u℘

θ (�)eθ + u℘

φ (�)eφ. (26)

According to [19], the surface/interface strain field is given
by

ε℘ = 1
2 ((Du℘t ) + (Du℘t )T ) − u℘nL, (27)

in which u℘t is the displacement vector tangent to the surface,
u℘n is the normal component of surface displacement, and L
is the Weingarten map of the surface (see Appendix E for
details). Here Du℘t is the tangential part of ∇℘u℘t where ∇℘

is the surface gradient (see Appendix D for details). It follows
from Eq. (27) and formula (D2) that the components of the
surface/interface strain field can be written as follows:

ε℘
rr (�) = ε

℘

rθ (�) = ε
℘

rφ (�) = 0, (28a)

ε
℘

θθ (�) = 1

R

(
u℘

r (θ, φ) + ∂u℘

θ (θ, φ)

∂θ

)
, (28b)

ε
℘

θφ (�) = 1

2R

(
1

sin θ

(
∂u℘

θ (θ, φ)

∂φ
− u℘

φ (θ, φ) cos θ

)

+ ∂u℘

φ (θ, φ)

∂θ

)
, (28c)

ε
℘

φφ (�) = 1

R

(
1

sin θ

(
∂u℘

φ (θ, φ)

∂φ
+ u℘

θ (θ, φ) cos θ

)
(28d)

+ u℘
r (θ, φ)

)
. (28e)

Here, R = R1 if ℘ represents the free surface and R = R2 if
℘ represents the interface.

Finally, we utilize the work of Ref. [37] to write the gen-
eral constitutive equations of piezoelectric surface/interface
as follows:

σ℘ = σ0 + C℘ : ε℘ − (e℘)T · E℘, (29)

P℘ = P0 + e℘ : ε℘ + γ℘ · E℘, (30)

where σ0 is the residual surface/interface stress tensor and P0

is the residual surface/interface electric polarization vector.
C℘, e℘, and γ℘ are surface elastic tensor, surface piezoelectric
tensor, and surface electric polarizability tensor, respectively.
Since the medium under consideration is spherically isotropic,
meaning that the constitutive behavior is invariant under ro-
tation, and considering the implications of this rotational
symmetry which can be viewed in Eq. (15), we can obtain
the following constitutive relations for the surface/interface:

σ
℘

θθ = (σ0)θθ + C℘

11ε
℘

θθ + C℘

12ε
℘

φφ, (31a)

σ
℘

φφ = (σ0)φφ + C℘

12ε
℘

θθ + C℘

11ε
℘

φφ, (31b)

σ
℘

θφ = (σ0)θφ + (C℘

11 − C℘

12)ε℘

θφ, (31c)

P℘

θ = (P0)θ + γ
℘

11Eθ , (31d)

P℘

φ = (P0)φ + γ
℘

11Eφ. (31e)

Here,

C℘

11 = m̂1C11, (32)

C℘

12 = m̂2C12, (33)

γ
℘

11 = m̂3κ11, (34)

in which m̂′
is, 1 � i � 3 are characteristic lengths of the

surface/interface. Also, we let m̂4 = ρ

ρ℘ . Within Gurtin-
Murdoch surface elasticity theory, the nonzero surface traction
(force per unit length) along any arbitrary cut on the surface
is tangent to the surface and the surface stress components
σ

℘
rr , σ

℘

rθ , σ
℘

rφ are zero. Likewise, the radial component of the
surface polarization, P℘

r is zero.

σ℘
rr = σ

℘

rθ = σ
℘

rφ = P℘
r = 0. (35)

IV. SPECTRAL ANALYSIS OF THE MEE FIELDS
AND THEIR GOVERNING EQUATION

Our main strategy in analyzing the problem under consid-
eration is to transform the governing BVP [Eqs. (5), (6a), (6b),
and (25a)–(25d)] which involves tensor PDEs into a system
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of ordinary differential equations (ODEs). As we shall see,
this goal can be achieved by expanding the unknown fields
appearing in the equations in terms of the spherical harmonics.
A detailed discussion on spherical harmonics can be found in
Appendix A. Indeed, the unknown MEE fields in our problem
can be expanded in terms of spherical harmonics as follows:

u(r; �) =
∑
l,m

3∑
i=1

ul,m
i (r)Vl,m

i (�), (36)

{D(r; �), E(r; �)}

=
∑
l,m

3∑
i=1

{
Dl,m

i (r), El,m
i (r)

}
Vl,m

i (�), (37)

{B(r; �), H(r; �)}

=
∑
l,m

3∑
i=1

{
Bl,m

i (r), Hl,m
i (r)

}
Vl,m

i (�), (38)

{ε(r; �), σ(r; �)}

=
∑
l,m

6∑
i=1

{
εl,m

i (r), σ l,m
i (r)

}
Tl,m

i (�), (39)

{u℘(�), P℘(�)}

=
∑
l,m

3∑
i=1

{
ul,m;℘

i , Pl,m;℘
i

}
Vl,m

i (�), (40)

{ε℘(�), σ℘(�)}

=
∑
l,m;℘

6∑
i=1

{
ε

l,m;℘
i , σ

l,m;℘
i

}
Tl,m

i (�). (41)

Here we will use the above expansions to transform equa-
tions Eqs. (5), (6a), and (6b) into a system of ODEs with
certain boundary conditions obtained from Eqs. (25a)–(25d).
It is important to note that due to the rotational symmetry of
the problem, the mechanical and electromagnetic fields are
independent of φ, hence only the modes with m = 0 have
nonzero coefficients in the above expansions; for m = 0, Pl,0

is the Legendre polynomial of degree l and it is denoted by Pl .
For brevity, we will make use of the following notation:

� l,0
i (r) = � l

i (r), (42a)

�
l,0;℘
i = �

l;℘
i , (42b)

where � can be any of the field quantities.

A. Spectral expansion of the elastic displacement field
of incident mechanical time harmonic P wave

Recall that the displacement field in the polymer matrix
due to the incident P wave is assumed to have the following
form:

ūI (2)(x, t ) = 
eι(Kpz−ωt )ez = 
eιKpze−ιωt ez

= uI (2)(x)e−ιωt , (43)

where

uI (2)(x) = 
eιKpzez = 
eιKpr cos θ (er cos θ − eθ sin θ )

= 


[
∂

∂r
(eιKpr cos θ )

er

iKp
+ ∂

∂θ
(eιKpr cos θ )

eθ

iKpr

]
.

