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We predict here the fine structure of an electrically tunable negatively charged exciton (trion) composed of
two electrons and a hole confined in a gated bilayer graphene quantum dot (QD). We start with an atomistic
approach, allowing us to compute confined electron and confined hole QD states for a structure containing over
one million atoms. Using atomistic wave functions we compute Coulomb matrix elements and self-energies. In
the next step, by solving the Bethe-Salpeter-like equation for trions, we describe a negatively charged exciton,
built as a strongly interacting interlayer complex of two electrons in the conduction band, and one hole in the
valence band. Unlike in conventional semiconducting QDs, we show that the trion contains a fine structure
composed of ten states arising from the valley and spin degrees of freedom. Finally, we obtain absorption into
and emission from the trion states. We predict the existence of bright low-energy states and propose to extract
the fine structure of the trion using the temperature dependence of emission spectra.
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I. INTRODUCTION

Gated bilayer graphene (BLG) is a voltage-tunable semi-
conductor whose properties have recently generated a great
deal of experimental and theoretical interest [1–5]. While
the low-energy electronic states of monolayer graphene
are described by a massless Dirac fermion model [6–9],
the low-energy electron states of BLG are described by mas-
sive Dirac fermion model [1–5,10,11]. Moreover, BLG is
characterized by a pseudospin winding number of two and a
valley-dependent Berry phase [12], which leads to effects not
observed in conventional semiconductors [13]. Furthermore,
it has been demonstrated, both theoretically and experimen-
tally, that BLG exhibits a continuously gate-tunable energy
gap [1–5,10,12,14–20], allowing the study of new effects
originating from the gap opening. This includes the gate de-
pendence of interband transitions, including the presence of
excitons [2], gate-tunable infrared phonon anomalies [21], or
the gate-induced insulating states [1–5,11].

In parallel with gate controlled semiconductors, size
controlled semiconductors and graphene QDs have been de-
veloped as building blocks of quantum technologies. Lasers,
emitters, displays, detectors, and both single and entangled
photon sources have been considered and built using self-
assembled and graphene QDs confining both electrons and
holes [22–28]. Simultaneously, laterally gated QDs allowed
for the confinement of either electrons or holes, acting as sin-
gle spin transistors and spin qubits, with potential application
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in quantum computing [29–31]. The confining potential in
self-assembled and graphene QDs is determined by materials
and structure, while the confining potential in gated QDs is
determined by gate voltages and hence allows for very high
tunability of their electronic properties. While laterally gated
QDs are limited to confine either electrons or holes, self-
assembled and graphene QDs allow to confine both carriers,
however they are difficult to tune once they are made.

It has been shown that BLG QDs [32–39] can combine
the ability to confine both electrons and holes of semiconduc-
tor self-assembled QDs with the tunability of laterally gated
semiconductor QDs [36,37,39], thus enabling the existence
of gate-tunable excitons in such nanostructures [37]. In ad-
dition to excitons, the optical properties of semiconductor and
graphene nanostructures are determined by trions [40–49].

In this work, we present a theory of negatively charged
excitons, i.e., trions [40–43], in a gated BLG QD. Following
our previous work on tunable excitons [37], we begin with
an atomistic approach to determine the energy levels of an
electron and a hole laterally confined in the QD potential
embedded in a BLG computational box containing up to ∼1.6
million atoms. We use an ab initio based tight-binding model
described in Sec. II. In Sec. III, we derive the Bethe-Salpeter-
like equation to describe a negatively charged exciton. We
present a detailed study of the trion spectrum and show that,
unlike in self-assembled QDs [41,44,45], the trion in gated
BLG QD contains a fine structure composed of ten low-energy
states related to valley and spin degrees of freedom. Sim-
ilar degrees of freedom can be seen in colloidal graphene
QDs [28,46–48] or in the p-shell of self-assembled QDs. In
Sec. IV, we present trion absorption and emission spectra.
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FIG. 1. Electronic properties of gated Bernal-stacked bilayer
graphene. (a) The upper plot shows the BLG rhomboidal compu-
tational box in a schematic way allowing to distinguish sublattices
A, B (layer 1, shown with full symbols) and C, D (layer 2, shown
with circles). The bottom scheme presents a three-dimensional (3D)
view of the BLG in the Bernal-stack layer configuration. (b) The bulk
electronic structure of BLG in the vicinity of the K point with the
displacement voltage VE = 0.38 eV. q describes the distance from K
point along the �b1 + �b2 direction, where �b1 and �b2 are the reciprocal
space lattice vectors. The insets present the energy heatmaps of
conduction (upper plot) and valence (bottom plot) band in the close
vicinity of K point.

