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In this paper, we investigate topological modes of different physical systems defined on arbitrary two-
dimensional spatial curved surfaces. We consider the shallow water equations, inhomogeneous Maxwell’s
equations, and the Jackiw-Rebbi model and show how the topological protection mechanism responds to the
presence of curvature in different situations. We show the existence of a line gap in the considered models and
study the condition on the curve, which can host topological modes.
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I. INTRODUCTION

Topological insulators have become an active area of re-
search in recent years due to their fascinating properties and
potential applications in various fields, such as electronics,
photonics, and spintronics [1,2]. These materials are char-
acterized by their unique topological properties, which give
rise to protected edge states that are robust against disorder
and impurities [3]. In recent years, the underlying topological
mechanisms have also been discovered in the nonstandard
physical setups, for example, in the context of classical me-
chanics, hydrodynamics, electric circuits, plasma waves, and
even game theory [4–12].

An important example of such a system on the curved
space-time with topological protection mechanism is the well-
known equatorial waves, such as Kelvin and Yanai waves. It
was shown, that they are topologically trapped by the “in-
terface” between the two hemispheres of Earth [13]. This
observation has paved the way for new studies of topo-
logically protected waves on surfaces in various physical
systems [14–16] and gauge formulation of hydrodynamic
equations [17–19]. In general most research on topological
materials has focused on flat spaces, while it is known that
curvature (real or effective) may play an important role in the
study of an electronic system [20–22].

In this paper, we explore the physics of topological matter
and waves for various models, with a focus on curvature
effects. These models include the shallow water equations,
Maxwell’s, and the Dirac equations on curved surfaces. We
discuss the interplay between nonzero curvature and non-
trivial band topology. In the paper [14], various cases of
physical systems on surfaces of revolution were considered,
and it was shown how topologically protected modes arise
near geodesics. For a general surface, the curvature turns the
initially Hermitian system to be non-Hermitian (namely, for
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the shallow water and Maxwell’s equations), which seems to
be different from examples considered in Ref. [14] (where
authors focused on the surfaces of revolution and neglect
non-Hermitian terms).

Topological states in non-Hermitian systems have attracted
much attention recently, significantly extending the viable ex-
amples of topological matter [23–30]. We show the presence
of a line gap in the bands corresponding to the models under
consideration, which is the key property of the existence of
topologically protected states. It turns out that for the Jackiw-
Rebbi model, the change of sign of a chiral term is enough,
while in other cases, there are some additional conditions for
the chiral force.

This paper is organized as follows. In Sec. II, we com-
ment on the general type of physical systems we consider. In
Sec. III, we study the shallow water, Maxwell’s equations in
ingomogeneous medium, and the Jackiw-Rebbi model for
different setups defined on curved surfaces in the context of
topologically protected modes in these systems.

II. GENERAL SETUP

Generally, we consider some system A defined on a two-
dimensional spatial manifold M with some coordinate system.
Now let us describe the following objects which will be
needed later.

(1) “Physical observables”: the set of functions fi =
fi(x1, x2) defined on this manifold. These functions depend
on the particular physical system we consider—they can be
different hydrodynamical parameters of the fluid, such as ve-
locity, vorticity, height functions in shallow water, different
parameters of plasma, shear in continuous media, diffusion
constants varying in space and time, etc.

(2) The set of differential equations Fj[∂t fi, fi,∇ fi, c(� ∧
f)] = 0 depending on the time derivatives of fi, covariant
derivatives of fi defined with respect to M and some function
c(� ∧ f) depending on the vector fields � (corresponding
to some external source acting on our system) and f. The
components of the vector fields f are assumed to depend on
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the functions fi and their derivatives. The field c corresponds
to some “chiral force.” For example, in the Kelvin-Yanay
topological waves, it is the Coriolis force created by the inter-
play of the velocity field f = v and external force defined by
the rotation of Earth. In general, we assume that the normal
component of � and, hence, the chiral force c vanish along
some curve γ defined on M.

In the examples, we are going to consider (the shal-
low water equations, Maxwell’s equations in inhomogeneous
medium, the Jackiw-Rebbi model for curved interfaces), the
curve γ will correspond to the location where the topological
protection effects emerge (for example, topologically pro-
tected waves propagating along the equator). In Ref. [14], it
was shown how topological modes emerge on the surface of
revolution naturally admitting U(1) symmetry, which includes
the shallow water topologically protected modes of Ref. [13].
In this manuscript, we consider how topologically protected
modes arise on arbitrary general two-dimensional spatial
manifolds, thus extending the previous results of Ref. [14].

Finally, let us notice that, an important ingredient of our
consideration will be the special coordinate chart—Fermi
coordinates. Consider the coordinates around a curve γ as
follows: the coordinate x corresponds to the direction along
γ , and the coordinate y parametrizes the transversal direction,
i.e., let (x, y) be the Fermi coordinates. It is convenient to use
them to perform the linearization of the equation defining the
system in the vicinity of curve γ and proceed with calculating
the Chern numbers for the corresponding bands via Fourier
transform.

