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Chiral coupling, which allows directional interactions between quantum dots (QDs) and photonic crystal
waveguide modes, holds promise for enhancing the functionality of quantum photonic integrated circuits.
Elliptical polarizations of QD transitions already offer a considerable enhancement in directionality. However,
in epitaxial QD fabrication, the lack of precise control over lateral QD positions still poses a challenge in
achieving efficient chiral interfaces. Here, we present a theoretical analysis in which we propose to optimize
the polarization of a QD emitter against the spatially averaged directionality and demonstrate that the resulting
emitter offers a considerable technological advantage in terms of the size and location of high-directionality areas
of the waveguide as well as their overlap with the regions of large Purcell enhancement, thereby improving the
scalability of the device. Moreover, using k · p modeling, we demonstrate that the optimal elliptical polarization
can be achieved for neutral exciton transitions in a realistic QD structure. Our results present a viable path for
efficient chiral coupling in QD-based photonic integrated circuits, to a large extent overcoming the challenges
and limitations of the present manufacturing technology.
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I. INTRODUCTION

Applications in quantum information processing and quan-
tum communication have attracted much attention to quantum
networks based on on-chip photonic integrated circuits [1–3].
A fundamental requirement for storing, processing, and ex-
changing information is to interface quantum nodes with
quantum channels on such physical platforms [4–10]. This
requires emitters that couple to photonic pathways, encod-
ing the quantum information of a long-lived qubit onto a
flying transporting qubit. On the one hand, in the past few
years, several nanophotonic waveguide schemes have been
proposed as channels, including photonic crystal waveguides
(PCWs) [11–15], optical fibers [16,17], crossed nanowire
waveguides [18,19], and nanobeam waveguides [20–22],
which utilize quantum interfaces to transfer data from mat-
ter to photonic qubits. On the other hand, self-assembled
semiconductor quantum dots (QDs) constitute an interest-
ing class of emitters for photonic quantum technology
applications [23,24]. QDs may be easily integrated into
photonic nanostructures, since they are solid-state emitters
and the spins in QDs have been identified as long-lived
qubits [25–28].

In a QD-based implementation, quantum information has
to be transferred to photonic channels by a controlled interface
between the photonic propagating mode and the charge or
spin states of the QD. In a perfect world, such an interface
would be deterministic, meaning that emission fully takes
place into the desired mode, and the information is transmit-
ted without information backflow or loss. Chiral interfaces
that support directional interactions represent a promising
paradigm for deterministically transferring the quantum state

from the solid-state platform to the quantum state of light,
exploiting the direction-dependent nature of light-matter in-
teraction [29]. The directional mode excitation arises from the
longitudinal component of the electric field [30,31], which,
due to the ±π/2 phase shift with respect to the transverse
field component, makes the polarization elliptical in the
propagation plane. This polarization flips its rotation direc-
tion with the inversion of the propagation direction due to
the time-reversal symmetry of Maxwell’s equations [32–34].
Chiral coupling emerges naturally in nanophotonic sys-
tems, including plasmonic structures [35–37], crossed
nanowire waveguides [18,19], whispering-gallery-mode res-
onators [38], dielectric nanobeam waveguides [14,20],
nanofibers [17,39], PCWs [11,13–15,20,40,41], and topologi-
cal PCWs [13–15,42,43].

The coupling depends both on the polarization of the mode
propagating in the photonic structure at the position of the
emitter and on the polarization of the transition dipole moment
of the emitter itself, which opens a twofold way for opti-
mization. On the one hand, in recent years PCWs have been
demonstrated as promising structures offering the possibility
of engineering local polarization and dispersion [11,44–48].
On the other hand, it has been observed that, by properly
engineering the polarization of the emitter, one attains an
additional degree of control over the directionality of the
emission [36]. In particular, elliptically polarized emitters
coupled to photonic waveguides show an advantage over cir-
cular ones with respect to the directionality and efficiency of
the coupling [49]. This results from the fact that the guided
mode is circularly polarized only in close proximity of a few
points in the PCW unit cell (C points) [50], while elliptical
polarization states predominate throughout the majority of the
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JAKUB ROSIŃSKI et al. PHYSICAL REVIEW B 109, 085431 (2024)

unit cell [44] thus restricting the area where the chirality of
the coupling to a circular dipole is optimal and limiting the
overlap between the areas of high directionality and large
Purcell enhancement.

