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Momentum mismatch driven bound states in the continuum and ellipsometric phase singularities
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In this paper, we elucidate the formation of bound states in the continuum (BICs) in compound grating
waveguide structures from the perspective of momentum mismatch. As the complex lattice reduces to a simple
lattice, the excitable guided resonance turns into an unexcitable BIC due to momentum mismatch. Herein, we
refer to this state as momentum mismatch driven BIC. Interestingly, as the incidence changes from normal to
oblique, the single momentum mismatch driven BIC splits into dual momentum mismatch driven BICs due
to the nonzero tangential momentum of the incident light. Distinct from conventional symmetry-protected and
accidental BICs, momentum mismatch driven BICs lie in sections of photonic bands. Consequently, Q factors of
momentum mismatch driven quasi-BICs exhibit angular robustness far beyond conventional symmetry-protected
and accidental quasi-BICs. Empowered by the momentum mismatch driven BIC, a pair of ellipsometric phase
singularities emerge. Enabled by the drastic ellipsometric phase change, ultrasensitive refractive index sensing
can be achieved. These results not only provide unique insights into the relation between momentum, BICs, and
ellipsometric phase, but also offer a recipe for developing high-performance phase-based optical devices, such
as ultrasensitive sensors, wave plates, and spatial light modulators.
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I. INTRODUCTION

Bound states in the continuum (BICs)—localized states
embedded inside continuous spectra—provide unique insights
into nanophotonics [1–3]. After introducing perturbations,
BICs with infinitely high quality (Q) factors turn into
quasi-BICs with finitely high Q factors [4–7]. Owing to
their ultrastrong resonant properties, quasi-BICs have been
extensively exploited in low-threshold lasing [8–11], ultrasen-
sitive sensing [12–19], strong chirality [20–26], polarization
manipulation [27–30], unidirectional transport [31–33], high-
efficiency harmonic generation [34–37], and enhancement of
light absorption [38,39]. In the past two decades, two classes
of BICs, symmetry-protected [4,40] and accidental BICs
[41,42], have attracted considerable attention. Symmetry-
protected BICs located at the � point in the first Brillouin zone
are protected by the in-plane inversion symmetry of struc-

*fengwu@gpnu.edu.cn
†jiang-haitao@tongji.edu.cn
‡syxiao@ncu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

tures [4,40]. Symmetry-protected BICs turn into quasi-BICs
when deviating from the � point. Accidental BICs located at
off-� or � points originate from the destructive interference
between two radiation channels [41,42]. Similarly, accidental
BICs turn into quasi-BICs when an in-plane wave vector
is changed. Therefore, conventional symmetry-protected and
accidental quasi-BICs can only maintain ultrahigh Q factors
in ultranarrow angle ranges.

Interestingly, researchers discovered a category of special
BICs in subwavelength gratings [43–63] and metasurfaces
with complex lattices [64–76]. Recently, the formation mech-
anisms of this category of BICs have attracted great interest
[48–63,68–76]. In 2018, Overvig et al. discussed this category
of BICs from the perspective of band folding in subwave-
length gratings [48]. Such perspective has been further
developed in subwavelength gratings [49–54] and extended
to metasurfaces [68–76]. In 2019, we discussed this cate-
gory of BICs from the perspective of guided-mode resonance
in subwavelength gratings [55]. Such perspective has also
been further developed in subwavelength gratings [56–63].
In this paper, we elucidate the formation of this category
of BICs from the perspective of momentum mismatch in
compound grating waveguide structures and herein referred
to as recently discovered momentum mismatch driven BICs.
When the lattice of the compound grating waveguide struc-
ture changes from complex to simple, the excitable guided
resonance evolves into an unexcitable BIC due to momentum
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mismatch. In addition, we establish a bridge connecting the
perspectives of band folding and guided-mode resonance.
More importantly, we disclose two exotic properties of mo-
mentum mismatch driven BICs. As the incidence changes
from normal to oblique, the single momentum mismatch
driven BIC splits into dual momentum mismatch driven BICs
due to the nonzero tangential momentum of the incident light.
In addition, distinct from conventional symmetry-protected
[4,40] and accidental quasi-BICs [41,42], momentum mis-
match driven quasi-BICs maintain ultrahigh Q factors over
much broader angle ranges. It should be noted that momen-
tum mismatch driven BICs in this work are different from
the recently discovered Brillouin zone folding driven BICs
in metasurfaces with complex lattices [77]. The mechanism
of the formation of Brillouin- zone folding driven BICs can
be explained as follows. When the lattice of the metasuface
changes from simple to complex, the first Brillouin zone
halves. Hence, the modes previously located at the edge of
the first Brillouin zone are folded into the � point. Among
these folded modes, the folded modes whose symmetries do
not match the symmetry of a radiative plane wave are called
Brillouin zone folding driven BICs [77]. In other words, Bril-
louin zone folding driven BICs are located at the � point.
Similar to conventional symmetry-protected BICs, Brillouin
zone folding driven BICs turn into quasi-BICs when deviating
from the � point. Empowered by the Brillouin zone folding,
Q factors of Brillouin zone folding driven quasi-BICs exhibit
superior robustness against the structural disorders [77].

As a fundamental property of light, phase plays a vi-
tal role in orbital angular momentum [78,79], biosensing
[80], perfect absorption [81,82], and polarization manipula-
tion [83,84]. The ellipsometric phase refers to the reflection
phase difference between transverse magnetic (TM) and
transverse electric (TE) polarizations [85,86]. Recently, re-
searchers achieved ellipsometric phase singularities based on
Fabry-Perot resonances [87,88], Tamm plasmon polaritons
[89–93], and Bloch surface waves [94,95]. Nonetheless, the
relation between ellipsometric phase and BICs has not yet
been studied. In this paper, we elucidate the relation between
ellipsometric phase and momentum mismatch driven BICs.
Empowered by a momentum mismatch driven BIC, a pair
of ellipsometric phase singularities emerge. Since the mo-
mentum mismatch driven quasi-BIC maintains an ultrahigh Q
factor over a broad angle range, the drastic ellipsometric phase
change demonstrates a superior robustness against the inci-
dent angle. Enabled by a drastic ellipsometric phase change,
ultrasensitive refractive index sensing can be achieved. The
minimum resolution reaches the order of 10−8 RIU (refractive
index unit). Our findings not only provide unique insights
into the relation between momentum, BICs, and ellipsometric
phase, but also offer a recipe for developing high-performance
phase-based optical devices.