There is no general procedure for obtaining exact analytical
expressions for the Fermi coordinates (see Appendix F for
some explicit examples). However, it is well known that it is
possible to write down a well-defined series expansion when
γ is a geodesic [31,32]. For a two-dimensional manifold with
the metric gi j , the expansion to the second order has the form
[33]

gxx ≈ 1 − Ky2, (1)

gxy ≈ 0, (2)

gyy ≈ 1, (3)

and for Christoffel symbols, the corresponding expansion to
the first order is

�x
xy = �x

yx ≈ −Ky, (4)

�x
yy ≈ Ky, (5)

where all other Christoffel symbols are zero, and K is the
Gaussian curvature [34].

III. BANDS AND SPECTRUM IN CURVED SPACETIME

A. Shallow water equations

The first prototypical example we consider is the shallow
water equations in the form

∂t h + ∇ · (hu) = 0, (6)

(∂t + u · ∇ )u = −g∇h + � × u, (7)

which describes the dynamics of a fluid column of height
h moving with the velocity vector u on the curved spatial
manifold M (as, for example, in Ref. [14]), and � × u is the
local Coriolis force acting on the fluid flow. This is a covariant
version of canonical flat-space shallow water equations, where
we replaced spatial derivatives with the covariant derivative
∇ defined with respect to M. This procedure allows us to
consider the nonzero curvature systematically by taking into
account the nontrivial parallel transport of velocity field [35].

It is worth noticing that one can start from the Navier-
Stokes equations on the curved space-time and then analyze
water column dynamics by analogy with flat-space shallow
water equations. As a result, we obtain the equations (6) but
containing one more additional term [36] vanishing in the
limit of a small vertical velocity. From this viewpoint, our
equations are correct for spatially “large” manifolds, when h
could be considered small, and one could effectively consider
only two-dimensional dynamics.

In order to apply topological arguments, we consider a
linearized version of Eq. (6). We expand the shallow water
equations around the rest state (h, u) = (〈h〉, 0). Having done
that, we obtain the linearization of (6) in the form

∂t h + 〈h〉∇u = 0, (8)

∂t u = −g∇h + � × u, (9)

Performing the Fourier transform and rewriting equation (8)
as an effective eigenvalue equation

H f = iω f , (10)

where the vector f is the given by f T = (h ux uy) and H is
some operator. Explicitly this equation has the form⎛

⎝ 0 〈h〉(−ikx + �x ) 〈h〉(−iky + �y)
−igkx 0 −�n

−igky �n 0

⎞
⎠

⎛
⎝ h

ux

uy

⎞
⎠

= iω

⎛
⎝ h

ux

uy

⎞
⎠, (11)

where �n is a component of the vector � normal to the
surface. By �x and �y we denote the following combination
of the two Christoffel symbols

�x = �x
xx + �y

xy, (12)

�y = �x
yx + �y

yy, (13)

where the Einstein summation convention is not assumed.
Notice that one can define the conserved energy density cor-
responding to the linearized shallow water equations (8), see
Appendix B.

For the shallow water equations given by (11), the vector
�n and the chiral force defined by �n are equal to zero on
the line γ , by definition. It is a parameter of the linearized
equation along with �x and �y. Equations (11) correspond
to the equations for the topological equatorial waves with
an additional curvature term (here we follow the calculations
from [13]). The dispersion relation defined by (11) for the
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“equatorial waves bands” is given by

ω3 − ω[�2 + c2(k2 + ikx�x + iky�y)]

+ c2�n[ky�x − kx�y] = 0. (14)

where c = √
g〈h〉 is the speed of shallow water gravity waves.

The solutions of the dispersion equation are complex-valued
and, therefore, explicitly demonstrate the non-Hermiticity.

Despite the non-Hermiticity, one can argue that topologi-
cally protected modes are still present in the model described
by (11). Generally speaking, the key point for the considera-
tion of non-Hermitian systems like (11) is the presence of a
line gap—the possibility of a clear separation of the spectrum
in the bands on “disconnected” components. In other words,
there is a curve separating two bands in the spectrum (in
the complex plane) [37]. Given the presence of the line gap
one can argue that the existence of the Chern number gener-
alization which formally coincides with the ordinary Chern
numbers (i.e., when the system is Hermitian. In our case, it is
when the curvature is absent) [38]. For the sake of clarity, it
is worth noticing that the line gap is the condition that implies
the existence of the topological modes and not the vice versa.
Our main goal is to show the explicit existence of a line gap
and consequently topologically protected modes. In general,
the absence of a line gap does not imply the absence of topo-
logical modes and one should bring in additional arguments
to argue what happens in a particular model. This is out of the
scope of our paper and is an interesting problem to be solved
in future research.

