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Thermoelastic properties of bridgmanite using deep-potential molecular dynamics
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The high-pressure Pbnm-perovskite polymorph of MgSiO3, i.e., bridgmanite (Bm), plays a crucial role in
the Earth’s lower mantle. It is likely responsible for ∼75 vol. % of this region and its properties dominate the
properties of this region, especially its elastic properties that are challenging to measure at ambient conditions.
This study combines deep-learning potential (DP) with density-functional theory (DFT) to investigate the
structural and elastic properties of Bm under lower-mantle conditions. To simulate this system, we developed
a series of potentials capable of faithfully reproducing DFT calculations using different functionals, i.e.,
local density approximation (LDA), Perdew-Burke-Ernzerhof parametrization (PBE), revised PBE for solids
(PBEsol), and strongly constrained and appropriately normed (SCAN) meta–generalized-gradient approximation
functionals. Our predictions with DP-SCAN exhibit a remarkable agreement with experimental measurements
of high-temperature equations of states and elastic properties and highlight its superior performance, closely
followed by DP-LDA in accurately predicting. This hybrid computational approach offers a solution to the
accuracy-efficiency dilemma in obtaining precise elastic properties at high pressure and temperature conditions
for minerals like Bm, opening a way to study the Earth material’s thermodynamic properties and related
phenomena.

DOI: 10.1103/PhysRevB.109.094101

I. INTRODUCTION

The Earth’s lower mantle (LM), spanning from 670 to 2900
km in depth, constitutes approximately 56% of the Earth’s
total volume. It is the largest continuous region of the planet,
experiencing a wide range of thermodynamic conditions from
around 23 GPa and ∼1900 K to potentially 135 GPa and
∼4000 K [1]. The high-pressure Pbnm-perovskite polymorph
of MgSiO3, i.e., bridgmanite (Bm) [2], is the most abundant
[3]. The physical properties of Bm, including its structural
and elastic properties, are of paramount geophysical interest;
they underpin the overall properties of the lower mantle. High-
temperature elasticity is a fundamental property of solids in
geophysics, as it can be used to determine the speeds of
seismic waves.

To determine its pressure, volume, and temperature rela-
tionship, measurements of Bm’s structural properties under
extreme conditions have extensively utilized x-ray diffrac-
tion on samples compressed in laser-heated diamond-anvil
cells [4–6]. However, the full elastic tensor of Bm has
only been determined experimentally at ambient conditions
[4–6], because direct measurement of the elastic moduli at
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lower-mantle conditions poses significant challenges [7].
Extensive extrapolations encompassing the entire pressure-
temperature (P-T) range relevant to the lower mantle (i.e.,
23–135 GPa, ∼1900–4000 K) can introduce additional uncer-
tainty due to different physical models.

Given that the extreme pressure and temperature condi-
tions within the Earth’s deep interior are challenging to reach
experimentally, insights from ab initio based methods have
become essential. Ab initio calculations have been extensively
employed to verify and complement experimental studies of
thermodynamic and elastic properties, phase stability, and
effects of anharmonicity via the calculation of the phonon
dispersion [8–16]. Alternatively, molecular dynamics (MD)
addresses full anharmonic effects and has proved accurate in
obtaining elastic properties at sufficiently high temperatures.
However, such simulations faced limitations of system sizes
and simulation timescales due to the expensive computational
costs and poor scaling of purely ab initio calculations [17–19].
Moreover, classical MD critically depends on the precision
of conventional empirical potentials in accurately repre-
senting interatomic interactions, i.e. the Born-Oppenheimer
energy surface, across the extensive spectrum of pressures
and temperatures encountered within the lower mantle. As
previously reported, the utilization of strongly constrained
and appropriately normed (SCAN) meta–generalized-gradient
approximation (GGA) functional [20] can significantly
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impact the equation of state (EOS), potentially leading to
notable disparities, even in the determination of melting points
compared to Perdew-Burke-Ernzerhof parametrization (PBE)
[21]. However, due to the computational cost of SCAN being
2–5 times higher than that of PBE, SCAN remains infre-
quently employed in the field of geoscience.