This paper is organized as follows. In Sec. II, we demon-
strate the physical mechanism of momentum mismatch driven
BICs in compound grating waveguide structures. Then, we
discuss the robustness of the Q factor of the momentum mis-
match driven quasi-BIC against the incident angle. In Sec. III,
we realize a pair of ellipsometric phase singularities empow-
ered by the momentum mismatch driven BIC. In Sec. IV,
as an example of the applications, we achieve ultrasensitive

refractive index sensing enabled by a drastic ellipsometric
phase change. Finally, the conclusions are presented in Sec. V.

II. MOMENTUM MISMATCH DRIVEN BIC IN
COMPOUND GRATING WAVEGUIDE STRUCTURE

This section is organized as follows. In Secs. II A and II B,
we demonstrate the physical mechanism of the momentum
mismatch driven BIC in the compound grating waveguide
structure at normal and oblique incidences, respectively.
When the incidence changes from normal to oblique, the
single momentum mismatch driven BIC splits into dual mo-
mentum mismatch driven BICs due to the nonzero tangential
momentum of the incident light. In Sec. II C, we discuss the
robustness of the Q factor of the momentum mismatch driven
quasi-BIC against the incident angle.

A. Physical mechanism of momentum mismatch driven BIC in
compound grating waveguide structure at normal incidence

Figures 1(a) and 1(b) schematically depict the unit cells
of the compound grating waveguide structures for the un-
perturbed and perturbed cases, respectively. The insets show
the corresponding first Brillouin zones. The compound grat-
ing waveguide structure consists of a subwavelength hafnium
dioxide (HfO2) grating layer, a HfO2 waveguide layer, and a
silica (SiO2) substrate layer. The refractive indices of HfO2

and SiO2 are set as nH = nWG = 1.88 [96] and nS = 1.44
[97], respectively. The heights of the subwavelength HfO2

grating and waveguide layers are denoted by hG and hWG,
respectively. The width of the HfO2 ridge in the grating layer
is denoted by wH. For the unperturbed case, the widths of
two adjacent air grooves in the grating layer are set to be the
same, i.e., wL1 = wL2. Therefore, the period of the grating
layer is p = wH + wL1. For the perturbed case, the widths
of two adjacent air grooves in the grating layer are set to
be different, i.e., wL1 �= wL2. The perturbations are applied
to each unit cell. Distinct from the unperturbed case, the pe-
riod of the grating layer doubles, i.e., p′ = 2p. Consequently,
the first Brillouin zone is reduced by half. Suppose that a
linearly polarized plane wave perpendicularly launches onto
the structure in the xOz plane. Starting from the guided-
mode resonance (GMR) theory, we demonstrate that the
unperturbed structure supports momentum mismatch driven
BICs, whereas the perturbed structure supports momentum
mismatch driven quasi-BICs. The geometric parameters are
selected as hG = 120 nm, hWG = 340 nm, p = 427.5 nm, and
wH = fH p = 0.6p.

According to the GMR theory, the momentum-matching
condition for the unperturbed structure can be expressed as
[98]

kx,m = −m
2π

p
= β (m = ±1,±2, . . .), (1)

where m denotes the diffraction order, 2π/p denotes the basic
momentum provided by the grating layer, and β denotes the
tangential momentum of the guided mode.

Throughout this work, we focus on the fundamental guided
modes for TM and TE polarizations, i.e., TM0 and TE0 guided
modes. According to the four-layer slab waveguide model, the
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FIG. 1. Schematics of the unit cells of the compound grating waveguide structures for (a) unperturbed and (b) perturbed cases. The
insets show the corresponding first Brillouin zones. Momentum-frequency relations in infinite momentum spaces for (c) unperturbed and
(d) perturbed cases. The purple-shadowed region represents the light cone. Momentum-frequency relations folded into the first Brillouin zones
for (e) unperturbed and (f) perturbed cases.

momentum-frequency relation for TM0 guided mode βTM0 (ω) takes the following form [58,98,99]:
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where

κTM0 = tanh

[
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Similarly, the momentum-frequency relation for TE0

guided mode βTE0 (ω) takes the following form [58,98,99]:
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where

κTE0 = tanh
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(5)

In Eqs. (2)-(5), neff = fHnH + (1 − fH)nL = 1.528 rep-
resents the effective refractive index of the grating layer.
According to Eqs. (2)-(5), we calculate the momentum-
frequency relations for the TM0 and TE0 guided modes, as
shown by the blue and red solid lines in Fig. 1(c), respectively.
The normalized angular frequency is ω0 = 2πc/hWG. The
purple-shadowed region represents the light cone. As demon-
strated, the momentum-frequency relations for the TM0 and
TE0 guided modes lie below the light cone. Owing to mo-
mentum mismatch, the incident light cannot couple with the
guided mode without the grating layer. The cutoff angular
frequencies for the TM0 and TE0 guided modes are ωc,TM0 =
0.1370ω0 and ωc,TE0 = 0.0797ω0, respectively. According to
Eq. (1), we plot the momentum-frequency relations kx,±1,
as shown by the black dashed lines in Fig. 1(c). For TM
polarization, two momentum-matching points (marked by
A±

1 ) occur at the same angular frequency ωTM
±1 = 0.4632ω0

(λTM
±1 = 734.0 nm), giving rise to a Fano resonance. For TE

polarization, two momentum-matching points (marked by B±
1 )

occur at the same angular frequency ωTE
±1 = 0.4534ω0 (λTE

±1 =
749.9 nm), also giving rise to a Fano resonance.