One can show that for a non-Hermitian system, there is
a formula relating the Chern numbers C and the projection
operators P:

C = 1

2π i

∫
Tr(PdP ∧ dP), (15)

where P is given by P = |ψ〉〈ψ̃ |, |ψ〉 is the right eigenvector
of the Hamiltonian and 〈ψ̃ | is the left eigenvector of the
Hamiltonian. The projector is nonorthogonal, and for Hermi-
tian systems, it reduces to the ordinary orthogonal projector
P = |ψ〉〈ψ |. The (generalized) Chern number given by this
formula is related by a homotopy, with respect to some pa-
rameter, to the Chern number of the Hermitian system [37].
Also, it is important to notice that the shallow water equations,
in fact, do not possess well-defined topological numbers in
the flat case [39]. As was shown in Ref. [40], to calculate the
Chern numbers correctly, one should also properly regularize
the chiral term, for example, by addition of the odd-viscosity
term εk2, where ε is the viscosity amplitude.

We show in Appendix A that the model given by (11)
contains the line gap if (here we restore the rescaling by c)

√
�2

x + �2
y <

|�n|
3c

. (16)

Notice that there are two important implications of this in-
equality. At first, we can conclude that �x and �y must vanish
on the curve γ , where �n equals zero. From the expansion
of the metric in the vicinity of a geodesic (1), it follows that
Christoffel symbols are zero on a geodesic. In other words, γ

should be a geodesic to support the line gap.

The second condition for the existence of line gap is the
requirement on the derivative of �n at γ . Since Christoffel
symbols are linear functions of coordinates in the vicinity of
a geodesic, the derivatives of �n should be larger than the
derivatives of Christoffel symbols. Using the linear approxi-
mation for the chiral term �n = ∂y�ny and the expansion for
the Fermi coordinates �x

xy = −Ky, we obtain

|K| <
|∂y�n|

3c
, (17)

where the derivative of the chiral term is calculated in Fermi
coordinates and K is the Gaussian curvature.

As an example, let us consider shallow water equations on
a sphere rotating with angular velocity �0. The chiral term
�n changes sign on the equator, which is a geodesic, and the
Fermi coordinates are given by the rescaled spherical coordi-
nates. The Gaussian curvature and the derivative of chiral term
are K = R−2 and |∂y�n| = 2|�0|/R, where R is the radius of
the sphere. Using the condition (17), we can conclude that
there is a line gap only if the rotation is fast enough

|�0| >
3

2

√
g〈h〉
R

. (18)

If the line gap is present, the existence of the topological
modes and their analysis of the Chern numbers follow from
the bulk-boundary correspondence [41–44].

B. Maxwell’s equations in inhomogeneous medium

Now let us turn to a somewhat similar system, which
shares most of the features in topological behavior in flat
space after defining it on a curved spatial manifold that may
strongly differ. Namely, we consider macroscopic Maxwell’s
equations on a two-dimensional curved surface with inho-
mogeneous dielectric coefficients [45]. In the context of
topological modes, a similar system has been considered in
the description of topological magnetoplasmons also charac-
terized by the inhomogenous cyclotron frequency changing
the sign across some interface [46] and the special explicit
dependence of plasma frequency on spatial momentum. We
generalize the setup considered in Ref. [45] on the case
of curved spatial manifolds, i.e., just postulating simple di-
electric coefficients and their spatial dependence across the
interface.

Maxwell’s equations in two-dimensional nondispersive
media on curved spatial manifold take the form [47]

∂t Di − εi j∂ jHz = 0,

∂t Bz − ∂yEx + ∂xEy − �x
xyEx + �x

xxEy = 0, (19)

where curvature effects are incorporated in the action of the
covariant derivative on the dual electromagnetic tensor (see
Appendix C).

Here, εi j is the Levi-Civita symbol, and vectors (Ex, Ey, Bz )
and (Dx, Dy, Hz ) are related by the linear response function M⎛

⎝Dx

Dy

Bz

⎞
⎠ =

⎛
⎝εxx εxy χx

εyx εyy χy

χ∗
x χ∗

y μ

⎞
⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠. (20)
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After the Fourier transform, Eqs. (19) can be re-written again
as a “generalized” eigenvalue problem for the operator H0(k),

H0(k) f = ωM(k, ω) f , (21)

where f = (Ex, Ey, Hz )T . After some algebra, one can write
down it explicitly as⎛

⎝ 0 0 −ky

0 0 kx

−ky − i�x
xy kx + i�x

xx 0

⎞
⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠

= ω

⎛
⎝εxx εxy χx

εyx εyy χy

χ∗
x χ∗

y μ

⎞
⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠. (22)

A particularly interesting example is a two-dimensional
electron gas in a strong magnetic field, i.e., when cyclotron
frequency ωc is larger than the plasma frequency, ωc 	 ωp

and ωc 	 ω. Also, we assume that the sign of ωc changes
across arbitrary curve γ on spatial surface. In this case, the
equation (21) reduces to⎛