(44)

Now, considering that (see, e.g., Ref. [38])

eιKpr cos θ = eιKpz =
∞∑

l=0

(2l + 1)ιl jl (Kpr)Pl (cos θ ), (45)

where jl is the spherical Bessel function of order l , we may
write

uI (2)(x) = 


∞∑
l=0

[
(2l + 1)ιl

∂

∂r
( jl (Kpr))Pl (cos θ )

er

ιKp

+ (2l + 1)ιl jl (Kpr)
∂

∂θ
(Pl (cos θ ))

eθ

ιKpr

]
. (46)

This together with the fact that vector spherical harmonics
[Eqs. (A2a)–(A2c)] for m = 0 take the form

Vl
1(�) = Pl (cos θ )er, (47)

Vl
2(�) = ∂

∂θ

(
Pl (cos θ

)
)eθ , (48)

Vl
3(�) = ∂

∂θ

(
Pl (cos θ

)
)er × eθ , (49)

allow us to write

uI (2)(x) =
∞∑

l=0

[ul;I (2)
1 (r)Vl

1(�) + ul;I (2)
2 (r)Vl

2(�)], (50)

where for l � 1

ul;I (2)
1 (r) = −(2l + 1)ιl+1

(
jl−1(KPr) − l + 1

KPr
jl (KPr)

)
,

(51)

ul;I (2)
2 (r) = −(2l + 1)ιl+1 jl (KPr)

KPr
. (52)

In deriving Eq. (51), we used the known recursive relation
d jl (z)

dz = jl−1(z) − l+1
z jl (z) for l � 1.

B. Spectral strain-displacement relation

Recall from Eq. (39) that ε(r,�) = ∑∞
l=0∑6

i=1 εl
i (r)T l

i (�). Using Eq. (7) and the expression for ∇R3

in spherical coordinates, the strain-displacement relations in
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�1 ∪ �2 can be written as

εl
1(r) = dul

1(r)

dr
,

εl
2(r) = ul

1(r)

r
− 1

2
l (l + 1)

ul,m
2 (r)

r
,

εl
3(r) = 1

2

ul
1(r)

r
+ 1

2
r

d

dr

(
ul

2(r)

r

)
,

εl
4(r) = ul

2(r)

r
,

εl
5(r) = 1

2
r

d

dr

(
ul

3(r)

r

)
,

εl
6(r) = −ul

3(r)

r
. (53)

Moreover, Eqs. (28a)–(28e), (40), and (41) can be used to
obtain the following strain-displacement relations for the
surface/interface:

ε
l;℘
1 (R) = 0,

ε
l;℘
2 (R) = ul;℘

1 (R)

R
− 1

2
l (l + 1)

ul;℘
1 (R)

R
,

ε
l;℘
3 (R) = 0,

ε
l;℘
4 (R) = ul;℘

2 (R)

R
,

ε
l;℘
5 (R) = 0,

ε
l;℘
6 (R) = −ul;℘

3 (R)

R
. (54)

Here, R = R1 if ℘ represents the free surface and R = R2 if ℘

represents the interface.

C. Spectral constitutive relations

It follows directly from Eqs. (15), (37), (38), and (39) that
the spectral constitutive relations for the spherically isotropic
piezoelectric shell can be written as

σ l
1 (r) = C33ε

l
1(r) + 2C13ε

l
2(r) − e33El

1(r),

σ l
2 (r) = C13ε

l
1(r) + (

C11 + C12
)
εl

2(r) − e31El
1(r),

σ l
3 (r) = 2C44ε

l
3(r) − e15

(
El

2(r) + El
3(r)

)
,

σ l
4 (r) = (C11 − C12)εl

4(r),

σ l
5 (r) = 2C44ε

l
5(r),

σ l
6 (r) = (C11 − C12)εl

6(r),

Dl,m
1 (r) = e33ε

l,m
1 (r) + 2e31ε

l
2(r) + κ33El

1(r),

Dl
2(r) = 2e15ε

l
3(r) + κ11El

2(r),

Dl
3(r) = 2e15ε

l
5(r) + κ11El

3(r),

Bl
1(r) = μ33Hl

1(r),

Bl
2(r) = μ11Hl

2(r),

Bl
3(r) = μ11Hl

3(r). (55)

Likewise, using Eqs. (16), (37), (38), and (39), the spectral
constitutive relations of the isotropic polymer matrix in the
spherical coordinate system are given by

σ l
1 (r) = (λ + 2μ)εl

1(r) + 2λεl
2(r),

σ l
2 (r) = λεl

1(r) + 2(λ + μ)εl
2(r),

σ l
3 (r) = 2μεl

3(r),

σ l
4 (r) = 2μεl

4(r),

σ l
5 (r) = 2μεl

5(r),

σ l
6 (r) = 2μεl

6(r),

Dl
1(r) = κmEl

1(r),

Dl
2(r) = κmEl

2(r),

Dl
3(r) = κmEl

3(r),

Bl
1(r) = μmHl

1(r),

Bl
2(r) = μmHl

2(r),

Bl
3(r) = μmHl

3(r). (56)

Finally, Eqs. (31a)–(31e), (40), and (41) can be used to obtain
the spectral constitutive relations of the spherically isotropic
surface/interface:

σ
l;℘
2 = (

C℘

11 + C℘

12

)
ε

l;℘
2 , (57)

σ
l;℘
4 = (

C℘

11 − C℘

12

)
ε

l;℘
4 , (58)

σ
l;℘
6 = (

C℘

11 − C℘

12

)
ε

l;℘
6 , (59)

Pl;℘
2 = κ

℘

11El;℘
2 , (60)

Pl;℘
3 = κ

℘

11El;℘
3 . (61)

Recall from Sec. III that σ
l;℘
1 = σ

l;℘
3 = σ

l;℘
5 = Pl;℘

1 = 0

V. SPECTRAL MEE EQUATIONS

By expanding the MEE fields in terms of the vector and
tensor spherical harmonics, the spectral representation of the
fully coupled elastodynamics and Maxwell’s equations (5),
(6a), and (6b) can be written as

dσ l
1 (r)

dr
+ 2

σ l
1 (r)

r
− 2

σ l
2 (r)

r
− l (l + 1)

σ l
3 (r)

r
= −ρω2ul

1(r),

(62)

dσ l
3 (r)

dr
+ σ l

2 (r)

r
+ 3

σ l
3 (r)

r
− 1

2
(l − 1)(l + 2)

σ l
4 (r)

r

= −ρω2ul
2(r), (63)

dσ l
5 (r)

dr
+ 3

σ l
5 (r)

r
+ 1

2
(l − 1)(l + 2)

σ l
6 (r)

r
+ ρbl

3(r)

= −ρω2ul
3(r), (64)
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l (l + 1)
Hl

3(r)

r
= ιωDl

1(r), (65a)

dHl
3(r)

dr
+ Hl

3(r)

r
= ιωDl

2(r), (65b)