Recently, machine-learning methods have presented a so-
lution to the accuracy-efficiency dilemma [22–25] and have
been successfully applied in MD simulations under extreme
conditions. A few benchmarks have demonstrated that deep-
learning potentials (DPs) [26] can achieve high accuracy in
terms of force, energy, and the characterization of solid and
liquid structures using hundreds to a few thousand reference
configurations [27–29]. The combination of deep-learning po-
tentials with advanced density functionals, such as SCAN,
provides an opportunity to improve predictions of the EOS
with respect to the traditional local density approximation
(LDA) or GGA functionals and overcome its escalated com-
putational costs [30].

In this study, we develop deep neural network potential
models for Bm using density-functional theory (DFT) with
various functionals. These potentials allow us to conduct
extensive MD simulations covering a wide range of P-T
conditions, enabling a detailed investigation of the compres-
sional behavior, elastic moduli, and elastic anisotropy of Bm
at high P-Ts. We compare the potentials against pure DFT
calculations and experimental measurements to evaluate their
predictive power.

II. METHOD

A. DFT calculation

To generate the ab initio benchmark datasets for Bm, we
performed ab initio MD (AIMD) simulations employing the
Vienna Ab initio Simulation Package (VASP) [31]. We em-
ployed multiple exchange-correlation functionals to model the
system, including the LDA [32], the Perdew-Burke-Ernzerhof
parametrization (PBE) generalized gradient approximation
[33], the revised PBE for solids (PBEsol) [34], and the SCAN
functional [20]. The projector augmented-wave pseudopoten-
tial [35,36] was employed, along with a plane-wave cutoff
energy of up to 550 eV. In AIMD simulations, we used 160-
atom supercells of MgSiO3 with �(1 × 1 × 1) k-point mesh.
The convergence criterion was set to 10−5eV for the total
energy. These DFT settings warranted good convergence of
the calculated results [37].

B. Development of machine-learning potentials

Using the ab initio datasets of forces and energies, we
developed DP models for Bm employing the DEEPMD-KIT

package [38,39]. Two-body embedding with coordinates of
the neighboring atoms (se_e2_a) was used for the descriptor.
The embedding network was designed with a shape of (25, 50,
100), while the fitting network had a shape of (240, 240, 240).
We used a cutoff radius of 6 Å and a smoothing parameter
of 0.5 Å. The model was trained using the Adam optimizer
[40] for 1 × 106 training steps, with the learning rate expo-
nentially decaying from 1 × 10−3 to 3.51 × 10−8 during
the training process. The loss function L(pe, p f ) is given

by [38]

L(pe, p f ) = pe|�e|2 + p f

3N
|� fi|2, (1)

where pe linearly decays from 1.00 to 0.02, while p f linearly
increases from 1 × 100 to 1 × 103 throughout the training
process.

We employed the DP-GEN concurrent learning scheme to
create the reference dataset and generate the potential [41].
The training of our potential was executed using a customized
workflow implemented in SNAKEMAKE [42], which incorpo-
rates the DP-GEN scheme. Outsourcing the workflow logic to
SNAKEMAKE enables paralleled file generation and enforces
a clear specification of input–output and their transforma-
tions in each step. Emphasizing modularization for ease of
maintenance and customization, our approach utilized JINJA,
a templating language, for text-input file generation. This
facilitated seamless integration with various software, sepa-
rated the main workflow logic from structure manipulation
code, and resulted in simplified testing with an impressive
80% unit-test coverage. Consequently, we achieved a much
leaner architecture and codebase, reducing the lines of code
from over 10 000 in the original DP-GEN implementation to
less than 1000 in the current implementation. The improved
robustness allowed for easy adaptation of DP-GEN to complex
HPC environments. Initially, we randomly extracted 100 la-
beled configurations from 25 MD runs spanning various P-T
ranges, covering 0–160 GPa and 300–4000 K to generate the
initial potentials, shown in Fig. S1 (see Supplemental Material
[43]). We performed four DP-GEN iterations to explore the
configuration space and ultimately achieve a potential that
meets the desired accuracy for MD simulations. We trained
four candidate DPs initialized with different random seeds
in each iteration. The error estimator (model deviation) εt

is determined based on the force disagreement between the
candidate DPs [41,44]. The expression for εt is

εt = max
i

√
〈‖Fω,i(Rt ) − 〈Fω,i(Rt )〉‖2〉,

where Fω,i(Rt ) represents the force on the ith atom predicted
by the ωth potential for the configuration Rt . After the DP-GEN

iterations, the final training dataset comprises 3000 configura-
tions annotated with ab initio force and energy information.
We trained four potentials to reproduce the results of four
exchange-correlation functionals: LDA, PBE, PBEsol, and
SCAN. Consequently, we generated DP-LDA, DP-PBE, DP-
PBEsol, and DP-SCAN potentials.