We observe that low-energy trion states are optically active.
Furthermore, we propose a method of extracting the trion fine
structure from finite temperature emission spectra.

II. TIGHT-BINDING MODEL

A. Gated bilayer graphene

Following our previous works [36,37] we consider the
Bernal-stacked BLG, as presented in Fig. 1(a), where the four
sublattices are denoted as A, B (layer 1) and C, D (layer 2).
The in-plane bond length is a = 0.143 nm, and the distance
between layers is h = 0.335 nm. We have chosen the unit cell
vectors as �a1 = a(0,

√
3) and �a2 = a

2 (3,−√
3). The rhom-

boidal real-space computational box shown in a schematic
way in Fig. 1(a) has been generated by the vector �Rm1,m2 =
m1�a1 + m2�a2, where m1 = {−(N1 − 1)/2, . . . , (N1 − 1)/2}
and m2 = {−(N2 − 1)/2, . . . , (N2 − 1)/2}, with N1 = N2 be-
ing the number of unit cells along the directions of the lattice
vectors. With N1 = N2 = 633 used here, this creates a com-
putational box containing 4 × N1 × N2 total number of atoms,
which is about 1.6 million carbon atoms, making the problem
computationally demanding. In order to remove the finite-size
effects, we impose periodic boundary conditions connecting
the opposite edges of the rhombus and giving us a set of
allowed �k vectors [36,37]. There are four carbon atoms in each
unit cell generating four sublattices. For each sublattice l we
build a Bloch function as |φl

�k〉 = 1√
N1N2

∑
�Rl

ei�k· �Rl | �Rl〉, where

| �Rl〉 is a pz Slater orbital localized at a position �Rl . In the next
step, we apply an external electric field perpendicular to the
graphene layers, with the applied potential +VE/2 on layer 1
and −VE/2 on layer 2, giving the potential difference between
layers VE . Our Hamiltonian in the basis of sublattices A, B, C,

D is given by

H (�k) =

⎛
⎜⎜⎜⎝

VE
2 γ0 f (�k) γ4 f (�k) γ3 f ∗(�k)

γ0 f ∗(�k) VE
2 γ1 γ4 f (�k)

γ4 f ∗(�k) γ1 −VE
2 γ0 f (�k)

γ3 f (�k) γ4 f ∗(�k) γ0 f ∗(�k) −VE
2

⎞
⎟⎟⎟⎠, (1)

where γ0 = −2.5 eV defines the nearest neighbor (NN) in-
tralayer hopping and γ1 = 0.34 eV defines the interlayer
hopping between the AB stacked atoms. The displacement
voltage in this example is VE = 0.38 eV. We include the
effects of trigonal warping via the matrix element γ3 =
0.12|γ0| eV [36,49], and we take γ4 as equal to γ3 [36].
The function f (�k) is defined as f (�k) = ei�k·�τ (1 + e−i�k·( �a1+ �a2 ) +
e−i�k· �a2 ), where �τ = (a, 0). The electron wave function for a
given band p is a linear combination of Bloch wave functions
of each sublattice, �p,�k (�r) = ∑

l μl
p,�kφ

l
�k (�r), where l denotes

the 4 sublattices, A, B, C and D, respectively. The coeffi-
cients μl

p,�k and energies εp,�k are obtained by diagonalizing the

Hamiltonian shown in Eq. (1).
Figure 1(b) shows the energy spectrum εp,�k for the two

lowest energy bands, the topmost valence band and the bottom
conduction band. While in the absence of electric field (VE =
0) the valence band (VB) and the conduction band (CB) touch
at the K point, applying the vertical electric field results in
opening the energy gap of BLG. The electron-hole symmetry
is broken due to the inclusion of nonzero matrix elements γ4,
which is manifested in the difference between the effective
mass of an electron and a hole around the K valley, as depicted
in Fig. 1(b). Moreover, the introduction of trigonal warping
has reduced the symmetry of the system from C∞ to C3 [50],
giving rise to the three energetic maxima/minima in the VB /

CB, which are shown in the insets of Fig. 1(b). However, the
electronic structure still resembles the characteristic Mexican
hatlike dispersion around the K and K ′ points of the Brillouin
zone. Near the K and K ′ points, the wave function in the CB
and VB differ by a phase of 2φk on the two highly occupied
sublattices A, D, where φk = arctan(ky/kx ), thus φk represents
the angle in reciprocal space. This is a consequence of the
winding number of 2 in BLG [38].