Hl
1(r)

r
− dHl

2(r)

dr
− Hl

2(r)

r
= ιωDl

3(r), (65c)

l (l + 1)
El

3(r)

r
= −ιωBl

1(r), (65d)

dEl
3(r)

dr
+ El

3(r)

r
= −ιωBl

2(r), (65e)

dEl
2(r)

dr
+ El

2(r)

r
− El

1(r)

r
= ιωBl

3(r). (65f)

VI. SPECTRAL INTERFACE BOUNDARY CONDITIONS

By expanding the MEE fields appearing in Eqs. (25a)–
(25d) in terms of spherical harmonics, the corresponding
spectral surface/interface boundary conditions are obtained as
follows:

[u1] = [u2] = [u3] = 0, (66)

[
σ l

1 (R)
] − 2

σ
l;℘
2 (R)

R
= −ρ℘ω2ul

1(R), (67)

[
σ l

3 (R)
] + 1

R

(
σ

l;℘
2 (R) − 1

2
(l − 1)(l + 2)σ l;℘

4 (R)

)

= −ρ℘ω2ul
2(R), (68)

[
σ l

5 (R)
] + 1

2R
(l − 1)(l + 2)σ l;℘

6 (R) = −ρ℘ω2ul
3(R), (69)[

El
2(R)

] = [
El

3(R)
] = 0, (70)[

Hl
2(R)

] + ιωPl;℘
3 (R) = 0, (71)[

Hl
3(R)

] − ιωPl;℘
2 (R) = 0. (72)

VII. SOLUTION OF THE GOVERNING SPECTRAL BVP

In the subsequent sections, we will solve the governing
spectral BVP described in Secs. V and VI. In our analysis of
the governing spectral BVP, in order to eliminate the possibil-
ity of incoming waves which originate at infinity, it is assumed
that the components of the electric and magnetic fields satisfy
Sommerfeld’s radiation condition (see, e.g., Refs. [39,40]).

A. Scattered fields in the polymer matrix region �(2)

A striking result of Theorem 1 proved in Appendix. F, tells
us that the solution arising from the differential equations and
boundary conditions described in Secs. V and VI together
with the constitutive equations given in Sec. IV C, correspond
to the harmonics m = 0, l � 0. Thus, in general, the solutions
can readily be obtained as a superposition of solutions corre-
sponding to each l .

We can use Eqs. (53), (56), (62), and (63) to recover
Eq. (11) of Ref. [35] for the scattered mechanical displace-
ment in the polymer matrix:

ul;�(2)
1 (r) = al

∂

∂r
[hl (KPr)] + bl l (l + 1)

hl (KSr)

r
, (73)

ul;�(2)
2 (r) = al

hl (KPr)

r
+ bl

r

∂

∂r
[rhl (KSr)], (74)

where al and bl are constants which will be determined by
imposing the boundary conditions. By using Eqs. (56), (65a),
(65b), (65f), we arrive at the following equation for the scat-
tered electromagnetic fields:(

d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
+ μmgmω2

)
Hl;�(2)

3 (r) = 0. (75)

In view of the Sommerfeld’s radiation condition, the solution
of the above equation is

Hl;�(2)
3 (r) = χl hl (Kmr). (76)

Subsequently, by using Eqs. (56), (65a), and (65b), we obtain
the following relations:

El;�(2)
1 (r) = − ιχl l (l + 1)

rωκm
hl (Kmr), l � 0, (77)

El;�(2)
2 (r) = − ιχl

2ωκm

(
Km(hl−1(Kmr) + hl+1(Kmr))

+ hl (Kmr)

r

)
, l � 1. (78)

B. Refracted fields in the piezoelectric shell region �(1)

1. The mode corresponding to l = 0

When l = 0, Y 0,0(�) = 1, and so according to Eqs. (A2a),
(A2b), and (A2c), we have

V0
1(�) = 1er, V0

2(�) = 0, V0
3(�) = 0. (79)

Also, since the curl of any vector field of the form f (r)er is
zero, it follows from the spectral strain-displacement relation
(53) and Eq. (65a) that

ε
0;�(2)
1 (r) = du0;�(1)

1 (r)

dr
, (80)

ε
0;�(2)
2 (r) = u0;�(1)

1 (r)

r
, (81)

D0;�(1)
1 (r) = 0, (82)

B0;�(1)
1 (r) = 0. (83)

Now, using Eqs. (82) and (83), we obtain

E0;�(1)
1 (r) = − 1

κ33r

(
2e31u0;�(1)

1 (r) + e33r
du0;�(1)

1 (r)

dr

)
,

(84)

H0;�(1)
1 (r) = 0. (85)
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Also, considering Eq. (55) the constitutive equations will take
the form

σ
0;�(1)
1 (r) = C33ε

0;�(1)
1 (r) + 2C13ε

0;�(1)
2 (r)

− e33E0;�(1)
1 (r), (86)

σ
0;�(1)
2 (r) = C13ε

0;�(1)
1 (r) + (C11 + C12)ε0;�(1)

2 (r)

− e31E0;�(1)
1 (r). (87)

Equations (84)–(87) and the mechanical equilibrium equa-
tion (62) lead to following Helmholtz equation:

r2 d2u0;�(1)
1 (r)

dr2
+ 2r

du0;�(1)
1 (r)

dr
− Ãu0;�(1)

1 (r)

= −B̃2r2u0;�(1)
1 (r), (88)

in which

Ã = 2
κ33(C11 + C12 − C13) + e31(2e31 − e33)

κ33C33 + e2
33

, (89a)

B̃2 = ρω2κ33

κ33C33 + e2
33

. (89b)

The solution of equation (88) is

u1(r) = α5 jς (B̃r) + α6yς (B̃r), (90)

where

ς =
√

1 + 4Ã − 1

2
. (91)

Now, it follows from Eq. (84) that

E0;�(1)
1 (r) = − α5

κ33r

(
2e31 jς (B̃r) + e33r

d jς (B̃r)

dr

)

− α6

κ33r

(
2e31yς (B̃r) + e33r

dyς (B̃r)

dr

)
. (92)

2. Modes corresponding to l � 1

Equations (53), (55), (62), (63), (65a), (65b), and (65f)
result in the following system of linear ODEs:

Q0r2X′′ + Q1rX′ + (Q2 + Q3r2)X = 0, (93)

for the unknown

X(r) = {
ul;�(1)

1 (r), ul;�(1)
2 (r), Hl;�(1)

3 (r)
}T

. (94)