For the perturbed structure, the period of the grating layer
doubles. Consequently, the momentum-matching condition
becomes

k
′
x,m′ = −m′ 2π

p′ = −m′ π
p

= β (m′ = ±1,±2, . . .). (6)

The basic momentum provided by the grating layer
is reduced by half, i.e., 2π/p′ = π/p. Interestingly, the
momentum-frequency relations k′

x,±2m overlap with the
momentum-frequency relations kx,±m. According to Eq. (6),
we plot the momentum-frequency relations k′

x,±1 and k′
x,±2, as

shown by the black dashed lines in Fig. 1(d). For TM polariza-
tion, four momentum-matching points (marked by A±

1 and A±
2 )

occur at two angular frequencies ωTM
±1 = 0.4632ω0 (λTM

±1 =
734.0 nm) and ωTM

±2 = 0.2571ω0 (λTM
±2 = 1322.4 nm), giv-

ing rise to two Fano resonances. For TE polarization, four
momentum-matching points (marked by B±

1 and B±
2 ) occur at

two angular frequencies ωTE
±1 = 0.4534ω0 (λTE

±1 = 749.9 nm)
and ωTE

±2 = 0.2439ω0 (λTE
±2 = 1394.0 nm), also giving rise to

two Fano resonances.
We define a perturbation parameter as α =

(wL1 − wL2)/(wL1 + wL2). Considering a parameter
changing process α �= 0 → α = 0, the perturbed structure
turns into an unperturbed structure. Consequently,
the previously excitable guided resonances at angular
frequencies ωTM

±2 = 0.2571ω0 (λTM
±2 = 1322.4 nm) and

ωTE
±2 = 0.2439ω0 (λTE

±2 = 1394.0 nm) become unexcitable
since the momentum-matching conditions are broken. Hence,
these dark modes can be called momentum mismatch driven
BICs.

Next, we demonstrate the equivalence of momentum
mismatch driven BICs and BICs induced by band folding
[48–54]. Owing to the periodicity of the grating layer, the
infinite momentum space is folded into the first Brillouin
zone. Now, we fold the momentum-frequency relations of the
TM0 and TE0 guided modes into the first Brillouin zone for
the unperturbed and perturbed cases, as shown in Figs. 1(e)
and 1(f), respectively. This method is also known as the
empty-lattice approximation [100,101]. It should be noted that
the empty-lattice approximation is valid since the thickness
of the grating layer is only hG = 120 nm. The validation of
the empty-lattice approximation is further confirmed by the
reflectance spectra in Figs. 2(a) and 2(c). For the unperturbed
structure, the edges of the first Brillouin zone are located at
kx = ±π/p. Since we consider normal incidence, only the
modes in the momentum-frequency relations of the TM0 and
TE0 guided modes at the � point can be excited by the incident
light. Comparing Fig. 1(e) with 1(c), we can conclude that
these excitable modes in Fig. 1(e) are identical with modes A±

1
and B±

1 in Fig. 1(c). Owing to the periodicity, modes A±
1 and

B±
1 are folded into the � point. In addition, dark modes A±

2 and
B±

2 are located at the edges of the first Brillouin zone. These
modes cannot be excited by the incident light since they lie
below the light cone. For the perturbed structure, the edges of
the first Brillouin zone are located at kx = ±π/p′ = ±π/2p.
Hence, the first Brillouin zone is reduced by half. Comparing
Fig. 1(f) with 1(d), we can conclude that the excitable modes
in Fig. 1(f) are identical with modes A±

1 , B±
1 , A±

2 , and B±
2 in

Fig. 1(d). Owing to the periodicity, modes A±
1 , B±

1 , A±
2 , and B±

2
are folded into the � point. Considering the parameter chang-
ing process α = 0 → α �= 0, the momentum mismatch driven
BICs previously located at the edges of the first Brillouin zone
turn into momentum mismatch driven quasi-BICs located at
the � point inside the light cone, which is consistent with
the results in Refs. [48–54]. Before introducing perturbation,
modes A±

2 and B±
2 lie below the light cone. However, after

introducing infinitely weak perturbation, modes A±
2 and B±

2
are folded into the � point.

To further confirm the formation of the momentum mis-
match driven BIC, we utilize the rigorous coupled-wave
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FIG. 2. Reflectance spectra of the compound grating waveguide structures with different perturbation parameters at normal incidence for
(a) TM and (c) TE polarizations. The insets in (a) and (c) depict the magnetic and electric field distributions at the reflectance peaks under
plane-wave incidences, respectively. Dependences of the Q factor of the quasi-BIC on the perturbation parameter for (b) TM and (d) TE
polarizations.

analysis approach [102,103] to calculate the reflectance spec-
tra of the compound grating waveguide structures with
different perturbation parameters α at normal incidence for
TM polarization, as shown in Fig. 2(a). The insets depict
the magnetic field distributions at the reflectance peaks under
plane-wave incidences. The magnetic field distributions are
performed by the commercial COMSOL MULTIPHYSICS soft-
ware. To quantify the field-enhancement effect, the strength
of the incident magnetic field is normalized. Owing to the
geometric symmetry of the structure, the reflectance spectrum
with α = +α0 is identical with that with α = −α0. When α =
±0.4, a Fano resonance appears at the wavelength of 1317.91
nm. Empowered by the GMR, the magnetic field is strongly
enhanced and localized inside the waveguide layer. When α =
±0.2, a narrower Fano resonance appears at the wavelength
of 1317.53 nm, and the magnetic field is further enhanced.
When α = 0, no Fano resonance appears, which corresponds
to the momentum mismatch driven BIC. The wavelength of
the BIC can be extracted as 1317.40 nm, which agrees with
that predicted by the theoretical model (λTM