B. Gate-defined quantum dot

We showed in Ref. [37] that by applying a lateral potential,
modeled by an ab initio-based screened Gaussian potential
V eff

QD, we are able to confine both electrons and holes in a
bilayer graphene quantum dot. This potential is given as

V̂ eff
QD(ρ) =

⎧⎪⎨
⎪⎩

−c1e

(
− α1ρ2

r2
QD

)
− c2e

(
− α2ρ2

r2
QD

)
, z = 0,

+c1e

(
− α1ρ2

r2
QD

)
+ c2e

(
− α2ρ2

r2
QD

)
, z = −h,

(2)

with parameters c1 = −0.018 eV, c2 = 0.207 eV, α1 = 6.128,
and α2 = 1.006 for the QD radius rQD = 20 nm.

The QD electronic states are expanded in the ba-
sis of band states of the computational box as ϕs(�r) =∑

p

∑
�k νs

p,�k�p,�k (�r), where the summation is carried over the

four bands denoted by p and wave vectors �k defined by the
computational rhombus. Solving the Schrödinger equation
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FIG. 2. Bilayer graphene quantum dot spectrum. (a) Valley-
resolved single-particle energy spectrum of gated BLG QD with a
radius rQD = 20 nm. 32 QD states around the energy gap have been
presented, where negative indices describe valence band states, while
positive indices correspond to conduction band states. The valley
degree of freedom has been detoned with color (blue describes K
valley, and red denotes K ′ valley). (b) Charge density distribution
of the first 3 CB shells for the dominantly occupied (top) layer,
ordered starting from the bottom to the top, where the first graph
is corresponding to the most bottom CB state (indexed by 1).

results in the eigenequation for the amplitudes νs
p,�k :

εp,�kν
s
p,�k +

∑
p′, �k′

〈�p,�k|V̂ eff
QD|�p′, �k′ 〉 νs

p′, �k′ = εsν
s
p,�k, (3)

where εp,�k denotes the eigenvalues of the bulk Hamiltonian
described by Eq. (1).

We note that the QD potential confining electrons in the
QDs consists of two contributions, an electrostatic contribu-
tion and a band contribution. The matrix elements coupling
the band state is given by

〈
�

p
�k
∣∣V eff

QD

∣∣�p′

�k′

〉 =
∑

l

μl
p′, �k′

(
μl

p,�k

)∗
ei(�k′−�k)·dlV eff

�k,�k′,l
, (4)

where dl denotes the position of atoms within a unit cell, and
V eff

�k,�k′,l
is the Fourier transform of the QD potential V̂ eff

QD on
sublattice l .

Solving Eq. (3) generates the QD energy spectrum. Fol-
lowing the methodology from our previous works [36,37] we
limit our calculations to the band states within a certain energy
cutoff −Ecut � εp,�k � Ecut. We take Ecut = 600 meV, which
is larger than the energy scale presented in Fig. 1(b). This
energy cutoff defines our basis as states in a close vicinity of
K and K ′ points.

Figure 2(a) shows the QD energy spectrum for a QD with
the radius rQD = 20 nm. We present the spectra for both K
and K ′ valley (denoted by blue and red, respectively) around
the Fermi level, where odd/even numbers are indexing states
from K/K ′ valley. Each state is additionally doubly degenerate
due to spin. Similar to the bulk dispersion, the electron-hole
symmetry in the QD is broken as a result of introducing γ4 in

the bulk Hamiltonian (1). Moreover, the QD energy spectrum
appears to be different from the characteristic quantum dot
spectra for gated lateral QD in GaAs or self-assembled QDs
showing electronic shells of a 2D harmonic oscillator) [23,51–
53]. The charge density distribution on the top layer of the
lowest energy CB shells for valley K is presented in Fig. 2(b).
We see that the lowest energy CB doublet is s-like, followed
by two p-like shells, which are split in energy. The splitting
originates from the topological properties of BLG and the
emergence of the winding number of 2 near the K point [38].
However, since the inclusion of trigonal warping has reduced
the symmetry of the system, we now observe the reduction of
charge density symmetry from C∞ to C3.