Here Qi = qi jke j ⊗ ek where the coefficients qi jk cam be com-
puted in terms of various constants appearing in constitutive
relations (see Appendix G). Equation (93) can be readily
converted into the following system of first-order equations:

rX′ − Z = 0, (95)

r2Z′ + (Q0
−1Q1 − I)rZ + Q0

−1(Q2 + Q3r2)X = 0. (96)

The above system can be rewritten as

r{X′, Z′}T = P{X, Z}T , (97)

where

P =
[

0 I
−Q0

−1(Q2 + Q3r2) I − Q0
−1Q1

]
. (98)

In order to solve the above system, we write

{X, Z}T =
∞∑

i=0

Fir
ξ+i, (99)

Fi = {cXi , cZi}T For all i � 0. (100)

Substituting Eq. (99) into the Eq. (97) gives

∞∑
i=0

(ξ + i)Fir
ξ+i = P0

∞∑
i=0

Fir
ξ+i + P1

∞∑
i=0

Fir
ξ+i+2, (101)

where

P0 =
[

0 I
−Q0

−1Q2 I − Q0
−1Q1

]
(102)

and

P1 =
[

0 0
−Q0

−1Q3 0

]
. (103)

Consequently,

i = 0 → ξF0 = P0F0, (104)

i = 1 → (ξ + 1)F1 = P0F1, (105)

i � 2 → (ξ + i)Fi = P0Fi + P1Fi−2. (106)

It is clear from Eq. (104) that ξ must be an eigenvalue and F0

must be a corresponding eigenvector of the matrix P0. In all
the applications that we will consider in the present work, the
matrix P0 has 6 distinct eigenvalues whose differences are not
integers. In this case, the terms involving odd values of i will
disappear. Although, the above formulation is sufficient for
the analysis of physical models studied in the present work,
it is noteworthy that a rigorous analysis of the case where P0
does not have 6 distinct eigenvalues or the differences between
eigenvalues are integers can be found in books on ordinary
differential equations such as Refs. [41,42].

Now, notice that it follows from Eq. (106) that for i � 2

Fi = ((ξ + i)I − P0)−1P1Fi−2. (107)

This recursive formula will give us the general solution to
Eq. (97). The arbitrary constants appearing in the solution will
be determined by imposing the boundary conditions described
in Sec. VI.

C. Refracted fields in region �(0)

We can write the equations for refracted electromagnetic
fields in region �(0) as below:(

d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
+ μ0κ0ω

2

)
Hl;�(0)

3 (r) = 0.

(108)

The solution of the above equations in �(0) is

Hl;�(0)
3 (r) = χl jl (K0r). (109)

Here we used the fact that the solution must be bounded at
r = 0.

094109-10



MATHEMATICAL ANALYSIS OF AN ACOUSTICALLY … PHYSICAL REVIEW B 109, 094109 (2024)

VIII. EM RADIATED POWER

In this section, we will derive a simple expression for
the power of the scattered EM waves in the polymer matrix.
The total time-averaged EM radiated power crossing a closed
surface � is given by [43]

〈P〉 =
∫

�

1

2
Re[E × H∗] · ndA. (110)

Now, considering that the spherical Hankel functions satisfy
the asymptotic relation

hl (Kmr) ≈ (−ι)l+1 eιKmr

Kmr
as r → ∞, (111)

it follows from Eqs. (76)–(78) that as r → ∞,

El
2(r) ≈ χl (−ι)l+1 eιKmr

rωκm
, (112)

Hl
3(r) ≈ χl (−ι)l+1 eιKmr

Kmr
. (113)

According to the results given in Appendix C,

∥∥Vl,0
2

∥∥2 = ∥∥Vl,0
3

∥∥2 = 4π
l (l + 1)

2l + 1
. (114)

Subsequently, we arrive at the following expression for 〈P〉:

〈P〉 = 2π√
κmμmκmω2

∞∑
l=1

l (l + 1)

2l + 1
|χl |2. (115)

It is customary to normalize the EM radiated power by 〈I0〉 =
1
2

√
ρm(λ + 2μ)πω2R2|
|2, where 〈I0〉 is the time-averaged

energy flux of the incident P-wave passing through the cross
section obtained from projecting the nanospherical parti-
cle onto the xy plane (the plane normal to the propagation
direction).

IX. RESULTS AND DISCUSSION

In this section, the robustness of the fully dynamic frame-
work developed in previous sections will be shown by
analyzing problems that arise in the study of antennas and
filters. It is important to note that, since in our work no
simplifying electro-quasi-static approximation was made, an
accurate prediction of EM wave propagation is possible.
Moreover, our formulation is well-suited for the study of
problems at nanoscale due to the fact that we extended the
Gurtin-Murdoch theory to MEE surfaces/interfaces. Finally,
in order to capture the nanoscale nature of the piezoelectric
shell in the problems under consideration, we had to work
with P waves with frequencies in THz range.

A. Example1: PZT-4 core embedded in epoxy matrix

This example is taken from Ref. [44] to verify the valid-
ity of our results in the special case where the inner radius
of the piezoelectric shell is 0 (that is, the case where the
medium consists of a polymer matrix surrounding a piezo-
electric core) and the core is not necessarily nanosize (the
characteristic lengths m1, m2, m3, m4 in our formulation are
set to be zero). We will compare the results obtained from

TABLE I. (a) Electromechanical properties of the piezoelectric
shell. (b) Electromechanical properties of the epoxy matrix.

Property PZT-4

C11(GPa) 139
C12 77.8
C13 74.3
C33 115
C44 25.6
e31(C/m2) −5.2
e33 15.1
e15 12.7
k11(10−10F/m) 64.64
k33 56.22
μ11(10−6N/A2) 5
μ33 10
ρ(Kg/m3) 7500
Property Epoxy

λ(GPa) 4.916
μ(GPa) 1.731
κm(10−10F/m) 0.38
μm(10−6N/A2) 2.51
ρ(Kg/m3) 1202

our fully dynamic with results given in Ref. [44]. It is im-
portant to note that the formulation presented in Ref. [44]
ignores the surface/interface effects and hence can not be
applied to nonosize shells. The properties of PZT-4 core and
the epoxy matrix are displayed in Table I. The nondimen-
sional frequency is defined by β = Rω

Cs
where Cs is the shear

velocity in the matrix. In accordance with Ref. [44] in this
example, we take β = 1. the resulting stresses σrr , and σrθ

on the interface were calculated as function of θ using our
analytical framework and are depicted in Fig. 3. As we see, the
curves in the diagram perfectly match those given in Fig. 12
of Ref. [44].