We used the LAMMPS package [45] to perform MD simu-
lations. The Nosé-Hoover thermostat [46,47] was employed
in the NVT ensemble simulation. In the elastic calculations,
the strain value is chosen as ±1%. We employed a 250-ps
equilibration period with a time step of 0.5 fs, followed by a
total simulation time of 900 ps to compute a total of 12 elastic
modulus parameters. We obtained phonon dispersions using
the finite-displacement method implemented in PHONOPY [48]
and PHONOLAMMPS codes [49] using a supercell of 2 × 2 × 2
with 160 atoms. The elastic properties were determined with
DPMD using stress-strain relation [50–52] with 1280 atoms
and infinitesimal deformation.
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C. Elastic anisotropy calculations

We utilized the Christoffel equation [53]:

[G − ρv2I]a = 0,

to determine wave velocities along any direction. Here, G
represents the Christoffel matrix Gi j = ci jkl n jnl , where ci jkl

is the stiffness tensor, and n j and nl are, respectively, the
normalized wave-vector components in the j and l direc-
tions: n = k/|k|. Here, v denotes the phase velocity of a
given wave mode for the given propagation direction (n),
and a denotes the corresponding polarization vector. For a
given density, stiffness tensor, and propagation direction, the
Christoffel matrix G possesses three eigenvalues and three
corresponding eigenvectors. These eigenvectors signify the
polarization vectors of the three wave modes (P and two S),
with the corresponding eigenvalues indicating the squared
phase velocities v2 of the waves.

For a more intuitive exploration of Bm’s anisotropy, the
azimuthal anisotropy for compressional (AP) and shear (AS)
waves is quantified by the following relations:

AP = VPmax − VPmin

〈VP〉 × 100,

AS = VSmax − VSmin

〈VS〉 × 100,

where 〈VP〉 and 〈VS〉 are the isotropic aggregate velocities.

III. RESULTS

A. Validation of machine-learning potential

We commence by evaluating the precision of our machine-
learning potential through an extensive comparison with
DFT calculations, encompassing energies, atomic forces,
and stresses. We have quantified the root-mean-square er-
ror (RMSE) to gauge the accuracy of the DP’s predictions
on the validation sets. As illustrated in Fig. 1, our calcu-
lations employing different functionals yield RMSE values
of approximately 0.9 meV/atom, 0.068 eV/Å, and 0.45 GPa
for potential energies, atomic forces, and stresses, respec-
tively. All these potentials show small RMSE compared to
the DFT data, indicating the present deep potentials are well
trained. Also, as shown in Table S1 [43], our potential exhibits
superior precision in describing energy compared to other
machine-learning potentials [54,55]. This enhanced accuracy
contributes to the reliability of our EOS predictions.

Figure 2 shows the radial distribution functions of Bm at
4000 K and 120 GPa, obtained from both DFT-LDA and DP-
LDA simulations. The DPs faithfully reproduce the g(r) data
derived from DFT calculations, indicating the DP’s capability
to capture Bm’s structural and bonding properties accurately.

Since phonon dispersions are crucial in determining high-
temperature properties, we also compare in Fig. 3 these
dispersions at 0 GPa obtained with DP-LDA and DFT-
LDA calculations. We see excellent agreement across almost
all phonon branches, with only minor deviations in a few
high-frequency optical branches along the � − Z path. The
agreement between DPMD and DFT predictions, encom-
passing force, potential energy, g(r), and phonon dispersion,
attests to the robustness of our DP. Therefore, we can

FIG. 1. Comparison of DP and ab initio calculations on the po-
tential energy, atomic forces, and stresses with (a) LDA, (b) SCAN,
(c) PBE, and (d) PBEsol for all the test data which covers 0–160 GPa
and 300–4000 K.

confidently proceed and compute the EOS and elastic coeffi-
cients, ci j , at high-pressure and high-temperature conditions.