⎝ 0 0 −ky

0 0 kx

−ky − i�x
xy kx + i�x

xx 0

⎞
⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠

=

⎛
⎜⎜⎝

ω i
ω2

p

ωc
0

−i
ω2

p

ωc
ω 0

0 0 ω

⎞
⎟⎟⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠, (23)

and we can explicitly write down the dispersion relation

ω3 − ω

⎡
⎣(

ω2
p

ωc

)2

+ k2 + ikx�
x
xx + iky�

x
xy

⎤
⎦

+ ω2
p

ωc

[
ky�

x
xx − kx�

x
xy

] = 0. (24)

We see that in our case the macroscopic Maxwell’s equa-
tions on a surface with a nontrivial inhomogeneous linear
response function have the same form as the shallow water
equations. Therefore all the above considerations hold in the
general situation except one peculiar feature. Instead of the
combination �x and �y the dispersion relation now contains
the Christoffel symbols themselves. A simple illustrative ex-
ample where this could effect topological modes is a sphere.
The Christoffel symbols present in (24) equal zero, so the
line gap in dispersion relation is present for all values of ωc.
This is not the case as we have seen for the shallow water
equations, for which topologically protected modes propagate
along geodesics.

C. Dirac equation in curved space-time

Now let us consider our last example—the Dirac equa-
tion on a two-dimensional surface with an inhomogeneous
mass term, i.e., the generalization of the Jackiw-Rebbi model
in a curved space-time. The chiral term is a bit different
here compared to other cases since the mass term does not
have a natural interpretation as a projection of a vector. As
in the Jackiw-Rebbi model in the flat space, we assume that
the mass term changes its sign on some line on the surface.

In the momentum space, the Dirac equation on the curved
space-time has the form( −ω − m −ik′

x − k′
y + i

2 Rx + 1
2 Ry

−ik′
x + k′

y − i
2 Rx + 1

2 Ry ω − m

)

×
(

ψx

ψy

)
= 0, (25)

where we assume that since the mass m has a sharp change
across some line (and is constant locally). Introducing the
rescaled wave vectors k′

μ and setting up the notation

k′
x = kxex

x̄ + kyey
x̄, k′

y = kxex
ȳ + kyey

ȳ, (26)

Rx = ωx̄ȳ
x ex

x̄ + ωx̄ȳ
y ey

x̄, Ry = ωx̄ȳ
x ex

ȳ + ωx̄ȳ
y ey

ȳ, (27)

we find that the dispersion relation corresponding to the equa-
tion (25) has the form

ω = ±
√

m2 +
(

k′
x + iRy

2

)2

+
(

k′
y − iRx

2

)2

. (28)

It is worth noticing that the dispersion relation is similar to
that of the shallow water equations. The wave vectors are
effectively shifted by imaginary values of spin connection
terms, and one can see that the bands have an intersection
only when m = k′

x = k′
y = 0 (see Appendix A). Therefore,

repeating the same logical steps, one can prove the existence
of the line gap, thus correctly defining the Chern numbers.
Here, as in the previous examples, one also needs to regular-
ize the chiral term in order to correctly calculate topological
bulk invariants. Usually, it is done by the additional term kε2

[48], with ε being a regularization parameter. There is one
topologically protected edge mode propagating along the line,
where the mass changes the sign. In contrast with the shallow
water equations, the curvature does not affect the existence
of the line gap and, therefore, the presence of a topologically
protected mode, even if the mass term changes its sign not in
the vicinity of a geodesic.

D. Circular domain wall and Dirac equation

In the preceding sections, we studied the general case with
a curved manifold, where the line of zeros of the chiral force
was required to coincide with a geodesic. However, as we have
shown, some physical systems admit topologically protected
modes without this requirement. The main ingredient is the
“line gapped modes,” and it is possible to obtain them when
the line of the “chiral force” zeros is not a geodesic. For
example, in the case of the Dirac equation (with nonzero
mass), two bands have an intersection only when the chiral
term equals zero. Therefore we can expect the emergence of
topological modes for any smooth enough curves, for which
we can build Fermi coordinates.

In Appendix E, we consider the Jackiw-Rebbi model with
the circular domain wall, i.e., with the spatially dependent
mass of the form

m = m0
r − r0

|r − r0| (29)

and show that for a large enough radius r0, one can observe
a topologically protected mode propagating along the circular
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domain boundary

ω = sign(m′)
k

r0
. (30)

We see that the bulk-boundary correspondence works well
here, although the Dirac Hamiltonian is non-Hermitian. This
result can be shown for more general curves using the quasi-
classical approximation [49,50].