B. Example2: PZT-4 shell embedded in epoxy matrix

For further demonstration of the applications of the for-
mulation developed in this paper, in this example we will
consider a spherical PZT-4 shell, with outer radius twice the
inner radius, embedded in an epoxy matrix. We will assume

(radian)

FIG. 3. Variations of the nondimensional interface stress in terms
of θ .
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0.220
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FIG. 4. Variations in antenna efficiency vs the normalized inci-
dent wave number for several choices of characteristic lengths.

the characteristic lengths mi
′s, 1 � i � 4 are the same for the

free surface and the interface. It is noteworthy that due to
the presence of the free surface in addition to the interface,
there will be an interference of reflected waves within an
ultrathin layer, and the physics of the problem is considerably
more complicated compared to the previous example where
we only had a solid core. Figure 4 displays the variations in
antenna efficiency as the normalized incident wave number
(KpR) changes for several choices of characteristic lengths
m̂1 = m̂2 = m̂3, and m̂4. In this diagram, the outer radius of
the shell is taken to be R = 1 nm. As it is evident from the dia-
grams, the frequency corresponding to the fundamental mode
resonance increases with the characteristic lengths. Also, the
half power bandwidths decrease as the characteristic lengths
increase, i.e., 0.328, 0.220, 0.193, and 0.173 in order from
right to left. The fact that the antenna efficiency is strongly
influenced by the size of the nanoshell is illustrated in Fig. 5.
At the nanoscale, the interface and free surface mass densities
play a significant role in the antenna efficiency and the fre-
quencies of the fundamental mode resonance. The variations
in the antenna efficiency for m̂1 = m̂2 = m̂3 = 0.5 nm as m̂4

changes are shown in Fig. 5. Interestingly, as m̂4 becomes
larger, the maximum efficiency decreases while the frequency
corresponding to the fundamental mode resonance increases.
For several classes of characteristic lengths, changes of the
normalized incident wave numbers (KpR) corresponding to
fundamental mode resonance in terms of R are displayed in
Fig. 6. As it can be seen, when the shell size is comparable
with the characteristic lengths of the interface, the results
are remarkably different from the predictions of the classi-
cal theory. Of course, as expected, all the diagrams exhibit
the same asymptotic behavior as R increases. The square
of the magnitude of the magnetic field representing far-field

3.6 3.8 4.0 4.2 4.4

0.0

0.5

1.0

1.5

2.0

FIG. 5. Variations in antenna efficiency versus the normalized
incident wave number for several choices of the characteristic length
m̂4.

200 40 60 80 100

4.2

3.9

3.8

4.0

4.1

4.3

4.4

R (nm)

FIG. 6. Variations in normalized incident wave number in terms
of R for several choices of the characteristic lengths.

angular pattern radiated from the embedded antenna for dif-
ferent surface and interface properties corresponding to the
considered nanosize piezoelectric shell is compared in Fig. 7.
As we can see in the plot, various parts of the radiation
pattern constitute of what is usually refered to as the major
lobes (see, e.g., Ref. [45]). In this figure, power patterns are
normalized so that the maximum magnitude of the outermost
major lobe is equal to 1. As it is evident from Fig. 7, the
major lobes become larger in size as the characteristic lengths
increase.

Figures 8–10 display the magnitudes of the magnetic and
electric fields, and the magnitudes of the stress components
|σrθ |, and |σθθ | throughout the nanovoid, the PZT-4 shell,
and the epoxy matrix when the shell is impinged upon by
an incident P wave of amplitude 
 = 10−3 nm. In these fig-
ures the characteristic lengths are taken to be m̂1 = m̂2 =
m̂3 = 0.5 nm, and m̂4 = 0.05 nm. The normalized incident
wave number (KpR) used to create these diagrams is 4.4
which corresponds to the wave number associated with the
maximum antenna efficiency in the brown curve in Fig. 4.
As expected, the magnetic and electric fields in the matrix
become weaker as we move away from the center. Moreover,
the magnetic field in the PZT-4 shell and the nanovoid has
a high value near the free surface at θ = π

2 , 3π
2 , whereas,

the electric field in the PZT-4 shell attains its high values at
θ = 0, π . The magnitude of the shear stress, |σrθ |, attains its
highest value in the proximity of PZT-4 shell/matrix interface
at θ = 3π

4 , 5π
4 . Whereas the magnitude of the hoop stress

|σθθ | attains its highest value at θ = π . The magnitude of the
hoop stress, |σφφ|, is nearly equal to that of |σθθ |, and thus
we have refrained from displaying it herein. In Fig. 11, the

FIG. 7. Far-field angular radiation of the antenna for several
choices of the characteristic lengths.
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(a)

1n
m0.5nm

Nano void

|H|[A/m]

(b)

|H|[A/m]

0.5
nm

(c)

FIG. 8. Distribution of the magnetic field: (a) epoxy matrix,
(b) piezoelectric shell, and (c) nanovoid.

normalized angular variations of σθθ and σφφ on the interface
and free surface of the considered nano piezoelectric shell are
illustrated. The magnitude of polarization on the interface and
the free surface against the angular coordinate θ is shown in
Fig. 12.

FIG. 9. Distribution of the electric field: (a) epoxy matrix,
(b) piezoelectric shell, and (c) nanovoid.

FIG. 10. Distribution of the magnitudes of the stress compo-
nents: (a) |σrθ | and (b) |σθθ |.

X. CONCLUSION

In conclusion, this study has investigated electromagnetic
(EM) radiation emitted from a nanosized spherical piezoelec-
tric scatterer situated in a polymer matrix and exposed to P
waves within the THz frequency range. The mathematical
analysis and calculations of the scattered MEE fields with
high precision were achieved through new formulations of the
pertinent electrodynamics equations. More strictly speaking,
the bulk of the nanospherical piezoelectric particle and its
interface with the surrounding matrix were treated as two
separate entities; each entity is mathematically modeled by
its own fully coupled elastodynamics and Maxwell’s equa-
tions. In a way the nanoscopic polarization vector, residual
polarization vector, stress field, and the residual stress field
appearing on the interface may be considered as the inter-
face conditions. Formulation of the problem of interest within
spherical coordinates and utilization of the scalar, vector, and
tensor spherical harmonics provided a robust tool for the
solution of the fully coupled elastodynamics and Maxwell’s
equations associated with the interface electrodynamics the-
ory described herein. A noteworthy feature of this theory is its
introduction of two distinct characteristic lengths associated
with both the elastic and dielectric properties. This allows
us to explore the impact of the piezoelectric particle’s size
on the scattered MEE fields. The size effect was particularly
evident in its influence on EM radiated power, the fundamen-
tal resonance frequency, and the magnetic field distribution.
Our findings underscore that as the size of the piezoelectric
fiber approaches the interface characteristic lengths, interface

FIG. 11. Normalized angular variations of the inner free surface
stresses (σ F

θθ , σ F
φφ) and the outer interface stresses (σ O

θθ , σ O
φφ) in terms

of θ .
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FIG. 12. Variations in the polarization magnitude for, respec-
tively, the inner free surface (PF ) and the outer interface (PO) in terms
of θ .

effects become notably significant. This modeling framework
holds promise for the analysis and design of nanosized piezo-
electric sensors, resonators, and antennas, making it a valuable
tool for future research and applications in this domain.