It has been suggested [49] that QDs can be the optimal
emitters, taking advantage of their elliptical polarization re-
sulting from hole band mixing [51,52]. Indeed, in epitaxial
nanostructures, the reduced symmetry of the confinement
potential, which is influenced by in-plane geometry, strain
anisotropy, or atomistic asymmetry, leads to mixing between
heavy and light holes in the valence band. As a result, bright
electron-hole configurations of QDs are associated with el-
liptical dipoles with typical degrees of linear polarization of
1%–20% [52]. For excitonic transitions (creation or recombi-
nation of an electron-hole pair), the two elliptically polarized
states are coupled by electron-hole exchange with a relative
phase locked by time reversal, leading to two linearly po-
larized transitions. Elliptical polarization can be restored by
applying a magnetic field, offering a degree of control by ex-
ploiting the competition between the electron-hole exchange
and the Zeeman energies. For a trion transition (electron-
hole recombination in the presence of an additional, resident
carrier) the electron-hole exchange is suppressed due to the
singlet configuration of the two identical carriers (electrons or
holes) and the system shows two time-reversal-symmetric el-
liptical transitions, corresponding to the two spin orientations
of the final single-particle state.

The main drawback of QDs fabricated by conventional
growth techniques is the lack of precise control over their
lateral positions. QDs are fabricated using epitaxial tech-
niques, in which heterostructures are grown in individual
layers [53–55]. The most common approach is the Stranski-
Krastanov method, which relies on the self-assembly of a
QD layer on a substrate surface due to the lattice mismatch
between the layers. One route to achieving control over the
location of QDs is based on the site-controlled growth of
QDs [56–59]. However, the properties of such QDs in terms of
optical quality (emission linewidths and quantum efficiency)
cannot match those of QDs based on Stranski-Krastanov
growth [60,61] yet. As a viable alternative, nanophotonic
structures can be aligned with a single QD that is first lo-
cated by microscopy techniques [62–66]. However, such an
integrated system cannot be scaled to more than a few QDs.
Furthermore, nanofabrication protocols based on prelocated
QDs allow for the emitter-photonic structure integration with
an accuracy of around 40 nm [67], limited by imperfections
within the imaging system and the subsequent nanofabrica-
tion. This accuracy results in a precision spot with a radius
larger than the area of highly directional emission by a circu-
larly polarized dipole [20].

Here, we follow the approach based on elliptical polar-
ization engineering of the transition dipole moment [49] and
assess the suitability of QDs as engineered quantum emitters.
Taking into account the random QD positions, we propose
to use the position-averaged directionality of emission into
a glide-plane photonic waveguide as a figure of merit. We
determine this quantity as a function of the polarization of
the emitter dipole, determining the optimal polarization of the
emitter, which is found to yield nearly 60% average direc-
tionality. The selected figure of merit is validated by showing

FIG. 1. (a) A supercell of the PCW with the hexagonal lattice of
air holes and an up-down glide-plane symmetry. The waveguide is
described by the lattice constant a, the hole radius r, and the mem-
brane thickness h. Additionally, the first row of holes is shifted by
a distance l1. (b) Perspective view of the photonic structure showing
the QD layer position (z = 0, indicated by the dashed blue line) and
averaging areas (highlighted in blue shading). (c) Schematic image
of the QD geometry illustrating length L, width W , and height H .

that the resulting optimal polarization yields a significant tech-
nological advantage from the point of view of the required
precision of placement of the emitter. Next, by quantitative
modeling of QD properties using a combination of k · p and
configuration-interaction methods, we show that the optimal
polarization properties correspond to realistic compositional
and morphological characteristics of charge-neutral QDs that
emit in the technologically advantageous telecom spectral
range [52,68,69].

II. MODEL

We study a coupled PCW-QD system that realizes both a
strong photon-emitter interaction and high directionality. In
this section, we describe the waveguide model followed by
the QD model and coupling characterization.

A. Waveguide

The geometry of the considered photonic crystal waveg-
uide is presented in Fig. 1. The waveguide is created by a
missing row of holes in a hexagonal pattern of air holes with
equal radii r = 0.3a, a membrane thickness h = 0.64a, and a
refractive index n = 3.35, where a denotes the lattice constant
of the photonic structure. Furthermore, one side of the waveg-
uide is shifted by half a lattice constant along the propagation
direction, leading to a glide-plane waveguide structure. Such a
symmetry breaking results in elliptically polarized light at the
field maxima, effectively combining efficient chiral coupling
with strong Purcell enhancement [11]. Consequently, current
research identifies glide-plane PCW as the most promising
platform for chiral interactions [13–15]. The structure is fur-
ther modified by shifting the first rows of holes toward the
center of the waveguide by l1 = a

√
3/20. Although modi-

fying the diameter of the air holes might bring additional
advantages [70], it is less accurately realized in electron-beam
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lithography than changing their position. Therefore, we re-
strict the current study to a structure with a fixed hole size.
We design the waveguide to guide light with wavelengths
near λ = 1550 nm (0.8 eV), i.e., tuned for the third telecom-
munication window with the lowest optical fiber losses.
This is achieved by choosing the lattice constant to be a =
433 nm. However, the waveguide design studied can be easily
scaled [71] for use with any other quantum photonic platform.