IV. DISCUSSION

In this paper, we have investigated the interplay between
the topological edge modes and curved geometry for different
physical setups, namely the shallow water equations, inhomo-
geneous Maxwell’s equations, and the Dirac equation defined
on curved manifold. We have considered the cases where edge
states are formed by a chiral term breaking the symmetry of
the system Hamiltonians. In the cases when the Hamiltonians
are Hermitian, one can observe the classical bulk-boundary
correspondence by calculating the Chern number in the re-
gions with different sings of the chiral term and usually one
can conclude the existence of topologically protected edge
modes. The presence of curvature makes the system non-
Hermitian, and therefore one has to argue the existence of the
line gap in the band spectrum.

In all considered cases, the Christoffel symbols appear as
the terms breaking the Hermiticity of Hamiltonians, moving
the band structure to the complex plane. If we consider a
general case, there are intersections between modes, and it
is a complicated problem to define topological invariants and
establish the existence of the corresponding edge states. How-
ever, if one considers the case where the chiral term changes
sign on a geodesic, the Christoffel symbols become small
(effectively, in the vicinity of the geodesic, the surface is flat),
and one can write an explicit condition for the existence of the
line gap between modes.

We have seen that the curvature’s effect on the bands’
structure depends on underlying physical systems. In some
systems, such as the shallow water equations, the necessary
condition for the existence of the line gap is the concurrence
of a geodesic and the line of sign change of the chiral term. For
other systems, the mentioned condition is important only for
some manifolds (Maxwell’s equations) or is not necessary, as
in the case of the Dirac equations, where the line gap is present
independently on curvature.
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APPENDIX A: EXISTENCE OF LINE GAP IN SHALLOW
WATER EQUATIONS

In this Appendix, we show the existence of a line gap in
the bands of the shallow water equations. The starting point
of our analysis is the equation (14) defining the bands in our
case

ω3 − ω[�2 + k2 + ikx�x + iky�y] + �[ky�x − kx�y] = 0,

(A1)

where we make rescaling of the wave vectors and Christoffel
symbols by c = √

g〈h〉 in comparison with Eq. (14).
The condition that some polynomial P has multiple roots

can be expressed as the condition on the discriminant of the
polynomial

Discx(P) = 0. (A2)

In the case of a depressed cubic polynomial x3 + px + q, the
discriminant is given by the formula

Discx(P) = −4p3 − 27q2. (A3)

If we neglect the constant term in Eq. (A1), condition (A3)
simplifies to the equation

�2 + k2
x + k2

y + ikx�x + iky�y = 0. (A4)

Since all the parameters are real numbers, this equality holds
only at the point � = kx = ky = 0, and it does not depend on
the curvature terms. Therefore we can conclude that the bands
have a line gap.

In the case if we are far away from a geodesic, the condition
(A3) for the points of the bands’ intersection has the form

(�2 + k2)3 − 3(�2 + k2)(kx�x + ky�y)2

+ 27

4
�2(ky�x − kx�y)2 = 0,

(kx�x + ky�y)3 − 3(kx�x + ky�y)(�2 + k2)2 = 0. (A5)

We are interested in the solutions for small � and aim to
obtain them when our considerations lead to well-defined
topological indices.

To begin with, we introduce new coordinates in momentum
space: [51]

u = �xkx + �yky,

v = −�ykx + �xky. (A6)

Equations (A5) take the form(
�2 + 1

γ 2
(u2 + v2)

)3

− 3

(
�2 + 1

γ 2
(u2 + v2)

)
u2

+27

4
�2v2 = 0,

u3 − 3u

(
�2 + 1

γ 2
(u2 + v2)

)3

= 0, (A7)

where γ 2 = �2
x + �2

y .
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From the second equation, we obtain that one of the two
equations should be satisfied

u = 0, (A8)

1√
3

u = �2 + 1

γ 2
(u2 + v2). (A9)

Let us consider the case u = 0. Then one can see that(
�2 + v2

γ 2

)3

= 27

4
�2v2. (A10)

We are interested in a condition with an intersection be-
tween the bands. The curvature γ and the chiral � terms are
parameters, and we a looking for a critical case when the
functions on the left side and the right side of Eq. (A10) are
equal at some point v = v0 as well as their first derivative to
make the junction smooth enough(

�2 + v2
0

γ 2

)2

= 9

4
�2γ 2,

(
�2 + v2

0

γ 2

)3

= 27

4
�2v2

0 . (A11)

After some algebra, we obtain the critical value of the curva-
ture term

|γ | = |�|
3

, (A12)

and if |γ | < |�|/3 there is no solution of Eq. (A10).
Let us consider the second case, 1√

3
u = �2 + 1

γ 2 (u2 + v2),
from (A8). In this case, we obtain

u3 = 27
√

3

32
�2v2,

(
u − γ 2

2
√

3

)2

+ v2 = γ 2

(
γ 2

12
− �2

)
. (A13)

One can notice that if γ 2 � 12�2, there are no real solu-
tions to these equations, except the point �2 = γ 2 = u = v =
0. Since we have already obtained the lower bound for the
absence of bands’ intersections (A12), this lower bound holds
for the initial equations (A5). Therefore we can conclude that

the bands are line-gapped if
√

�2
x + �2

y < |�|/3.