APPENDIX A: SPHERICAL HARMONICS

Scalar spherical harmonics are functions defined on the
surface S2, the unit sphere in R3. The collection of scalar
spherical harmonics is usually denoted by {Y l,m(�)}l∈N0

m�l
. For

each l ∈ N0 and |m| � l , we have Y l,m(�) = Pl,m(cos θ )eιmφ

where Pl,m(z) is the associated Legendre polynomial of degree
l and order m. For each l ∈ N0 and |m| � l , Y l,m(�) is an
eigenfunction of the surface Laplacian on S2. Indeed,

−∇2
S2Y l,m(�) = l (l + 1)Y l,m(�). (A1)

It is noteworthy that the collection of all scalar spherical
harmonics {Y l,m(�)}l∈N0

m�l
forms an orthogonal Schauder ba-

sis for the space of square-integrable functions on S2 (see,
e.g., Ref. [46], Chap. 7). In Ref. [47], vectorial and tensorial
versions of spherical harmonics are introduced, which form a
Schauder basis for square-integrable vector fields and second-
rank symmetric tensor fields on S2, respectively. The formulas
proposed by Ref. [48], up to some constant normalization
factors, are displayed below.

vector spherical harmonics (l ∈ N0 and |m| � l):

Vl,m
1 (�) = Y l,m(�)er, (A2a)

Vl,m
2 (�) = ∇S2Y l,m(�), (A2b)

Vl,m
3 (�) = er × ∇S2Y l,m(�). (A2c)

Note that since er is normal to the sphere and Vl,m
2 (�) is

tangent to the surface, Vl,m
3 (�) = er × ∇S2Y l,m(�) will be

tangent to the sphere.
Second-rank tensor spherical harmonics (l ∈ N0 and |m| �

l):

Tl,m
1 (�) = Y l,m(�)er ⊗ er, (A3a)

Tl,m
2 (�) = Y l,m(�)eθ ⊗ eθ + Y l,m(�)eφ ⊗ eφ, (A3b)

Tl,m
3 (�) = 2[er ⊗ ∇S2Y l,m(�)]S, (A3c)

Tl,m
4 (�) = [∇S2∇S2Y l,m(�)]STT, (A3d)

Tl,m
5 (�) = 2[er ⊗ (er × ∇S2Y l,m(�))]S, (A3e)

Tl,m
6 (�) = −[er × ∇S2∇S2Y l,m(�)]STT. (A3f)

In Eqs. (A3a)–(A3f), [. . .]S represents the symmetric part
of the quantity inside the bracket, and [. . .]TT denotes the
transverse traceless part of the second order tensor [. . .]
given by

[Tab]TT = Pa jPbkT jk − 1
2 Pab(PjkTk j ), (A4)

in which Pjk = δ jk − n jnk , where m, n = 1, 2, 3, δmn is the
Kronecker delta function, and n = er is the unit radial vector
(see, e.g., Ref. [49]). Some general remarks on eigenfunction
expansions in terms of spherical harmonics are discussed in
Appendix B. Some useful relations involving spherical har-
monics and differential operators such as gradient can be
found in Appendix H.

APPENDIX B: EIGENFUNCTION EXPANSIONS

1. Scalar fields

The inner product of two square-integrable scalar fields f :
S2 → R and g : S2 → R is defined by

〈 f , g〉 =
∫

S2
f (�)ḡ(�)d� =

∫ π

0

∫ 2π

0
f (�)ḡ(�) sin θdφdθ.

(B1)
Here the overbar indicates the complex conjugation. The cor-
responding norm is given by ‖ f ‖ = √〈 f , f 〉. The fact that
scalar spherical harmonics are orthogonal with respect to the
above inner product tells us that

〈Y l1,m1 (�),Y l2,m2 (�)〉 = ‖Y l1,m1 (�)‖‖Y l2,m2 (�)‖δl1l2δm1m2 ,

l1, l2 � 0, |m1| � l1, |m2| � l2. (B2)

An arbitrary square-integrable function f on S2 can be ex-
pressed as

f (�) =
∑
l∈N0|m|�l

αl,mY l,m(�), (B3)

where

αl,m = 〈 f ,Y l,m〉
〈Y l,m,Y l,m〉 , (B4)

and the convergence of the sum is in the mean square sense.

2. Vector fields

Suppose f (�) is a vector field on S2. Then, at each point
� ∈ S2, f (�) can be represented as

f (�) = fi(�)ei, (B5)

where i = r, θ, φ. The inner product of two square-integrable
vector fields f (�) and g(�) on S2 is defined by

〈f, g〉 =
∫

S2
fi(�)ḡi(�)d�. (B6)

The corresponding norm is given by ‖f‖ = √〈f, f〉. The fact
that vector spherical harmonics are orthogonal with respect to
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the above inner product tells us that

〈
V l1,m1

i (�),V l2,m2
j (�)

〉
= ∥∥V l1,m1

i (�)
∥∥∥∥V l2,m2

j (�)
∥∥δi jδl1l2δm1m2 , (B7)

with no summation over the repeated indices. (Here
l1, l2 � 0, |m1| � l1, |m2| � l2, 1 � i, j � 3.) An ar-
bitrary square-integrable vector field f on S2 can be
expressed as

f (�) =
∑
l∈N0|m|�l

3∑
i=1

αl,m
i V l,m

i (�). (B8)

where

αl,m
i =

〈
f,V l,m

i

〉
〈
V l,m

i ,V l,m
i

〉 , (B9)

and the convergence of the sum is in the mean square sense.

3. Second-order tensor fields

Now, suppose F(�) is a second-order tensor field on S2.
Then, at each point � ∈ S2, f (�) can be represented as

f (�) = Fi1i2 (�)ei1 ⊗ ei2 , (B10)

where i = r, θ, φ. The inner product of two square-integrable
vector fields f (�) and g(�) on S2 is defined by

〈F, G〉 =
∫

S2
Fi1i2 (�)Ḡi1i2 (�)d�, (B11)

and the corresponding norm is given by ‖F‖ = √〈F, F〉. The
fact that tensor spherical harmonics are orthogonal with re-
spect to the above inner product tells us that

〈
T l1,m1

i (�), T l2,m2
j (�)

〉
= ∥∥T l1,m1

i (�)
∥∥∥∥T l2,m2

j (�)
∥∥δi jδl1l2δm1m2 , (B12)

with no summation over the repeated indices. (Here
l1, l2 � 0, |m1| � l1, |m2| � l2, 1 � i, j � 6.) An ar-
bitrary square-integrable vector field F on S2 can be

expressed as

F(�) =
∑
l∈N0|m|�l

6∑
i=1

β l,m
i T l,m

i (�), (B13)

where

αl,m
i =

〈
F, T l,m

i

〉
〈
T l,m

i , T l,m
i

〉 , (B14)

and the convergence of the sum is in the mean square sense.
The formulas for the norms of spherical harmonics are

given in Appendix C.