III. TRION SPECTRUM

In this section, we include the analysis of electron-electron
interactions. The many-electron Hamiltonian written in the
basis of QD single-particle states has the following form:

ĤMB =
∑
p,σ

εpc†
p,σ cp,σ

+ 1

2

∑
p,q,r,s

∑
σ,σ ′

〈p, q|VC |r, s〉 c†
p,σ c†

q,σ ′cr,σ ′cs,σ

−
∑
p,s,σ

V P
p,sc

†
p,σ cs,σ , (5)

where c†
p,σ /cp,σ creates/annihilates an electron with spin σ

in a QD state p. Here, the indices p, q, r, s run over all
QD states. The electron-electron interactions VC are taken
as Coulomb interactions screened by the dielectric constant
κ , VC = e2

κ|�r1−�r2| , with κ = 3.9 [54,55]. The Coulomb matrix
elements 〈p, q|VC |r, s〉 can be expressed in terms of atomic
orbitals and computed numerically with Slater-like pz orbitals
(for computational details see Ref. [36]). The last term of
Eq. (5) accounts for the positive charge of the background
characterized by the same charge distribution as that of elec-
trons in the fully occupied VB. It has been introduced in
order to ensure the overall charge neutrality and is defined as
V P

p,s = 2
∑Nooc.

m 〈p, m|VC |m, s〉.
For the study of many-body effects we have approximated

the many-electron ground state at half-filling as a single
Slater determinant of all the occupied VB states |GS〉 =∏

p,σ c†
p,σ |0〉. We now construct the negatively charged trion

states ψn
− as a linear combination of three-body states con-

taining one electron-hole pair excitation and one additional
electron in the CB, |α, σ ′; β, σ ; i, σ 〉 = c†

α,σ ′c
†
β,σ ci,σ |GS〉.

Here the hole is defined as the lack of electron in the VB,
ci,σ |GS〉, respectively. We use Greek letters to denote elec-
trons in CB, and Latin letters for holes, missing electrons, in
the VB. Because of the two nonequivalent valleys in BLG
QDs we can construct ten low-energy trion configurations
with Sz = 1

2 , constructed from states lying at the top of the
VB and at the bottom of the CB. Figure 3 shows five of
these configurations; the other five configurations correspond
to moving the hole from valley K (blue) to valley K ′ (red).
In the simplest configuration, one can expect an intravalley
trion shown in Fig. 3(a), where both CB electrons and the
hole reside in the same valley (either K or K ′), and the spins
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FIG. 3. Diagram representation of the low-energy trion configurations. Vertical arrows represent carriers (electrons/holes are denoted by
full/empty arrows) characterized by spin (arrow pointing up/down denotes spin up/down). The states are built only from the hole residing in
the bottom of the VB and two electrons in the bottom of the CB. The grey-coloured arrow denotes the electron with spin corresponding to the
spin of the hole. The color of the horizontal lines denotes valley (blue/red corresponds to K/K ′ valley).

of the electrons are opposite. Another class of configurations
involves an exciton in one valley and additional electron in the
opposite valley creating configurations depicted in Figs. 3(b)
and 3(c), respectively. In this case, one observes an intravalley
exciton correlated with an excess electron residing in the
opposite valley. Furthermore, both electrons can be placed in
the same valley, while the hole resides in the opposite valley,
as presented in Fig. 3(d). Finally, one can observe a trion
configuration where all carriers are characterized by the same
spin. This situation has been depicted in Fig. 3(e).

The trion wave function is a linear combination of all
possible trion configurations and reads as follows:

|ψn
−〉 =

∑
α,β,i

∑
σ,σ ′

An
α,β,i,σ,σ ′c†

α,σ ′c
†
β,σ ci,σ |GS〉 . (6)

In the above definition, An
α,β,i,σ,σ ′ is the amplitude of the three-

body configuration for a trion state n. The Greek indices α, β

in the sums run over all QD conduction band states, while the
Latin index i goes through all QD valence band states. For
σ = σ ′, only the configurations with α > β have to be con-
sidered in order to avoid double counting of configurations. In
the further analysis, we will hide the spin index in the Greek
and Latin letters.

The many body Hamiltonian renormalizes the energy of
quasielectrons and quasiholes and mixes different configu-
rations. As a result, the amplitudes An

α,β,i of the trion states
satisfy the Bethe-Salpeter-like equation (BSE) [41,56–58]:

EnAn
α,β,i = (εα + εβ − εi )A

n
α,β,i

+
∑
μ,λ, j

⎛
⎝+�μ,αδi, jδβ,λ − �λ,αδi, jδβ,μ

+�λ,βδi, jδα,μ − �μ,βδi, jδα,λ

−�i, jδα,μδβ,λ

⎞
⎠An

μ,λ, j

+
∑
μ,λ, j

⎡
⎢⎢⎢⎢⎣

+(Vi,λ, j,β − Vi,λ,β, j )δα,μ

+(Vi,μ, j,α − Vi,μ,α, j )δβ,λ

−(Vi,λ, j,α − Vi,λ,α, j )δβ,μ

−(Vi,μ, j,β − Vi,μ,β, j )δα,λ

−(Vμ,λ,α,β − Vμ,λ,β,α )δi, j

⎤
⎥⎥⎥⎥⎦An

μ,λ, j, (7)

where εp denotes the QD single-particle energies, �p,q =
−∑Nooc.

m 〈m, p|VC |m, q〉 defines the scatterings containing the
self-energy terms �p,p, Vp,q,r,s = 〈p, q|VC |r, s〉 corresponds
to the Coulomb matrix elements,and Nooc. corresponds to the
number of occupied states.