±2 = 1322.4 nm).
The relative error is only 0.38%. Hence, the empty-lattice
approximation is valid. In addition, we calculate the depen-
dence of the Q factor of the quasi-BIC on the perturbation

parameter, as shown in Fig. 2(b). The Q factor is calculated
by Q = fpeak/	 f = fpeak/| fpeak − fdip|, where fpeak and fdip
represent the frequencies of the reflectance peak and dip,
respectively. When α = ±0.4, the Q factor of the quasi-BIC
is only 2.07 × 102. As α approaches to zero, the Q factor
of the quasi-BIC increases significantly. When α = ±0.02,
the Q factor of the quasi-BIC reaches 1.11 × 105. When
α = 0, the Q factor becomes infinitely high, confirming the
formation of a momentum mismatch driven BIC. Similarly,
we calculate the reflectance spectra of the compound grating
waveguide structures with different perturbation parameters α

at normal incidence for TE polarization, as shown in Fig. 2(c).
The insets depict the electric field distributions at the re-
flectance peaks under plane-wave incidences. The electric
field distributions are performed by the commercial COMSOL

MULTIPHYSICS software. To quantify the field-enhancement
effect, the strength of the incident electric field is normalized.
When α = ±0.4, a Fano resonance appears at the wavelength
of 1384.75 nm. Empowered by the GMR, the electric field is
strongly enhanced and localized inside the waveguide layer.
When α = ±0.2, a narrower Fano resonance appears at the
wavelength of 1383.65 nm, and the electric field is further
enhanced. When α = 0, no Fano resonance appears, which
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corresponds to the momentum mismatch driven BIC. The
wavelength of the BIC can be extracted as 1383.29 nm, which
agrees with that predicted by the theoretical model (λTE

±2 =
1394.0 nm). The relative error is only 0.77%. In addition, we
calculate the dependence of the Q factor of the quasi-BIC
on the perturbation parameter, as shown in Fig. 2(d). When
α = ±0.4, the Q factor of the quasi-BIC is only 2.15 × 102.
As α approaches to zero, the Q factor of the quasi-BIC in-
creases significantly. When α = ±0.02, the Q factor of the
quasi-BIC reaches 1.27 × 105. When α = 0, the Q factor
becomes infinitely high, confirming the formation of a mo-
mentum mismatch driven BIC. To determine whether the
momentum mismatch driven quasi-BICs and BIC are leaky or
not, we simulate the eigenfrequencies and eigenmode profiles
by the commercial COMSOL MULTIPHYSICS software (details
can be seen in Sec. I of the Supplemental Material [104]). The
momentum mismatch driven quasi-BICs are leaky while the
momentum mismatch driven BIC is nonleaky.

According to Eqs. (2)-(5), the momentum-frequency rela-
tions for the TM0 and TE0 guided modes strongly depend on
the height of the HfO2 waveguide layer. Hence, the wave-
lengths of the momentum mismatch driven BICs at normal
incidence for TM and TE polarizations strongly depend on

the height of the HfO2 waveguide layer (details can be seen in
Sec. II A of the Supplemental Material [104]). As the height
of the HfO2 waveguide layer increases, the wavelengths of
the momentum mismatch driven BICs at normal incidence for
TM and TE polarizations increases.

B. Physical mechanism of dual momentum mismatch driven
BICs in compound grating waveguide structure at oblique

incidence

Now, we discuss the case of oblique incidence. Suppose
that a linearly polarized plane wave obliquely launches onto
the structure in the xOz plane at an incident angle θ = 5◦. At
oblique incidence, the momentum-matching condition for the
unperturbed structure can be expressed as [98]

kx,m = k0sinθ − m
2π

p
= β (m = ±1,±2, . . .). (7)

Distinct from the case of normal incidence, the
momentum-frequency relations kx,±1 are not vertical lines
due to the nonzero tangential momentum of the incident
light, as shown by the black dashed lines in Fig. 3(a).
For TM polarization, two momentum-matching points

FIG. 3. Momentum-frequency relations in infinite momentum spaces for (a) unperturbed and (b) perturbed cases. The purple-shadowed
region represents the light cone. Momentum-frequency relations folded into the first Brillouin zones for (c) unperturbed and (d) perturbed
cases. The green solid line represents the momentum-frequency relation of the incident light kx = k0sinθ . The incident angle is set to be
θ = 5◦.
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(marked by A±
1 ) occur at different angular frequencies

ωTM
+1 = 0.4434ω0 (λTM

+1 = 766.8 nm) and ωTM
−1 = 0.4848ω0

(λTM
−1 = 701.3 nm), giving rise to two Fano resonances. For

TE polarization, two momentum-matching points (marked by
B±

1 ) occur at different angular frequencies ωTE
+1 = 0.4336ω0

(λTE
+1 = 781.4 nm) and ωTE

−1 = 0.4750ω0 (λTE
−1 = 715.8 nm),

also giving rise to two Fano resonances.
For the perturbed structure, the period of the grating layer

doubles. Consequently, the momentum-matching condition
becomes

k
′
x,m = k0sinθ − m′ 2π

p′

= k0sinθ − m′ π
p

= β (m′ = ±1,±2, . . .). (8)

The basic momentum provided by the grating layer
is reduced by half, i.e., 2π/p′ = π/p. Interestingly, the
momentum-frequency relations k′

x,±2m overlap with the
momentum-frequency relations kx,±m. According to Eq. (8),
we plot the momentum-frequency relations k′

x,±1 and k′
x,±2, as

shown by the black dashed lines in Fig. 3(b). For TM polariza-
tion, four momentum-matching points (marked by A±

1 and A±
2 )

occur at four angular frequencies ωTM
+1 = 0.4434ω0 (λTM

+1 =
766.8 nm), ωTM

−1 = 0.4848ω0 (λTM
−1 = 701.3 nm), ωTM

+2 =
0.2455ω0 (λTM

+2 = 1384.9 nm), and ωTM
−2 = 0.2698ω0 (λTM

−2= 1260.2 nm), giving rise to four Fano resonances. For
TE polarization, four momentum-matching points (marked
by B±

1 and B±
2 ) occur at four angular frequencies

ωTE
+1 = 0.4336ω0 (λTE

+1 = 784.1 nm), ωTE
−1 = 0.4750ω0 (λTE

−1 =
715.8 nm), ωTE

+2 = 0.2330ω0 (λTE
+2 = 1459.2 nm), and ωTE

−2 =
0.2558ω0 (λTE

−2 = 1329.2 nm), also giving rise to four Fano
resonances.