APPENDIX B: CONSERVATIVE FORM OF LINEARIZED
SHALLOW WATER EQUATIONS

It is interesting to notice that the linearized shallow water
equations (8) have conserved energy density given by the
expression

E = 〈h〉(u2
x + u2

y

)
2

+ gh2

2
, (B1)

with the conservation law

∂tE − g〈h〉∇ · (hu) = 0, (B2)

where ∇ is a covariant derivative.
We assume that the curvature and the chiral terms in (8)

change slowly and we effectively treat them as constants.

If this assumption is valid, one can construct the conserved
energy density E and total energy E as follows:

E =
∫
M

Edσ, E = 1

2
(gh 〈h〉ux 〈h〉uy)H

⎛
⎝ h

ux

uy

⎞
⎠, (B3)

where H is the “Hamiltonian” in (11).
If the assumption of slow change of curvature terms does

not hold, then the energy is not conserved. However, since
we are interested only in the topological properties of bands,
this treatment stays reasonable in this case as well. The same
considerations are applied to the Maxwell equations with the
energy density:

E = 1
2

(
E2

x + E2
y + H2

z

)
, (B4)

where the conservation laws should be written via the stress-
energy tensor.

APPENDIX C: MAXWELL’S EQUATIONS
ON CURVED SURFACE

In this Appendix, we briefly remind the derivation of
Eqs. (19). We start as usual with the vector potential A and
the electromagnetic tensor F

Aμ = (φ, Ax, Ay), (C1)

Fμν = ∂μAν − ∂νAμ. (C2)

The electric and magnetic fields in a vacuum are defined as

Ei = −∂iφ − ∂t Ai, (C3)

Bz = ∂xAy − ∂yAx. (C4)

Maxwell’s equations has the usual form

∇μFμν = Jν, (C5)

∇μF̃μ = 0, (C6)

where Jν is the 3-current density, Jν = (ρ, Jx, Jy), and F̃μ is
the dual tensor (i.e., a vector in 2+1 dimensions) defined as

F̃μ = 1
2

√
gεμνρFνρ, (C7)

where εμνρ is the Levi-Civita symbol. The components of the
dual tensor are given by

F̃μ = √
g(Bz,−Ex, Ey), (C8)

with the current density satisfying the continuity equation

∂tρ + ∇iJ
i = 0. (C9)

Now, we can write Maxwell’s equations in terms of electric
and magnetic fields

∇iE
i = ρ, (C10)

∂yBz − ∂t Ex = Jx, (C11)

−∂xBz − ∂t Ex = Jy, (C12)

∂t Bz − ∂yEx + ∂xEy − �x
xyEx + �x

xxEy = 0. (C13)
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In the last equation, we see the presence of curvature coming
from the covariant derivative of the dual tensor. Also, notice
that all of the Christoffel symbols, including that with time
indices, vanish.

Since we describe the media, we need to take into account
the polarization Pi and magnetization Mz densities defined by
the expressions (using the continuity equation)

ρ = −∇iP
i, (C14)

Jx = ∂t Pi + ∂yMz, (C15)

Jy = ∂t Pi − ∂xMz. (C16)

Then, we define the electric and magnetic displacement fields
as

Di = Ei + Pi, (C17)

Bz = Hz + Mz. (C18)

We obtain Eq. (19) by substituting these expressions back into
the equations.

APPENDIX D: DIRAC EQUATION ON CURVED SURFACE

At first, we write the Dirac equation on a curved two-
dimensional surface [52]

[iγ̄ μDμ − m]ψ = 0, (D1)

where γ̄ μ are gamma matrices (in a curved space-time)

γ̄ μ = eμ
a γ a, (D2)

and Dμ is the covariant derivative

Dμ = ∂μ − i

4
ωab

μ Mab, (D3)

where ωab
μ is the spin connection and Mab are the generators

of SO(1, 2) group

Mab = i

2
[γ a, γ b]. (D4)

We choose γ a as follows

γ a = {σ3, −iσ1, −iσ2}, (D5)

where σi are the Pauli matrices, so that γ a satisfy the condition
for Clifford algebra, {γ a, γ b} = 2ηab. The Dirac equation has
the form( − ωσ3 − i

(
kxex

x̄ + kyey
x̄

)
σ1 − i

(
kxex

ȳ + kyey
ȳ

)
σ2 (D6)

+ 1
2

(
ωx̄ȳ

x ex
x̄ + ωx̄ȳ

y ey
x̄

)
σ2 − 1

2

(
ωx̄ȳ

x ex
ȳ + ωx̄ȳ

y ey
ȳ

)
σ1 − m

)
ψ = 0,

(D7)

or being rewritten explicitly in matrix form,( −ω − m −ik′
x − k′

y + i
2 Rx + 1

2 Ry

−ik′
x + k′

y − i
2 Rx + 1

2 Ry ω − m

)