Let us now focus on the energy of trion configurations, the
diagonal part of the Bethe-Salpeter matrix:

〈i, β, α| ĤMB |α, β, i〉
= (εα + �α,α ) + (εβ + �β,β ) − (εi + �i,i )

− Vi,α,α,i + Vi,α,i,α − Vi,β,β,i + Vi,β,i,β

+ Vα,β,β,α − Vα,β,α,β . (8)

It contains 12 terms. The terms (εα + �α,α ) + (εβ + �β,β ) −
(εi + �i,i ) show the contribution from three QD single-
particle energies εp (one for hole in the VB and two for
electrons in the CB) corrected by its exchange self-energies
�p,p. The next part of Eq. (8), −Vi,α,α,i + Vi,α,i,α − Vi,β,β,i +
Vi,β,i,β , contains six Coulomb scattering terms, three of them
are direct (Vp,q,q,p), and three are exchange (Vp,q,p,q). The
terms Vi,α,α,i and Vi,α,i,α describe respectively the direct and
exchange interaction of electron α with the hole i, while
Vi,β,β,i and Vi,β,i,β correspond respectively to the direct and
exchange interaction of electron β with the hole i. The last two
Coulomb matrix elements, Vα,β,β,α and Vα,β,α,β , correspond
respectively to the direct and exchange interaction between
the electrons α and β in the CB.

We obtain the trion spectrum by solving Eq. (7) in the
subspace of 32 single-particle states around the Fermi level,
as presented in Fig. 2. We restrict the trion states to the
Sz = + 1

2 subspace. The self-energies �p,p have converged for
Nooc. = 120 filled valence band QD states [37].

We now move to a detailed description of the calculated
trion spectrum, where we study the evolution of the spectrum
through the inclusion of different types of Coulomb interac-
tions. We note that each state is at least doubly degenerate
due to valley. Thus we restrict our analysis to states in which
the hole resides in the valley K , as depicted in Fig. 3. Fig-
ure 4 shows the spectra obtained by solving Eq. (7). The
number of possible trion configurations for a given number
of single-particle states Nsp, in the subspace of Sz = + 1

2 , is

given by the formula Nconf. = ( Nsp

2 )3 + ( Nsp
2
2

) · Nsp

2 , where we
assume an equal number of VB and CB states. With 32 single
particle levels this involves 6016 trion configurations. Each
column corresponds to a different stage of including Coulomb
interactions. Furthermore, the bottom row shows zooms into
the low-energy manifold of states.

We start the analysis by computing only the noninteract-
ing trion spectrum, when VC ≡ 0. The result is presented in
Figs. 4(a) and 4(b). We find a degenerate low-energy manifold
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FIG. 4. Trion energy spectra presented in different stages of including Coulomb interactions. [(a) and (b)] Energy levels for noninteracting
trion states. [(c) and (d)] Trion spectrum renormalized by self-energies. [(e) and (f)] Energy spectrum accounting for the self-energies and the
electron-hole direct and exchange interaction. [(g) and (h)] Spectrum obtained as a full BSE solution. Top row [(a), (c), (e), and (g)] presents
energy levels for the first 80 trion states obtained as a solution of the Bethe-Salpeter Eq. (7). Bottom row [(b), (d), (f), and (h)] shows zooms
on the low-energy manifold (first ten trion energy states) presenting the trion fine structure.

of 10 trion states, corresponding to the five negatively charged
exciton configurations presented schematically in Fig. 3 and
their valley-symmetric equivalents. These states are built only
from the hole residing in the top VB and two electrons in the
bottom CB. The trion spectrum for higher energies is more
complex due to the possible trion configurations and broken
electron-hole symmetry.

In the next step, we include the self-energy correction
of the electron and hole energies, �p,q. The resulting trion
spectrum is shown in Figs. 4(c) and 4(d). We observe a
large blueshift of the trion energies due to strong interactions.
Furthermore, the self-energies introduce a reordering of the
high-energy manifolds. This effect originates from the differ-
ence between the electron and hole self-energy.