Considering a parameter changing process α �= 0 →
α = 0, the perturbed structure turns into an unperturbed
structure. Consequently, the previously excitable guided res-
onances at angular frequencies ωTM

+2 = 0.2445ω0 (λTM
+2 =

1384.9 nm), ωTM
−2 = 0.2698ω0 (λTM

−2 = 1260.2 nm), ωTE
+2 =

0.2330ω0 (λTE
+2 = 1459.2 nm), and ωTE

−2 = 0.2558ω0 (λTE
−2= 1329.2 nm) become momentum mismatch driven BICs

since the momentum-matching conditions are broken.
Next, we demonstrate the equivalence of momentum

mismatch driven BICs and BICs induced by band folding
[48–54]. Similar to Sec. II A, we fold the momentum-
frequency relations of TM0 and TE0 guided modes into the
first Brillouin zone for the unperturbed and perturbed cases,
as shown in Figs. 3(c) and 3(d), respectively. For the un-
perturbed structure, the edges of the first Brillouin zone are
located at kx = ±π/p. Now, we consider the oblique inci-
dence. Hence, we plot the momentum-frequency relation of
the incident light at oblique incidence, i.e., kx = k0sinθ , as
shown by the green solid line. Only the modes located at the
crossing points between the momentum-frequency relations
of the guided modes and that of the incident light are excitable.
Comparing Fig. 3(c) with 3(a), we can conclude that these
excitable modes in Fig. 3(c) are identical with modes A±

1 and
B±

1 in Fig. 3(a). Owing to the periodicity, modes A±
1 and B±

1
are folded inside the light cone. In addition, dark modes A±

2
and B±

2 cannot be excited by the incident light since they lie
below the light cone. For the perturbed structure, the edges of

the first Brillouin zone are located at kx = ±π/p′ = ±π/2p.
Hence, the first Brillouin zone is reduced by half. Comparing
Fig. 3(d) with 3(b), we can conclude that the excitable modes
in Fig. 3(d) are identical with modes A±

1 , B±
1 , A±

2 , and B±
2 in

Fig. 3(b). Owing to the periodicity, modes A±
1 , B±

1 , A±
2 , and

B±
2 are folded inside the light cone. Considering the parameter

changing process α = 0 → α �= 0, the momentum mismatch
driven BICs turn into momentum mismatch driven quasi-BICs
that lie inside the light cone.

Combining Figs. 1 and 3, we observe an interesting phe-
nomenon: as the incidence changes from normal to oblique,
the single momentum mismatch driven BIC splits into dual
momentum mismatch driven BICs due to the nonzero tangen-
tial momentum of the incident light.

To further confirm the formation of the dual momentum
mismatch driven BICs, we calculate the reflectance spectra
of the compound grating waveguide structures with different
perturbation parameters α at oblique incidence for TM polar-
ization, as shown in Fig. 4(a). The insets depict the magnetic
field distributions at the reflectance peaks under plane-wave
incidences. When α = ±0.6, two Fano resonances appear
at the wavelengths of 1256.11 and 1380.67 nm. Empow-
ered by the GMR, the magnetic field is strongly enhanced
and localized inside the waveguide layer. When α = ±0.3,
two narrower Fano resonances appear at the wavelengths of
1256.27 and 1380.72 nm, and the magnetic field is further
enhanced. When α = 0, no Fano resonance appears, which
corresponds to the dual momentum mismatch driven BICs.
The wavelengths of the dual BICs can be extracted as 1256.38
and 1380.78 nm, which agrees with those predicted by the
theoretical model (λTM

−2 = 1260.2 nm and λTM
+2 = 1384.9 nm).

The relative errors are both 0.30%. In addition, we calculate
the dependence of the Q factors of the dual quasi-BICs on
the perturbation parameter, as shown in Fig. 4(b). When α =
±0.6, the Q factors of quasi-BICs 1 and 2 are only 2.97 × 102

and 2.41 × 102, respectively. As α approaches zero, the Q
factors of the dual quasi-BICs increase significantly. When
α = ±0.02, the Q factors of quasi-BICs 1 and 2 reach 1.43 ×
105 and 1.71 × 105, respectively. When α = 0, the Q fac-
tors become infinitely high, confirming the formation of dual
momentum mismatch driven BICs. Similarly, we calculate
the reflectance spectra of the compound grating waveguide
structures with different perturbation parameters α at oblique
incidence for TE polarization, as shown in Fig. 4(c). The
insets depict the electric field distributions at the reflectance
peaks under plane-wave incidences. When α = ±0.6, two
Fano resonances appear at the wavelengths of 1334.02 and
1466.18 nm. Empowered by the GMR, the electric field is
strongly enhanced and localized inside the waveguide layer.
When α = ±0.3, two narrower Fano resonances appear at the
wavelengths of 1334.40 and 1467.45 nm, and the electric field
is further enhanced. When α = 0, no Fano resonance appears,
which corresponds to dual momentum mismatch driven BICs.
The wavelengths of the dual BICs can be extracted as 1334.54
and 1467.95 nm, which agrees with those predicted by the
theoretical model (λTE

−2 = 1329.4 nm and λTE
+2 = 1459.2 nm).

The relative errors are only 0.39% and 0.60%, respectively.
In addition, we calculate the dependence of the Q factors of
the dual quasi-BICs on the perturbation parameter, as shown
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FIG. 4. Reflectance spectra of the compound grating waveguide structures with different perturbation parameters at oblique incidence
(θ = 5◦) for (a) TM and (c) TE polarizations. The insets in (a) and (c) depict the magnetic and electric field distributions at the reflectance
peaks under plane-wave incidences, respectively. Dependences of the Q factors of the dual quasi-BICs on the perturbation parameter for (b)
TM and (d) TE polarizations.

in Fig. 4(d). When α = ±0.6, the Q factors of quasi-BICs 1
and 2 are only 3.22 × 102 and 2.61 × 102, respectively. As α

approaches zero, the Q factors of the dual quasi-BICs increase
significantly. When α = ±0.02, the Q factors of quasi-BICs 1
and 2 reach 2.69 × 105 and 2.12 × 105, respectively. When
α = 0, the Q factors become infinitely high, confirming the
formation of the dual momentum mismatch driven BICs.