APPENDIX C: FORMULAS FOR THE NORMS
OF SPHERICAL HARMONICS

Using the formulas given in Appendix B, one can show that
[34]

‖Y l,m(�)‖ = ∥∥V l,m
1 (�)

∥∥ = ∥∥T l,m
1 (�)

∥∥
= 1√

2

∥∥T l,m
2 (�)

∥∥ =
√

4π

2l + 1

(l + m)!

(l − m)!
, (C1)

∥∥V l,m
2 (�)

∥∥ = ∥∥V l,m
3 (�)

∥∥ = 1√
2

∥∥T l,m
3 (�)

∥∥
= 1√

2

∥∥T l,m
5 (�)

∥∥
=

√
l (l + 1)

4π

2l + 1

(l + m)!

(l − m)!
, (C2)

∥∥T l,m
4 (�)

∥∥ = ∥∥T l,m
6 (�)

∥∥
=

√
1

2
(l − 1)(l + 1)(l + 2)

4π

2l + 1
. (C3)

APPENDIX D: A BRIEF OVERVIEW OF STANDARD
SURFACE DIFFERENTIAL OPERATORS ON A SPHERE

Consider the case where the surface under consideration,
℘, is a sphere of radius R. Let f : ℘→ R be a smooth scalar
field. The surface gradient of f denoted by ∇℘ f , is given by

∇℘ f = 1

R

∂ f

∂θ
eθ + 1

R sin θ

∂ f

∂φ
eφ. (D1)

Note that ∇℘ f (�) is always a vector field tangent to the
sphere. Moreover, the surface gradient of a smooth vector field
v : ℘→ R3 is given by

∇℘v(�) = 1

R

(
∂vr (�)

∂θ
− vθ (�)

)
eθ ⊗ er + 1

R

(
vr (�) + ∂vθ (�)

∂θ

)
eθ ⊗ eθ + 1

R

∂vφ (�)

∂θ
eθ ⊗ eφ

+ 1

R

(
1

sinθ

∂vr (�)

∂φ
− vφ (�)

)
eφ ⊗ er + 1

R

(
1

sinθ

∂vθ (�)

∂φ
− cosθ

sinθ
vφ (�)

)
eφ ⊗ eθ

+ 1

R

(
vr (�) + cosθ

sinθ
vθ (�) + 1

sinθ

∂vφ (�)

∂φ

)
eφ ⊗ eφ, (D2)
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and Dv(�) [the tangential part of ∇℘v(�)] is given by

Dv(�) = Aθθ eθ ⊗ eθ + Aθφeθ ⊗ eφ + Aφθeφ ⊗ eθ + Aφφeφ

⊗ eφ, (D3)

in which

Aθθ = 1

R

(
vr (�) + ∂vθ (�)

∂θ

)
, (D4)

Aθφ = 1

R

∂vφ (�)

∂θ
, (D5)

Aφθ = 1

R

(
1

sin θ

∂vθ (�)

∂φ
− cos θ

sin θ
vφ (�)

)
, (D6)

Aφφ = 1

R

(
vr (�) + cos θ

sin θ
vθ (�) + 1

sin θ

∂vφ (�)

∂φ

)
. (D7)

The surface divergence of v : ℘→ R3 can be computed as
follows:

div℘v(�) = 2

R
vr (�) + cot θ

R
vθ (�) + 1

R

∂vθ (�)

∂θ

+ 1

R sin θ

∂vφ (�)

∂φ
. (D8)

Furthermore, divergence of a smooth rank 2 tensor field T on
℘ is given by

div℘T = 1

R

(
2Trr − Tθθ − Tφφ + Trθ cot θ + csc θ

∂Trφ

∂φ
+ ∂Trθ

∂θ

)
er + 1

R

(
3Trθ + (Tθθ − Tφφ ) cot θ + csc θ

∂Tθφ

∂φ
+ ∂Tθθ

∂θ

)
eθ

+ 1

R

(
3Trφ + 2Tθφ cot θ + csc θ

∂Tφφ

∂φ
+ ∂Tθφ

∂θ

)
eφ. (D9)

APPENDIX E: THE WEINGARTEN MAP

Let ℘be an oriented surface whose orientation is specified
by the unit normal vector n. The Weingarten map is given by

L = −∇℘n. (E1)

If the surface ℘ is a sphere of radius R oriented with the
outward unit normal, then

L =
⎛
⎝0 0 0

0 − 1
R 0

0 0 − 1
R

⎞
⎠. (E2)

APPENDIX F: STIMULATED MODES

In this Appendix, we will prove that ul
1, ul

2, and Hl
3 are the

only nonzero quantities in our spectral MEE equations. In the
subsequent subsections, the governing spectral BVP will be
solved for these unknowns.

Theorem 1. Consider the BVP described in Secs. V and
VI together with the constitutive equations given in Sec. IV C.
Assuming that the components of E satisfy the Sommerfeld’s
radiation condition, the spectral coefficients {ul

i , El
i , Dl

i } i=3
l�0

and {Hl
i , Bl

i }i=1,2
l�0

are all equal to zero.

Proof. First, it follows from Eqs. (36), (39), (53), (55),
and (64) that ul;�(1)

3 satisfies the following spherical Bessel
differential equation in the region �1:

r2 d2ul;�(1)
3 (r)

dr2
+ 2r

dul;�(1)
3 (r)

dr
− Aul;�

3 (r)

= −B2r2ul;�
3 (r), (F1)

where

A = 2 + 1

2C44
(l + 2)(l − 1)(C11 − C12) (F2)

and

B2 = ρω2

C44
. (F3)

The solution to the above equation is

ul;�(1)
3 (r) = α1 j�1 (Br) + α2y�1 (Br), (F4)

where y�1 denotes the spherical Bessel function of the second
kind and

�1 =
√

1 + 4A − 1

2
. (F5)

For the region �2 one can use Eqs. (36), (39), (53), and (56)
together with Sommerfeld’s radiation condition to recover
Eq. (16) of Ref. [44]:

ul;�(2)
3 (r) = clhl (KSr), (F6)

where hl is the spherical Hankel function of the first kind, and

KS is the shear wave number. Here CS =
√

μ

ρm
.