In Figs. 4(e) and 4(f), we present the trion spectrum ob-
tained by including in Eq. (7) the self-energy terms �p,q and
diagonal parts of the Coulomb direct and exchange interac-
tions, Vp,q,q,p = 〈p, q|VC |q, p〉 and Vp,q,p,q = 〈p, q|VC |p, q〉,
respectively. While the direct electron-electron and electron-
hole interactions do not depend on valleys and is responsible
only for the large overall redshift in the energy, the ex-
change interaction is different within the same valley and
between different valleys. Moreover, the electron-electron in-
teraction magnitude is different from that of the electron-hole
interaction. The electron-hole intravalley exchange inter-
action is large, ∼O(10−1) meV, and is responsible for
raising the energy of the electron-electron-hole complex.
The relatively smaller electron-electron exchange interaction,
∼O(10−2) meV, is repulsive and lowers the trion energy. The
last type of exchange interaction, that also raises the energy of
the negatively charged exciton, is the electron-hole intervalley
exchange interaction. However, this interaction is the small-

est, ∼O(10−3) meV in this example, and can be neglected
in the analysis of the low-energy manifold. These exchange
elements result in the splittings of the low-energy mani-
fold. The first group is fourfold degenerate. The two “valley
unique” states correspond to the configurations (c) and (d)
in Fig. 3. These configurations do not allow for intravalley
electron-hole exchange, unlike the other three configurations
corresponding to (a), (b), and (e) in Fig. 3, and as such are the
lowest energy states. Next we find a doublet corresponding to
the spin (↑↑↑) configurations, as shown in Fig. 3(e). These
configurations allow for electron-electron exchange and thus
lower the energy relative to the four states above it. The
last low-energy shell is again fourfold degenerate, where the
electron and hole with the same spin belong to the same
valley. This corresponds to the configurations (a) and (b) in
Fig. 3. These configurations contain intravalley electron-hole
exchange, but their energy is not lowered by electron-electron
exchange, making them the highest energy states in the mani-
fold of 10 states. We also observe reordering of higher-energy
states due to large exchange splittings compared to the single-
particle level spacing, as presented in Fig. 4(e).

Finally, we include the effects of correlations. The resulting
trion spectrum is presented in Figs. 4(g) and 4(h). In Fig. 4(g),
the first 80 correlated trion states have been shown. We ob-
serve a manifold of ten low-energy trion states, separated
from the higher energy states by a large gap. Each trion state
comes as a doublet due to valley degeneracy. These states
are mainly built from the ten possible low-energy three-body
configurations, where the hole occupies the top of the VB,
and the electrons are located in the bottom of the CB. A zoom
into the first ten trion states has been presented in Fig. 4(h).
Unlike in gated lateral QDs in GaAs or self-assembled QDs,
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where trions do not contain any fine structure beyond spin
[44,45,59], we observe a rich low-energy manifold of trion
states [57,60]. In the absence of Coulomb interaction, the
low-energy states of the trion are exactly degenerate. With
the inclusion of electron-hole and electron-electron exchange
interaction, the states split into 3 groups. When including
the effects of correlations, the low-energy manifold forms 5
groups of doublets. The splittings are proportional to intraval-
ley and intervalley exchange between the two electron-hole
complexes and the electron-electron complex. The splittings
are further corrected by correlations. The lowest energy dou-
blet is a spin 3

2 state, one formed in the K valley and another in
K ′. The eight states at higher energy are spin 1

2 states. Finally
we determine the trion binding energy to be ET

b ≈ −6.2 meV
(see Appendix).

IV. LIGHT-MATTER INTERACTION

In this section, we describe the interaction of the trion in
BLG QD with light. We look at the influence of the excess car-
rier on the absorption and emission spectra given by Fermi’s
golden rule. Bilayer graphene quantum dot couples with light
via dipole matrix elements (DME) Dp,q = 〈ϕp| E±

0 · �r |ϕq〉 be-
tween QD states p and q, where �r is the position operator
and E±

0 is the electric field of the circularly polarized light.
In Fig. 5(a), we show which QD states are coupled by DME.
We connect with arrows the VB states connected with the CB
states by large dipole elements �Dp,q. We notice that, unlike
in self-assembled QDs, the top VB state (labeled by the QD
index −1) is not strongly connected with the lowest energy
CB state, but rather with the third shell (+5) in the same
valley. We denote this transition as λa. A symmetric transition,
λb, connects the state at the bottom of CB (+1) with the third
VB shell (−5). It is worth noting that all intervalley transitions
are characterized by negligibly small DME. Moreover, similar
to TMDs monolayers, only one valley is optically active for a
given circular polarization of light [61,62].