According to Eqs. (2)-(5), the momentum-frequency rela-
tions for the TM0 and TE0 guided modes strongly depend on
the height of the HfO2 waveguide layer. Hence, the wave-
lengths of the dual momentum mismatch driven BICs at
oblique incidence for TM and TE polarizations strongly de-
pend on the height of the HfO2 waveguide layer (details can
be seen in Sec. II B of the Supplemental Material [104]).
As the height of the HfO2 waveguide layer increases, the
wavelengths of the dual momentum mismatch driven BICs at
normal incidence for TM and TE polarizations increase.

C. Robustness of Q factor of momentum mismatch driven
quasi-BIC against incident angle

It is known that conventional symmetry-protected [4,40]
and accidental BICs [41,42] are located at specific isolated
points in photonic bands. In other words, the transition

from symmetry-protected and accidental BICs to symmetry-
protected and accidental quasi-BICs depends on an in-plane
wave vector. Hence, conventional symmetry-protected and
accidental quasi-BICs can only maintain ultrahigh Q factors
in ultranarrow angle ranges. However, the transition from
momentum mismatch driven BICs to momentum mismatch
driven quasi-BICs does not depend on an in-plane wave vec-
tor. Such transition is induced by discontinuous variation
of photonic bands originating from the first Brillouin zone
folding, as shown in Figs. 1 and 3. Consequently, Q factors
of momentum mismatch driven quasi-BICs exhibit angular
robustness far beyond conventional symmetry-protected and
accidental quasi-BICs.

As we discussed in Sec. II B, for the perturbed structure
with α �= 0, the single momentum mismatch driven quasi-BIC
splits into dual momentum mismatch driven quasi-BICs as
the incidence changes from normal to oblique. Figures 5(a)
and 5(b) give the dependences of the Q factors of quasi-BICs
1 and 2 on the incident angle for TM and TE polarizations,
respectively. The perturbation parameter is set to be α = 0.2.
For TM polarization, as the incident angle increases from
0.5◦ to 6◦, the Q factor of quasi-BIC 1 slightly increases
from 2.06 × 103 to 2.38 × 103 and then slightly decreases to
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FIG. 5. Dependences of the Q factors of quasi-BICs 1 and 2 on
the incident angle for (a) TM and (b) TE polarizations.

2.30 × 103. The Q factor of quasi-BIC 2 slightly decreases
from 2.59 × 103 to 1.65 × 103. For TE polarization, as the
incident angle increases from 0.5◦ to 6◦, the Q factor of the
quasi-BIC 1 slightly increases from 1.34 × 103 to 3.32 × 103

while the Q factor of quasi-BIC 2 gradually decreases from
3.38 × 104 to 1.87 × 103. When the incident angle ranges
from 0.5◦ to 6◦, the Q factors of all the quasi-BICs are higher
than 103, indicating that the Q factors of the momentum mis-
match driven quasi-BICs demonstrate robustness against the
incident angle.

III. PAIR OF ELLIPSOMETRIC PHASE SINGULARITIES
EMPOWERED BY MOMENTUM MISMATCH DRIVEN BIC

In this section, we exploit the momentum mismatch driven
BIC to realize a pair of ellipsometric phase singularities. Two
ellipsometric parameters, i.e., ellipsometric amplitude � and
ellipsometric phase 	, take the following form [89]:

rTM

rTE
= ei	tan�, (9)

where rTM (rTE) denotes the reflection coefficient for TM
(TE) polarization. The reflection coefficients for TM and TE
polarizations can be expanded as

rTM = |rTM|eiϕTM
, (10)

rTE = |rTE|eiϕTE
, (11)

where ϕTM (ϕTE) denotes the reflection phase for TM (TE)
polarization. By substituting Eqs. (10) and (11) into Eq. (9),
ellipsometric amplitude � and ellipsometric phase 	 can be
calculated by

� = arctan
|rTM|
|rTE| , (12)

	 = ϕTM − ϕTE. (13)

Figures 6(a) and 6(b) give the dependences of the re-
flectance spectrum and reflection phase spectrum of the
compound grating waveguide structure on the perturbation
parameter α at normal incidence for TM polarization. For
α �= 0, a momentum mismatch driven quasi-BIC occurs. In
the vicinity of the wavelength of the momentum mismatch
driven quasi-BIC, the reflection phase changes significantly
with the wavelength. Away from the wavelength of the mo-
mentum mismatch driven quasi-BIC, the reflection phase
changes smoothly with the wavelength. For α = 0, a mo-

mentum mismatch driven BIC occurs at the wavelength of
1317.40 nm. As a result, the reflection phase always changes
smoothly with the wavelength. Figures 6(c) and 6(d) give the
dependences of the reflectance spectrum and reflection phase
spectrum of the compound grating waveguide structure on the
perturbation parameter α at normal incidence for TE polar-
ization. For α �= 0, a momentum mismatch driven quasi-BIC
occurs. In the vicinity of the wavelength of the momentum
mismatch driven quasi-BIC, the reflection phase changes sig-
nificantly with the wavelength. Away from the wavelength
of the momentum mismatch driven quasi-BIC, the reflection
phase changes smoothly with the wavelength. For α = 0, a
momentum mismatch driven BIC occurs at the wavelength of
1383.29 nm. As a result, the reflection phase always changes
smoothly with the wavelength. According to Eqs. (12) and
(13), we calculate the dependences of the ellipsometric am-
plitude spectrum and ellipsometric phase spectrum of the
compound grating waveguide structure on the perturbation
parameter α at normal incidence, as depicted in Figs. 6(e) and
6(f), respectively. For α �= 0, in the vicinity of the wavelengths
of TM and TE momentum mismatch driven quasi-BICs, both
the ellipsometric amplitude and phase change significantly
with the wavelength. Away from the wavelengths of the
TM and TE momentum mismatch driven quasi-BICs, both
the ellipsometric amplitude and the phase change smoothly
with the wavelength. For α = 0, both the ellipsometric am-
plitude and the phase always change smoothly with the
wavelength. Empowered by the momentum mismatch driven
BIC, a pair of ellipsometric amplitude (phase) singularities
emerge.