B. Equation of state

We compute the EOS across a broad range of P-T con-
ditions. Figure 4 compares EOSs obtained from our DP
and previous LDA calculations [37]. Notably, the third-order
Birch-Murnaghan EOS derived from DPMD results agrees
exceedingly well with the DFT calculations. However, it is
worth noting that both DP-LDA and DFT calculations tend to
underestimate the pressure at a given volume when compared
to experimental values [56–65]. This discrepancy can be at-
tributed mainly to the LDA functional employed in the present
calculations. We also note that the DP calculations are based
on classical MD simulations without taking into account the
quantum effect of zero-point motion (ZPM). This ZPM effect
was included in the previous LDA calculation [37], which
manifests in the slight underestimation of DP-300 K com-
pared with the DFT-300 K results. This ZPM effect is clearly
reduced at 2000 K as the system approaches the classical
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FIG. 2. Radial distribution functions of Bm at 4000 K and 120 GPa from DFT-LDA calculations (dotted blue lines) and DP-LDA (solid
red lines).

limit. Figure 4 also compares the EOS obtained with various
functionals and experimental data at 300 and 2000 K. The
commonly used DP-PBE and DP-PBEsol functionals tend to
overestimate the volume; DP-LDA slightly underestimates it,
while DP-SCAN performs significantly better. For instance, at
2000 K, with experimental data as a reference, the RMSE for
DFT-LDA, DP-LDA, and DP-SCAN are 4.95, 4.62, and 3.68
Å3 per atom, respectively. It is evident that DP-SCAN pro-
vides the most accurate description of the EOS. Considering
the crucial significance of EOS accuracy for elastic properties,
the accuracy of DP-SCAN’s EOS greatly favors the use of
DP-SCAN in subsequent calculations of elastic properties.

C. Thermoelasticity

In Fig. 5, we present a comparative analysis of elastic coef-
ficients obtained through DPMD and those derived from prior
calculations involving PBE-GGA [17,66], LDA calculations
[10], along with experimental measurement [4–6]. We have
chosen the experimental data reported by Sinogeikin et al.
[5] as our reference dataset, and a comprehensive compila-
tion of these coefficients is provided in Table S2 [43]. One

FIG. 3. Phonon dispersions of Bm at 0 GPa calculated by DFT-
LDA (dotted blue lines) and DP-LDA (solid red lines).

can see DP-SCAN yields results most consistent with mea-
surements when compared to the other calculations, with the
lowest RMSE = 7.36 GPa. Furthermore, DP-SCAN consis-
tently achieves discrepancies within 6% for all elastic tensor
components, ci j , when compared to experimental data, a level
of accuracy that surpasses other computational approaches.
This underscores DP-SCAN’s superior predictive capability
for elastic properties. DP-LDA also agrees well with the ex-
perimental data, with minor discrepancies observed in c44 and
c55. The DP-PBE and DP-PBEsol methods do not perform
equally well to describe the elastic properties calculations.
Their deviation from the experimental data is larger than
10%. It is noteworthy that previous DFT [66] calculations
also yield good elastic properties at room temperature. This
accuracy can be attributed to their approach of deriving results
from acoustic phonon dispersions, bypassing numerical chal-
lenges arising from finite grid sampling in reciprocal space
and a limited number of plane waves. However, it should
be noted that their calculations exhibited a significant 13%
deviation from experimental values for c12, highlighting the
overall superior performance of our DP-SCAN results. The
present study with DP calculations enables large-scale MD
simulations to directly investigate the stress-strain relationship
and obtain accurate elastic behavior, which should ensure the
reliability and robustness of our results.