×
(

ψx

ψy

)
= 0, (D8)

where we use the following shorthand notation:

k′
x = kxex

x̄ + kyey
x̄, k′

y = kxex
ȳ + kyey

ȳ, (D9)

Rx = ωx̄ȳ
x ex

x̄ + ωx̄ȳ
y ey

x̄ Ry = ωx̄ȳ
x ex

ȳ + ωx̄ȳ
y ey

ȳ. (D10)

APPENDIX E: DIRAC EQUATION ON PLANE
WITH SHARP MASS CHANGE

We start with the Dirac equation described in the previous
section of the Appendix. In the case of polar coordinates, the
vierbein is diagonal:

et̄
t = 1, er̄

r = 1, eφ̄

φ = r, (E1)

and the only nonzero coefficients of the spin connection are

ω
φ̄r̄
φ = −ω

r̄φ̄
φ = 1. (E2)

Then, using Eq. (25), we can write down the Dirac equation( −ω − m ∂r − k
r + 1

2r
∂r + k

r + 1
2r ω − m

)(
ψr

ψφ

)
= 0, (E3)

where we shortly denote the wave vector along the angular
coordinate as k, and the mass term m(r) depends only on the
radial coordinate. The curvature terms can be eliminated by
the redefinition (

ψr

ψφ

)
= r− 1

2

(
ur

uφ

)
, (E4)

and we have the equations(−ω − m ∂r − k
r

∂r + k
r ω − m

)(
ur

uφ

)
= 0. (E5)

To obtain bound modes, we need to solve these equations with
the conditions ψ (∞) = 0 and regularity at 0, as well as the
normalization condition.

We obtain the following differential equations for ur and
uφ [

∂2
r − k(k + 1)

r2
+ (ω2 − m2)

]
ur = 0, (E6)

[
∂2

r − k(k − 1)

r2
+ (ω2 − m2)

]
uφ = 0. (E7)

As an example, we consider the case in which the mass term
sharply changes its sign at some radius r0

m =
{

m0, r < r0,

−m0, r > r0.
(E8)

In general, there are three cases, ω2 = m2
0, ω2 > m2

0, and
ω2 < m2

0. For the simplicity of the analysis, without loss of
generality, let us restrict ourselves to k > 1

2 .
Let us consider the case ω2 = m2. The general solution is

given by

ψr =
{

ar
1
2 +k + br− 1

2 −k, r < r0,

cr
1
2 +k + dr− 1

2 −k, r > r0.
(E9)
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Since we need a bounded solution, we should set b = c = 0,
therefore

ψr =
{

ar
1
2 +k, r < r0,

dr− 1
2 −k, r > r0.

(E10)

However, if we substitute this into the original matrix equa-
tion, we obtain the conditions

a(2k + 1)rk− 1
2 = 0, (E11)

which can be satisfied only if a = 0, and from the continuity
condition, we deduce that d = 0; thus, we conclude that there
are no bounded solutions for ω2 = m2

0.
In the case ω2 > m2

0, we have

ψr=

⎧⎪⎨
⎪⎩

aJk+ 1
2

(
r
√

ω2 − m2
0

)+ bYk+ 1
2

(
r
√

ω2− m2
0

)
, r < r0,

cJk+ 1
2

(
r
√

ω2− m2
0

)+ dYk+ 1
2

(
r
√

ω2 − m2
0

)
, r > r0,

(E12)

where Ja(x) and Ya(x) are the Bessel functions of the first
and second kinds, respectively. These functions have regular
behavior at infinity, but they are not normalizable. Therefore
these states lie in the continuous part of the spectrum.

In the last case ω2 < m2
0, we can write

ψr =

⎧⎪⎨
⎪⎩

aIk+ 1
2

(
r
√

m2
0− ω2

)+ bKk+ 1
2

(
r
√

m2
0− ω2

)
, r < r0,

cIk+ 1
2

(
r
√

m2
0− ω2

)+ dKk+ 1
2

(
r
√

m2
0− ω2

)
, r > r0.

(E13)

For k ∈ (− 1
2 ,∞), the regularity condition requires us to set

b = c = 0, and then we obtain

ψr =

⎧⎪⎨
⎪⎩

aIk+ 1
2

(
r
√

m2
0 − ω2

)
, r < r0,

dKk+ 1
2

(
r
√

m2
0 − ω2

)
, r > r0.