Considering the difficulty in fabrication, we choose the per-
turbation parameter as α = 0.3. The widths of two air grooves
are wL1 = fL1 p = 0.52p and wL2 = fL2 p = 0.28p, respec-
tively. The width difference between two air grooves reaches
	w = wL1 − wL2 = 0.24p = 102.6 nm, which is well within
the reach of the current fabrication technique [105]. Fig-
ure 7(a) shows the reflectance spectra of the compound grating
waveguide structure at normal incidence for TM and TE
polarizations. The TM and TE momentum mismatch driven
quasi-BICs appear at the wavelengths of 1317.69 and 1384.11
nm, respectively. Figure 7(b) depicts the reflection phase
spectra of the compound grating waveguide structure at nor-
mal incidence for TM and TE polarizations. The reflection
phase changes significantly with the wavelength around the
wavelength of the momentum mismatch driven quasi-BIC.
Figures 7(c) and 7(d) show the ellipsometric amplitude and
phase spectra of the compound grating waveguide structure at
normal incidence, respectively. Both the ellipsometric ampli-
tude and the phase change significantly with the wavelength
around the wavelengths of the TM and TE momentum mis-
match driven quasi-BICs.

IV. ULTRASENSITIVE REFRACTIVE INDEX SENSING
ENABLED BY DRASTIC ELLIPSOMETRIC PHASE

CHANGE

As an example of the applications of the ellipsometric
phase singularity, we achieve ultrasensitive refractive index
sensing. The compound grating waveguide structure is in-
tegrated with microfluidics [106], as schematically shown
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FIG. 6. Dependences of (a) reflectance spectrum and (b) reflection phase spectrum of the compound grating waveguide structure on the
perturbation parameter α at normal incidence for TM polarization. Dependences of (c) reflectance spectrum and (d) reflection phase spectrum
of the compound grating waveguide structure on the perturbation parameter α at normal incidence for TE polarization. Dependences of (e)
ellipsometric amplitude spectrum and (f) ellipsometric phase spectrum of the compound grating waveguide structure on the perturbation
parameter α at normal incidence.

in Fig. 8(a). Specifically, the compound grating waveguide
structure is placed into a gas chamber. Therefore, the medium
above the compound grating waveguide structure is the sens-
ing gas with a refractive index ngas while that below the
compound grating waveguide structure is SiO2 with a refrac-
tive index nS = 1.44. The refractive index of the sensing gas
is related to the gas material and its concentration. According
to the experimental measurements [107], the refractive index
of hydrogen (H2) gas can be changed from 1 to 1.08 as its
concentration increases from 0 to 0.05 g/cm3. The perturba-
tion parameter is set to be α = 0.3. Then, we calculate the
ellipsometric phase spectra of the designed refractive index
sensor with different refractive indices of the sensing gas at
normal incidence, as given in Fig. 8(b). As the refractive index

of the sensing gas slightly changes from 1 to 1.004, the peak
of ellipsometric phase shifts from 1317.13 to 1317.62 nm. We
select an operating wavelength of 1317.8 nm and calculate the
dependence of the ellipsometric phase on the refractive index
of the sensing gas at the operating wavelength, as given in
Fig. 8(c). As the refractive index of the sensing gas slightly
changes from 1 to 1.004, the ellipsometric phase at the oper-
ating wavelength strongly increases from 1.161π to 1.537π .
As demonstrated, the dependence of the ellipsometric phase
on the refractive index of the sensing gas is nonlinear. It is
known that linear response is more convenient in sensing ex-
periments. Hence, we define the linear region as the operating
refractive index range, i.e., from 1 to 1.003, which is marked
by the purple dashed box.
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FIG. 7. (a) Reflectance spectra of the compound grating waveg-
uide structure at normal incidence for TM and TE polarizations.
(b) Reflection phase spectra of the compound grating waveguide
structure at normal incidence for TM and TE polarizations. (c) El-
lipsometric amplitude and (b) phase spectra of the compound grating
waveguide structure at normal incidence. The perturbation parameter
is set to be α = 0.3.

Next, we calculate the sensitivity and resolution of the
designed refractive index sensor at the operating wavelength
of 1317.8 nm in the operating refractive index range. The
sensitivity of the designed refractive index sensor can be cal-
culated by [108]

S =
∣∣∣∣ d	

dngas

∣∣∣∣. (14)

FIG. 8. (a) Schematic of the designed refractive index sensor. (b)
Ellipsometric phase spectra of the designed refractive index sensor
with different refractive indices of the sensing gas at normal inci-
dence. (c) Dependence of the ellipsometric phase on the refractive
index of the sensing gas at the operating wavelength of 1317.8 nm.
Purple dashed box represents the linear region. The perturbation
parameter is set to be α = 0.3.

FIG. 9. (a) Dependence of the sensitivity of the designed refrac-
tive index sensor (in units of rad/RIU) on the refractive index of
the sensing gas. (b) Dependence of the resolution of the designed
refractive index sensor (in units of RIU) on the refractive index of
the sensing gas. The perturbation parameter is set to be α = 0.3. The
operating wavelength is set to be 1317.8 nm.

According to Eq. (14), we calculate the dependence of the
sensitivity of the designed refractive index sensor (in units
of rad/RIU) on the refractive index of the sensing gas, as
given in Fig. 9(a). As the refractive index of the sensing gas
increases from 1 to 1.003, the sensitivity increases from 323.6
to 423.6 rad/RIU, and then decreases to 192.7 rad/RIU. The
maximum sensitivity reaches 423.6 rad/RIU.