Figure 6 illustrates the influence of pressure (P) and tem-
perature (T ) on the elastic coefficients, revealing a nearly
linear rise with increasing P and a linear decline with in-
creasing T . These findings align with earlier measurements
[4,6] conducted at 300 K. Notably, both the DP-SCAN and
DP-LDA functionals exhibit very good agreement with ex-
perimental data at 0 GPa. However, DP-SCAN results agree
better with measurements [6] at high pressure, e.g., up to
80 GPa. Remarkably, our DP-SCAN results also exhibit bet-
ter alignment with experiments than prior DFT calculations
at 300 K for elevated pressures, especially for c12, c13, and
c66 [19]. At temperatures ranging from 1500 to 2500 K, as
depicted in Fig. 7, the disparities between DP-SCAN and
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FIG. 4. Equation of state of Bm at (a) 300 K and (b) 2000 K.
Results from DP-LDA, DP-PBE, DP-PBEsol, and DP-SCAN cor-
respond with blue, red, green, and orange squares, respectively.
Experimental data shown as crosses are from Refs. [56–65]. DFT
calculations shown as circles are from Ref. [37].

prior computations remain within an acceptable margin. How-
ever, as the temperature soars to 3500 K, these distinctions
become increasingly pronounced, notably for c44, c55, and

FIG. 5. Relative difference of elastic moduli of Bm at 300 K and
0 GPa. Experimental values are from Refs. [4–6]. Circles are from
previous GGA calculations [19,66] and previous LDA calculations
[10]. Crosses are our DP results with different functionals.

FIG. 6. Pressure dependence of the isothermal elastic constants
of Bm with (a) DP-LDA and (b) DP-SCAN. Solid lines correspond
to our DP results. Open diamonds and open circles represent mea-
surements [4,6]. Solid symbols are results of previous calculations
[17,19]. Symbol colors denote temperatures.

c66, exhibiting deviations of up to 17%. It is noteworthy
that our calculations not only demonstrate superior agreement
with experimental data at 300 K and improved EOS behav-
ior at 2000 K but also comprehensively address anharmonic
effects while surmounting limitations in simulation size. Con-
sequently, our DP-SCAN results should be more reliable. In
principle, it requires high P-T experimental data to validate
these predictions, but such measurements are unavailable. We
note that the comparison with experimental data is based on
the isothermal elastic coefficients, as the difference between
isothermal and adiabatic elastic coefficients is relatively small.
The inclusion of adiabatic correction may increase the nons-
hear elastic coefficients very little [14,67,68].

Figure 8 illustrates the pressure-temperature dependence
of the Voigt-Reuss-Hill–averaged [69,70] bulk modulus (KT ),
shear modulus (G), as well as the compressive (VP) and
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FIG. 7. Relative difference of ci j at 40 GPa between DP-SCAN
and previous calculations [17] with DP-SCAN as the reference.
Symbols denote different temperatures.

shear (VS) wave velocities from DP-LDA and DP-SCAN.
These properties are derived from the elastic coefficients (ci j)
and exhibit a consistently positive pressure dependence and
negative temperature dependence. In Figs. 8(a) and 8(b), we
compare the predicted velocities and density of Bm with
previous measurements [4–6] and seismological values of
the Preliminary Reference Earth Model (PREM) [71]. The
density (ρ) exhibits relatively low sensitivity to tempera-

FIG. 8. Pressure dependence of density (ρ), isotropic longi-
tudinal (VP = √

(KT + 4G/3)/ρ), and shear- (VS = √
G/ρ) wave

velocities, isothermal bulk moduli (KT ), and shear (G) moduli of Bm.
Solid lines in (a) and (c) are our DP-LDA results, while solid lines
in (b) and (d) are our DP-SCAN results. Triangles and circles are
the experimental results [4–6]. Symbols connected by squares are
the results of previous calculations [17]. Colors denote temperatures.
Black crosses are PREM data [71].

ture variations, with only a 1% change observed under a
1000 K fluctuation at conditions representative of the lower
mantle’s depths. At room temperature, longitudinal wave ve-
locities (VP) derived from both DP-LDA and DP-SCAN are
in good agreement with experimental measurements. How-
ever, DP-SCAN outperforms DP-LDA on shear-wave velocity
(VS) predictions at higher pressures. Both V PREM

S and V PREM
P

closely match the 2500 to 3500 K isothermal shear- and
compressive-wave velocities, in the mantle. Moreover, V PREM