In Fig. 5(b), we present the joint optical density of states
for noninteracting electron-hole pairs. We label the peaks ac-
cording to the transitions presented in the Fig. 5(a). Similar to
our previous work [37], we observe that the brightest peak λc

corresponds to the transition from the top VB shell (−1) to the
third CB shell (+5). The transition from the top VB shell (−1)
to the bottom CB shell (+1) is not forbidden, but characterized
by low oscillator strength. This originates from the inclusion
of trigonal warping in the bulk Hamiltonian described by
Eq. (1). This complex light-matter coupling is furthermore
significantly modified by the electron-electron interactions.

A. Absorption

We now describe the absorption of light by a QD with an
additional electron in the initial state and a negatively charged
exciton in the final state. The probability of absorption of a
photon is described by Fermi’s golden rule, given by [37,46]

A(ω) =
∑
n,s

Ws| 〈ψn
−|P̂†|ψ s〉 |2δ(En − Es − ω), (9)

where ψ s is the initial state. A photon of energy ω is ab-
sorbed, promoting an electron from the VB to the CB, and

FIG. 5. Dipole moments for optical transitions. (a) Valley-
resolved single-particle energy spectrum of gated BLG QD for 16
QD states around the energy gap. Blue denotes K valley, and red
denotes K ′ valley, respectively. Black arrows connect the VB and CB
characterised by the largest dipole matrix elements. (b) Joint optical
density of states for the noninteracting electron-hole pair. Black
arrows show the magnitude of the corresponding dipole elements.

thus forming the trion complex in the state ψn
−. Ws denotes the

probability of the initial state s being occupied at temperature
T . The operator P̂† = ∑

α,i Dα,ic†
αci is the polarization opera-

tor adding an electron-hole pair excitation while annihilating
a photon weighted by the DME Dα,i. We approximate the
initial state ψ s as a single Slater determinant ψ s ≈ ψ sq (fully
occupied VB plus a single electron), where q corresponds
to the index of the QD state, as defined in Fig. 2(a). Since
absorption of a photon conserves Sz, we restrict these Slater
determinants to have Sz = 1

2 . This can be written explicitly as

ψ sq = c†
q,↑ |GS〉 . (10)

At zero temperature, there are only two states that are occu-
pied by a single electron. These states correspond to ψ s1 =
c†

1,↑ |GS〉, and ψ s2 = c†
2,↑ |GS〉, where 1, 2 are located at the

bottom of the CB in the two nonequivalent valleys. The
transition energy is calculated as ω = En − εq − �q,q, where
εq + �q,q is the self-energy corrected single-particle energy of
QD state q.

In Fig. 6, we present the absorption spectrum obtained
from Eq. (9). Similarly to the excitons in BLG QD [37],
we find that the large absorption peak, corresponding to the
optically dominant transitions γb and γc shown in Fig. 5,

085434-6



ELECTRICALLY TUNABLE FINE STRUCTURE OF … PHYSICAL REVIEW B 109, 085434 (2024)

FIG. 6. Trion absorption spectrum. Solid black line presents the
Gaussian broadened absorption spectrum in the energy window from
30 to 130 meV.

is observed at a higher energy. This transition is however
broadened compared to the excitonic absorption peaks, since
trion states are much more correlated, involve many more
configurations than just excitons. We also note that the low-
energy trion states are not completely dark, as the inclusion of
trigonal warping, γ3 and γ4 in the bulk Hamiltonian, defined
by Eq. (1), results in optically active low-energy trion states.
This effect is similar to the brightening of the 1s exciton in
gated BLG [50].

B. Emission spectrum

We now move to a reverse process, in which the initial state
is a trion state ψn

−. One of the two electrons in CB recombines
with the hole, emitting a photon with energy ω. The emission
spectrum is described by Fermi’s golden rule, given as [60,63]

A(ω) =
∑
n,s

Wn| 〈ψ s|P̂|ψn
−〉 |2δ(Es + ω − En), (11)

where Wn is the probability of a trion state ψn
− being occupied

at temperature T , defined as

Wn = e
−En
kBT

∑
m e

−Em
kBT

. (12)

We assume that the final state ψ s is given as a single Slater
determinant defined by Eq. (10). Thus the final state has an
extra electron in any of the excited QD states. The transition
energy is the same as in the absorption case.