Since the bounding surface of the nanovoid �0 is traction
free, we have σ

l;�(0)
5 = 0. It follows from the spectral bound-

ary conditions for the nanoshell, given by Eq. (69) at r = R2,
Eq. (66), the equality ul;I (2)

3 = 0, and Eq. (9a) that

ul;�(1)
3 (r) = ul;�(2)

3 (r) = 0. (F7)

Next, by using the Eqs. (37), (38), (55), (65c), (65d), and (65e)
in the region �1, we obtain

r2 d2El;�(2)
3

dr2
+ 2r

dEl;�(2)
3

dr
− ÂEl;�(2)

3 = −B̂2r2El;�(2)
3 , (F8)

where

Â = l (l + 1)μ11

μ33
(F9)

and

B̂2 = κ11μ11ω
2. (F10)

The solution to the above equation is

El;�(1)
3 (r) = α3 j�2 (B̂r) + α4y�2 (B̂r), (F11)
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in which

�2 =
√

1 + 4Â − 1

2
. (F12)

Now, it follows from Eqs. (37), (38), (56), (65c), (65d), and
(65e) that El;S(2)

3 satisfies the following spherical Bessel dif-
ferential equation:(

d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
+ μmgmω2

)
El;�(2)

3 (r) = 0.

(F13)

Considering Sommerfeld’s radiation condition, the solution of
the above equation is

El;�(2)
3 (r) = ahl (Kmr), (F14)

where Km = ω
Cm

is the electromagnetic wave number of the

matrix, and Cm = 1√
μmgm

is speed of the light in the matrix.
Furthermore, by the constitutive relations, D = κ0E , and B =
μ0H , Eqs. (65c), (65d), and (65e) we obtain(

d2

dr2
+ 2

r

d

dr
− l (l + 1)

r2
+ μ0κ0ω

2

)
El;�(0)

3 (r) = 0.

(F15)

Since, El;�(0)
3 remains bounded as r → 0, the solution of the

above equation is

El;�(0)
3 (r) = b jl (K0r), (F16)

where K0 = ω
C0

is the electromagnetic wave number of the

vacuum and C0 = 1√
μ0κ0

is speed of the light in vacuum. Now,
by using the spectral surface/interface constitutive equa-
tion Eq. (60) and interface condition Eq. (70) for mechanical
incident waves we have

El;�(0)
3 (r) = El;�(1)

3 (r) = El;�(2)
3 (r) = 0. (F17)

Finally, using Eqs. (65d), (65e), we have

Hl;�(0)
1 (r) = Hl;�(1)

1 (r) = Hl;�(2)
1 (r) = 0, (F18a)

Hl;�(0)
2 (r) = Hl;�(1)

2 (r) = Hl;�(2)
2 (r) = 0. (F18b)

APPENDIX G: COMPONENTS OF THE TENSORS Qi

Here, we present explicit expressions for the components
of the tensors Qi (i = 0, 1, 2, 3) appearing in Eq. (93)

Qi = qi jke j ⊗ ek, (G1)

in which j, k = 1, 2, 3. We have

q011 = C33 + e2
33

κ33
, q012 = q013 = q021 = q031 = 0,

q022 = q44 + e2
15

κ11
, q023 = ιe15

ωκ11
, q032 = − e15

κ11
,

q033 = − ι

ωκ11
, q111 = 2

(
C33 + e2

33

κ33

)
,

q112 = −l (l + 1)

(
C13 + C44 + e2

15

κ11
+ e31e33

κ33

)
,

q113 = l (l + 1)ι

ω

(
e33

κ33
− e15

κ11

)
,

q121 = C13 + C44 + e2
15

κ11
+ e31e33

κ33
,

q122 = 2

(
C44 + e2

15

κ11

)
, q123 = 4

ιe15

ωκ11
,

q131 = e33

κ33
− e15

κ11
, q132 = 0, q133 = −2

ι

ωκ11
,

q211 = 2C13 − l (l + 1)

(
e2

15

κ11
+ C44

)

−
(
4e2

31 − 2e31e33 + 2(C11 + C12)
)

κ33
,

q212 = C11 + C12 + C44 − C13 + 2e2
31 − e31e33

κ33
+ e2

15

κ11
,

q213 = − l (l + 1)ι

ω

(
e15

κ11
+ 2e31 − e33

κ33

)
,

q221 = C11 + C12 + 2
e2

31

κ33
+ 2

e2
15

κ11
,

q222 = −(l2 + l − 1)C11 − C12 − 2C44

− l (l + 1)
e2

31

κ33
− 2

e2
15

κ11
,

q223 = ι

ω

(
l (l + 1)

e31

κ33
+ 2

e15

κ11

)
, Q231 = 2

e31

κ33
,

q232 = −l (l + 1)

(
e31

κ33

)
, Q233 = l (l + 1)ι

ωκ33
,

q311 = ρω2, q312 = q313 = q321 = q323 = 0,

q322 = ρω2, q331 = q332 = 0, q333 = −ιωμ11.

APPENDIX H: SOME RECURSION RELATIONS INVOLVING THE SPHERICAL HARMONICS
AND THE OPERATORS CURL AND GRADIENT

curlR3 ( f (r)Vl,m
1 (�)) = − f (r)

r
Vl,m

3 (�), (H1)

094109-17



FARSIANI, SHODJA, AND BEHZADAN PHYSICAL REVIEW B 109, 094109 (2024)

curlR3

(
f (r)Vl,m

2 (�)
) =

(
df (r)

dr
+ f (r)

r

)
Vl,m

3 (�), (H2)

curlR3

(
f (r)Vl,m

3 (�)
) = −l (l + 1)

f (r)

r
Vl,m

1 (�) −
(

df (r)

dr
+ f (r)

r

)
Vl,m

2 (�), (H3)

[∇R3 ( f (r)Vl,m
1 (�))

]S = df (r)

dr
Tl,m

1 (�) + f (r)

r
Tl,m

2 (�) + f (r)

2r
Tl,m

3 (�), (H4)

[∇R3 ( f (r)Vl,m
2 (�))

]S = −1

2
l (l + 1)

f (r)

r
Tl,m

2 (�) − 1

2

(
f (r)

r
− df (r)

dr

)
Tl,m

3 (�) + f (r)

r
Tl,m

4 (�), (H5)

[∇R3 ( f (r)Vl,m
3 (�))

]S = 1

2

(
df (r)

dr
− f (r)

r

)
Tl,m

5 (�) − f (r)

r
Tl,m

6 (�). (H6)
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