P
intersects two VP isotherms, at 2500 and 3500 K, suggesting a
temperature difference of less than 1000 K from top to bottom
in the lower mantle if it were entirely composed of Bm.
Considering the shear and bulk moduli depicted in Figs. 8(c)
and 8(d), our results agree well with experimental data at 300
K. Both KPREM and GPREM closely follow the corresponding
2500 K isotherms. Also, our shear modulus displays favor-
able agreement with previous DFT calculations [17], even
at higher temperatures. However, some minor discrepancies
are observed in the bulk modulus compared to previous DFT
calculations. Considering the overlap between the KT curve
of previous DFT calculations at 1500 K and that of experi-
mental data at 300 K, our calculations exhibit a notably better
agreement. This also reaffirms the accuracy of our prior ci j

calculations. In summary, it becomes evident that DP-SCAN
emerges as a most promising potential for accurately describ-
ing these properties and should become the standard.

D. Elastic anisotropy

Understanding the elastic anisotropy of Bm, particularly
its intricate pressure and temperature dependencies, is crucial
for deciphering seismological observations and extracting in-
sights from mantle-flow geometry. Based on our DP-SCAN,
we compute the elastic anisotropy of Bm with the Christoffel
equation [53] and determine the single-crystal elastic-wave
velocities in diverse directions. Illustrated in Fig. 9(a), our
calculation demonstrates a good agreement of wave velocities
in Bm with experimental values reported at ambient conditions
[5,6]. Elastic-wave velocities exhibit substantial variations
with both propagation and polarization directions, suggesting
that the Bm exhibits strong anisotropy in both compressional
(P) and shear (S) wave velocities [6]. This anisotropy depends
on pressure and temperature in a complicated manner. Thus,
we performed interpolation for each elastic coefficient (ci j)
with respect to both pressure and temperature to compute the
anisotropy map, as presented in Figs. 9(b)–9(f).

In Fig. 9(b), AP initially decreases and then increases with
rising pressure, aligning with previous calculations [72]. We
note a shift in the turning point towards higher pressures with
increasing temperature. In the temperature range of 300 to
3500 K, the variation in AP remains below 4% at constant
pressure, with low sensitivity to temperature changes. As
shown in Fig. 9(c), AS initially decreases and then increases
with rising pressure, with the turning point shifting to higher
values as temperature increases, similar to the behavior ob-
served in AP. Even though AS and AP share similarities, the
azimuthal anisotropy of shear waves is markedly stronger than
that of compressional waves. Importantly, AS is significantly
larger at higher temperatures, showcasing heightened sensitiv-
ity to temperature changes at lower pressures. The difference

094101-6



THERMOELASTIC PROPERTIES OF BRIDGMANITE … PHYSICAL REVIEW B 109, 094101 (2024)

FIG. 9. (a) Variation of compressional and shear-wave velocities
of Bm with different propagation direction at ambient condition.
Blue and red open squares are experimental data from Refs. [5,6].
Pressure and temperature dependence of azimuthal anisotropy for (b)
P wave and (c) S wave, alongside pressure and temperature variation
of polarization anisotropy for (d) [010], (e) [100], and (f) [001]
directions. The black lines indicate the geotherm of the lower mantle
[73,74].

in AS between 300 and 3500 K ranges from 14% at 20 GPa to
2% at 150 GPa.

The two shear waves propagate with distinct velocities,
leading to S-wave birefringence. Figures 9(d)–9(f) show
the pressure and temperature dependence of polarization
anisotropy in shear waves for three crystallographic direc-
tions, [010], [100], and [001], respectively. For the [010]
direction, anisotropy decreases with increasing pressure but
rises with higher temperatures. This increase, however, di-
minishes at higher pressures. At 20 GPa, anisotropy for the
[010] direction increases from 7.97% at 300 K to 21.85% at
3500 K, compared to a modest increase from 1.96 to 4.44%
at 150 GPa. For the [100] direction, the anisotropy exhibits an
initial decrease followed by an increase as pressure rises with
the turning point shifting towards higher pressures as tempera-
ture increases. Similar trends hold for temperature variations;
the anisotropy initially decreases with rising temperature
before transitioning to an increase, and the turning point am-
plifying at higher pressures. The [001] direction presents a
simpler scenario, with monotonic pressure and temperature
dependencies of anisotropy. Anisotropy in the [001] direction
increases with rising pressure but decreases with increasing
temperature. Our findings indicate that Bm exhibits significant
anisotropy, introducing a complex interplay of pressure and
temperature on seismic anisotropy. Surprisingly, many seis-
mological investigations [71,72] of the lower mantle have not
unveiled such pronounced anisotropy, suggesting a potential
cause in the random orientation of Bm grains. Consequently,
the discerned anisotropy patterns in Bm provide valuable in-

sights into the underlying mechanisms influencing mineral de-
formation and structural preferences within the lower mantle.