Figure 7 shows the emission spectrum for different temper-
atures T . We find that in the emission spectrum the low-energy
trions are bright rather than characterized by low intensity,
unlike in the absorption picture. This effect occurs due to the
large energy gap separating the low-energy manifold of 10
states from the higher energy trion states. For low tempera-
tures, states at higher energies are not occupied. This results
in the dominant emission peaks appearing at low energies.
Furthermore, the energies of these bright low-energy trions

FIG. 7. Temperature-dependent emission spectrum. The Gaus-
sian broadened emission spectra presented for different temperatures.
The temperature is given in Kelvin, Different colors mean different
temperatures: blue - low temperatures, red - room temperature.

can be tuned with the electric-field, making this QD a strong
candidate for a single-photon emitter.

We now proceed to discussing the low-energy emis-
sion spectrum from the shell of N = 10 low-energy trion
states presented in Fig. 4(b). Figure 8 shows the low-energy

FIG. 8. The emission spectrum from the ten lowest-energy trion
states presented for three different temperatures, (a) T = 1, (b) 5,
and (c) 50 K, respectively. Solid lines denote the broadened emission
spectrum, while the dashed vertical lines represent the possible low-
energy recombination energies of the trion.
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emission spectrum for the temperatures of 1, 5, and 50 K,
respectively. The dashed lines represent the 5 doublets, cor-
responding to the initial trion states in the emission process.
The first low-energy trion state appears to be dark in emission,
for all temperatures. This can be understood by the fact that
this state is characterized by the total spin S = 3

2 and our
final states defined in Eq. (10) have total spin S = 1

2 . Thus
this emission process does not conserve total spin S, and as
such is spin-forbidden. The second doublet in the manifold
corresponds to a trion state in which the only possible re-
combination pathway involves an intervalley recombination.
Since the intervalley DME are negligibly small, this state is
also dark. The third doublet appears to be optically active
and gives the largest emission peak when the temperature
of 1 K is considered. This state contains a pathway for an
electron-hole pair to recombine within the same valley. The
higher energy states as well contain an intravalley recombi-
nation path, however, they remain dark at 1 K (0.086 meV).
This energy is large enough to occupy the thrird doublet,
but the gap between the third doublet and higher excited
states is much larger than 0.1 meV, leaving the fourth and
fifth doublet thermally unoccupied. Once the temperature is
increased to 5 K, the emission occurs from the fourth doublet
in the low-energy manifold, as presented in Fig. 8(b). At the
same time the emission peak from the third shell appears to
be of low oscillator strength at the increased temperature. The
fifth doublet does brighten at a higher temperature [Fig. 8(c)],
however it remains characterized by a low intensity compared
to the emission peak from the fourth shell. The shifting of the
emission peaks as a function of temperature would enable to
partially resolve the fine structure of the trion in a BLG QD.

V. SUMMARY

In summary, with the use of an ab initio based tight-
binding approximation and the Bethe-Salpeter-like theory, we
described negatively charged excitons confined in laterally
gated BLG QDs. Unlike in conventional semiconducting QDs,
trions in BLG QDs contain an electrically tunable fine struc-
ture of ten states arising from the valley and spin degrees of
freedom. We predicted absorption to and emission from the
trion states, where we identified valley dependent selection
rules. We obtained bright low-energy trion states in emission
and described how to extract the trion fine structure from the
temperature dependence of the emission spectra. Interestingly,
we found that the ground state trion is dark due to spin,
contrary to the conventional self-assembled QDs [41,44,45].

Future work will include the effect of screening on Coulomb
interactions in BLG QDs.
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APPENDIX: TRION BINDING ENERGY

In this Appendix, we will calculate the trion binding en-
ergy. We define the binding energy of a negatively charged
exciton as [64]

ET
b = ET − Eel − EX . (A1)

ET corresponds to the first bright trion state energy ET =
40.6 meV, as shown in Fig. 4(b). Eel describes the energy of a
free electron corrected by the self-energy, which corresponds
to the single-particle energy of an electron in the bottom CB
state of the BLG QD renormalized by its self-energy. We
determined this quantity to be equal to −6.4 meV. The value
ET − Eel = 47.03 meV represents the energy of a photon
emitted from the first bright trion state and corresponds to
the third vertical dashed line (first emission peak) in Fig. 8.
The last component in Eq. (A1), EX , denotes the energy of
the first bright exciton state. It has been determined following
the methodology described in our previous work [37], how-
ever, now with the inclusion of the nonzero matrix elements
γ3 and γ4 in the bulk Hamiltonian described in Eq. (1) and
with the screening constant κ = 3.9. We found this value to
be EX = 53.2 meV. This analysis allowed us to determine
the trion binding energy as ET

b = −6.4 meV. We obtained a
bound trion, whose emission maximum is located at a lower
energy than the exciton peak.
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