(E14)

From the original matrix equation, we can derive the compo-
nents for ψψ

ψφ =

⎧⎪⎨
⎪⎩

a
√

m0+ω
m0−ω

Ik− 1
2

(
r
√

m2
0 − ω2

)
r < r0,

d
√

m0−ω
m0+ω

Kk− 1
2

(
r
√

m2
0 − ω2

)
, r > r0,

(E15)

where we also used the relations

I ′
ν (z) = −ν

z
Iν (z) + Iν−1(z), (E16)

K ′
ν (z) = −ν

z
Kν (z) − Kν−1(z). (E17)

Therefore, using the requirement that the spinor should be
continuous, we obtain the dispersion relation

ω − m0

ω + m0

Kk− 1
2
(X )

Kk+ 1
2
(X )

+
Ik− 1

2
(X )

Ik+ 1
2
(X )

= 0, (E18)

where X = r0

√
m2

0 − ω2 . Now, let us consider the case r0 	 1
and use the expansion for large z

Iν (z) ≈ ez

√
2πz

(
1 − 4ν2 − 1

8z

)
, (E19)

Kν (z) ≈ e−z

√
2πz

(
1 + 4ν2 − 1

8z

)
, (E20)

which, after the substitution in Eqs. (E18), gives

ω − m0

ω + m0

⎛
⎜⎝1 − k

r0

√
m2

0 − ω2

⎞
⎟⎠ +

⎛
⎜⎝1 + k

r0

√
m2

0 − ω2

⎞
⎟⎠ = 0.

(E21)

After some algebra, the dispersion relation for the mode prop-
agating along the circular boundary for large r0 takes the
form

ω = − k

r0
, (E22)

so it has a form similar to the flat two-dimensional boundary
case.

We can also consider the smooth approximation for the
change of mass sign, namely,

m = m0(r − r0). (E23)

In the same way, we can expand the curvature term

k

r
≈ k

r0

(
1 + r − r0

r0

)
, (E24)

and introduce a new variable x = r − r0. In this case, func-
tions ur and uφ satisfy the following system of equations:

∂x

(
ur

uφ

)
=

(
− k

r0

(
1 + x

r0

) −ω + m0x
ω + m0x k

r0

(
1 + x

r0

)
)(

ur

uφ

)
, (E25)

it is convenient to change basis, so that the part depending on
x coordinate is diagonal:(

ur

uφ

)
=

(
−(

k
r2

0
+ �

) − k
r2

0
+ �

m0 m0

)(
u−
u+

)
, (E26)

where � =
√

k2

r4
0

+ m2
0. In this basis, Eq. (E25) takes the form:

∂y

(
u−
u+

)
=

( −�y
(
� − k

r2
0

)(
ω
m0

+ k
r0�

)(
� + k

r2
0

)(
k

r0�
− ω

m0

)
�y

)

×
(

u−
u+

)
(E27)

where we also make a shift of the coordinates y = x + k2

r3
0�2 .

From here we can follow the derivation of dispersion bands in
the flat case [14]. There is a bounded solution with dispersion
relation

ω = m0k

r0

√
k2

r4
0

+ m2
0

(E28)

with the solution given by the first row of the Eq. (E27) and
condition u− = 0. If we introduce a normalized wave vector
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k′ = k/r0, in the limit r0 → ∞, we reproduce the result for
the flat case and the bound mode for the sharp boundary.

There is also a series of bound states, that can propagate
in both directions, which can be obtained after rewriting the
Eq. (E27) as a differential equation on u−:

ω2 = k2

r2
0

(
1 + k2

r4
0 m2

0

) + (2n + 2)�, n = 0, 1, 2, . . . (E29)

APPENDIX F: EXAMPLES OF FERMI COORDINATES

In many cases, it is difficult to derive the exact analytical
expressions for Fermi coordinates. Nevertheless, there are
cases of normal Fermi coordinates that possess an apparent
formula. For example, let us consider a unit circle in a plane.
Then, each straight line crossing zero is orthogonal to the
unit circle, and straight lines are geodesics. Therefore polar
coordinates are Fermi coordinates for the unit circle.

Another example is a circle on a unit sphere

tan θ = cot α cos(φ − φ0) + h, (F1)

where α is a parameter corresponding to the angle between
the axis of the circle and the z axis, and h is the distance of
a circle plane from the origin of a sphere. In this case, Fermi
coordinates can be constructed without difficulties. At first,
we emit orthogonal geodesics, which are big circles of the
sphere, and then we introduce spherical coordinates, where
the two poles are the points at which these geodesics intersect.
In the end, we need to normalize them so that the local frame
on the curve is orthonormal and not just orthogonal. The new
coordinates are related to the old ones by the rotation and
rescaling

tan θ ′ = cos (φ0)(cos(γ ) cos(θ ) sin(φ) − sin(γ ) sin(θ )) + cos(θ ) sin (φ0) cos(φ)

sin(γ ) sin(θ ) sin (φ0) + cos(θ )(cos(φ) cos (φ0) − cos(γ ) sin(φ) sin (φ0))
, (F2)

tan |h|φ′ = cos (φ0)(cos(γ ) cos(θ ) sin(φ) − sin(γ ) sin(θ )) + cos(θ ) sin (φ0) cos(φ)

sin(γ ) sin(θ ) sin (φ0) + cos(θ )(cos(φ) cos (φ0) − cos(γ ) sin(φ) sin (φ0))
. (F3)
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