Under the current measure technique, the limit of the res-
olution of the ellipsometric phase is δ	 = 0.001◦ = 1.75 ×
10−5 rad [109]. Hence, the resolution of the refractive index
sensor can be determined by [110]

δngas = δ	

S
. (15)

According to Eq. (15), we calculate the dependence of the
resolution of the designed refractive index sensor (in units of
RIU) on the refractive index of the sensing gas, as given in
Fig. 9(b). As the refractive index of the sensing gas increases
from 1 to 1.003, the resolution decreases from 5.39 × 10−8

to 4.12 × 10−8 RIU, and then increases to 9.06 × 10−8 RIU.
The minimum resolution reaches 4.12 × 10−8 RIU. Enabled
by a drastic ellipsometric phase change, we achieve ultrasen-
sitive refractive index sensing.

As we discussed in Sec. II A, the wavelengths of the
momentum mismatch driven quasi-BICs at normal incidence
for TM and TE polarizations strongly depend on the height
of the HfO2 waveguide layer. As a result, the ultrasensitive
refractive index sensing enabled by a drastic ellipsometric
phase change depends on the height of the HfO2 waveguide
layer (details can be seen in Sec. II C of the Supplemental Ma-
terial [104]). The results show that the operating wavelength
of the ultrasensitive refractive index sensing strongly depends
on the height of the HfO2 waveguide layer while the minimum
resolution is robust against the height of the HfO2 waveguide
layer.

As seen from Fig. 8(c), the linear region of the depen-
dence of the ellipsometric phase on the refractive index of
the sensing gas is narrow. It should be noted that the width
of the operating refractive index range and sensitivity satisfy
a negative correlation. Hence, if one would like to expand
the operating refractive index range, the sensitivity should
be reduced. To reduce the sensitivity, a large perturbation
parameter should be chosen. Now, the perturbation parameter
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FIG. 10. (a) Ellipsometric phase spectra of the designed refrac-
tive index sensor with different refractive indices of the sensing gas
at normal incidence. (b) Dependence of the ellipsometric phase on
the refractive index of the sensing gas at the operating wavelength
of 1319.0 nm. Purple dashed box represents the linear region. The
perturbation parameter is set to be α = 0.6.

is changed to be α = 0.6 to achieve a broader operating refrac-
tive index range. Figure 10(a) gives the ellipsometric phase
spectra of the designed refractive index sensor with different
refractive indices of the sensing gas at normal incidence. As
the refractive index of the sensing gas slightly changes from
1 to 1.015, the peak of the ellipsometric phase shifts from
1316.38 to 1318.12 nm. We select an operating wavelength of
1319.0 nm and calculate the dependence of the ellipsometric
phase on the refractive index of the sensing gas at the op-
erating wavelength, as given in Fig. 10(b). As the refractive
index of the sensing gas slightly changes from 1 to 1.015,
the ellipsometric phase at the operating wavelength strongly
increases from 1.158π to 1.532π . Comparing Fig. 10(b) with
8(c), the linear region is effectively expanded. The operating
refractive index range is from 1 to 1.01.

Next, we calculate the sensitivity and resolution of the
designed refractive index sensor at the operating wavelength
of 1319.0 nm in the operating refractive index range. Fig-
ure 11(a) gives the dependence of the sensitivity of the
designed refractive index sensor (in units of rad/RIU) on
the refractive index of the sensing gas. As the refractive
index of the sensing gas increases from 1 to 1.01, the
sensitivity increases from 76.5 to 103.4 rad/RIU, and then
decreases to 71.4 rad/RIU. The maximum sensitivity reaches
103.4 rad/RIU. Figure 11(b) gives the dependence of the
resolution of the designed refractive index sensor (in units
of RIU) on the refractive index of the sensing gas. As the
refractive index of the sensing gas increases from 1 to 1.01, the
resolution decreases from 2.28 × 10−7 to 1.69 × 10−7 RIU,
and then increases to 2.45 × 10−7 RIU. The minimum reso-
lution reaches 1.69 × 10−7 RIU. Comparing Fig. 11(b) with
9(b), the maximum sensitivity is reduced.

As we discussed in Sec. II, there are two key points to
realize momentum mismatch driven quasi-BICs. One is that a
lossless dielectric waveguide layer supports the guided modes.
The other is that the lossless dielectric ridges with complex
lattices provide the basic momentum. Therefore, ultrasensitive
refractive index sensing enabled by a drastic ellipsometric
phase change can also be achieved at visible wavelengths

FIG. 11. (a) Dependence of the sensitivity of the designed re-
fractive index sensor (in units of rad/RIU) on the refractive index
of the sensing gas. (b) Dependence of the resolution of the designed
refractive index sensor (in units of RIU) on the refractive index of
the sensing gas. The perturbation parameter is set to be α = 0.6. The
operating wavelength is set to be 1319.0 nm.

(details can be seen in Sec. III of the Supplemental Material
[104]).

V. CONCLUSIONS

In summary, we demonstrate the physical mechanism
of momentum mismatch driven BICs in compound grating
waveguide structures. As the incidence changes from nor-
mal to oblique, the single momentum mismatch driven BIC
splits into dual momentum mismatch driven BICs. Unlike
conventional symmetry-protected and accidental quasi-BICs,
the Q factors of momentum mismatch driven quasi-BICs ex-
hibit robustness against the incident angle. Empowered by
the momentum mismatch driven BIC, we realize a pair of
ellipsometric phase singularities. As an example of the appli-
cations, we exploit the drastic ellipsometric phase change to
achieve ultrasensitive refractive index sensing. The minimum
resolution of the designed refractive index sensor reaches the
order of 10−8 RIU. These results not only provide unique
insights into the relation between momentum, BICs, and el-
lipsometric phase, but also indicate a methodology to design
high-performance phase-based optical devices.
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