IV. DISCUSSION

Our study highlights the accuracy of a hybrid approach that
combines DFT with DP to investigate the equation of state
and elastic properties of Bm at high PT conditions. The DP-
GEN active-learning scheme utilized to develop the potential
demonstrates high efficiency, requiring only a few thousand
reference DFT calculations completed within a few days. The
computational cost of our DFT calculations is even lower than
that of a typical AIMD run required for sampling a single
(P, T) point. The resulting potential reproduces DFT results
with excellent fidelity. This enhanced efficiency enables us
to utilize more accurate functionals and conduct simulations
on complex systems with improved accuracy in larger and
more complex systems, longer timescales, and denser (P, T)
sampling that were unattainable with pure DFT calculations.

In previous investigations, the DPs were developed to ex-
plore lattice thermal conductivity and melting behavior for
the Bm [54,55]. Our work distinguishes itself by using the
DP-GEN concurrent learning scheme, which deviates from
the iterative learning scheme utilized by Deng [54], and
employing a customized workflow implemented in SNAKE-
MAKE, which may contribute to the superior precision of our
potential in characterizing energy. Furthermore, it is note-
worthy that Deng [54] utilized the PBE functional, while
Yang [55] employed the PBEsol functional for Bm. While
they could capture thermal conductivity and melting behavior
within their respective studies, our results suggest that the
SCAN functional performs the best in calculations of the EOS
and elastic properties of Bm while PBE or PBEsol should
be avoided. These results underscore the crucial importance
of employing the most predictive functionals to accurately
determine the thermodynamic properties of materials while
emphasizing the potential for future high P-T research appli-
cations.

The hybrid DFT-based machine-learning approach trans-
forms how we approach systems at extreme conditions with
computational methods. It enables more accurate predictions
for increasingly complex systems. Such an efficient and accu-
rate approach for simulating the elastic properties of LM min-
erals at high P-T conditions is poised to contribute to a deeper
understanding of processes shaping the Earth’s internal state.

V. CONCLUSION

Our study focuses on developing and testing deep-learning
potentials using different DFT functionals to investigate the
EOS and thermoelasticity of Bm under high-pressure and
high-temperature conditions in the lower mantle. Our results
demonstrate the accuracy of the DP approach by successfully
reproducing radial distributions and phonon dispersions, with
RMSEs of 0.8 meV per atom for energy and 0.07 eV/Å
for atomic forces, further validating the robustness of our
DP results. Regarding the EOS, we find that the choice of
exchange-correlation functional in DFT calculations signif-
icantly impacts accuracy. DP-LDA slightly underestimates
pressure at a given volume, while DP-PBE and DP-PBEsol
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overestimate it, even in the absence of ZPM effects. In con-
trast, the DP-SCAN method exhibits outstanding agreement
with experimental data, demonstrating its superior capabil-
ity for EOS prediction. We also establish the consistency of
the elastic properties predicted by DP-SCAN and DP-LDA
with previous quasiharmonic LDA calculations at high tem-
peratures, confirming insignificant anharmonic effects on
the high-temperature properties of Bm. Additionally, man-
tle properties reported by the PREM fall in the range of
Bm properties expected at lower-mantle temperatures. Last,
our calculations not only closely match the experimentally
observed anisotropy at ambient conditions but also reveal
the intricate interplay between pressure and temperature in-
fluencing the anisotropy of Bm at lower-mantle conditions.
We demonstrate that the synergistic application of DP and
DFT provides a powerful means to predict EOS and elastic
properties of mantle minerals more accurately at relevant tem-
peratures, a task that has presented substantial experimental
challenges.
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