We perform numerical finite-element calculations using
the commercial software COMSOL Multiphysics [72] to find
the Bloch modes of the PCW and their eigenfrequencies.
We apply Floquet boundary conditions in the propagation (x)
direction and periodic boundary conditions in the y direction
[Fig. 1(b)]. We use an air layer of thickness 3h and perfectly
matched layers of thickness 1.5h above and below the slab (in
the z direction), where h is the thickness of the slab. We also
introduce a perfect magnetic conductor plane, positioned in
the reflection symmetry plane of the waveguide to limit the
study to transverse electric (TE) modes and thus reduce the
computational domain. We use a supercell of length a along
the waveguide, width 8.5a

√
3 − 2l1, and height 5h, which

is large enough to suppress interaction with neighboring su-
percells. The calculations utilize a mesh with a maximum
distance between the nearest mesh nodes of 0.4a/n, where n is
the refractive index of the domain. This mesh ensures that the
eigenvalues converge with a relative error of less than 0.1%.

Based on the amplitudes and phases of the components of
the electric field, found from the simulations, we parametrize
the in-plane part of the electric field as

e = e0

(
cos(χf ) cos(�f ) − i sin(χf ) sin(�f )
cos(χf ) sin(�f ) + i sin(χf ) cos(�f )

)
, (1)

where e0 is the field amplitude, the angle −π/2 � �f � π/2
describes the orientation of the polarization ellipse, and the
angle −π/4 � χf � π/4 defines the degree of ellipticity,
with tan(χf ) = u/v, where v and u are the major and minor
semi-axes, respectively, so that χf = 0 corresponds to linear
polarizations, χf = ±π/4 yields two opposite circular polar-
izations, and intermediate values of χf correspond to elliptical
polarization. More details concerning the parametrization can
be found in the Appendix.

B. Quantum dots

We consider widely studied InAs/AlGaInAs self-
assembled QDs [52,68,69] that can emit in the third
telecom window centered at 1550 nm wavelength. Such
QDs are characterized by a larger than typical in-plane size
and asymmetry. The latter is defined by the lateral aspect
ratio, which may vary from below 2 to about 10 [73]. The
suitability of these QDs for the considered chiral interface
results from the asymmetry-enabled mixing of heavy- and
light-hole subbands, which leads to elliptically polarized
transition dipoles [52] that can be controlled not only by
the morphology of the structure but also by a magnetic
field applied along the QD growth axis (Faraday geometry;
perpendicular to the waveguide in our case).

For our modeling, we take a typical InAs/AlGaInAs
QD [68] placed on a ∼1-nm-thick InAs wetting layer. The
QD has a triangular cross-section with a width-to-height ratio

of W/H = 6. We vary H from 1.2 to 4.5 nm (as measured
from the top of the 1.2-nm-thick wetting layer) and the length
L from 20 to 60 nm in the simulation series, keeping the W/H
ratio fixed. We assume initially homogeneous composition
in the QD and wetting layer (80% InAs, partly mixed with
the barrier material) and then simulate the interdiffusion of
material at interfaces by performing Gaussian averaging of
the three-dimensional material composition profile with spa-
tial extent σ = 0.9 nm. The schematic picture in Fig. 1(c)
shows a surface of constant indium concentration with corners
smoothed by this averaging.

We minimize the elastic energy of the system within the
theory of continuous elasticity on a uniform Cartesian grid to
find the strain field. In a non-centrosymmetric material, the
shear strain at the material interfaces induces a piezoelectric
field, which we calculate to the second order in the strain-
tensor elements. We use a state-of-the-art implementation [74]
of the multiband k · p theory in the envelope function approx-
imation [75] to find the eigenstates of electrons and holes
in a QD. This calculation includes strain, piezoelectric field,
spin-orbit interaction, and external fields. The explicit form
of the Hamiltonian can be found in Ref. [76], while details
of the QD modeling and material parameters used are given
in Ref. [69] and references therein. By numerically diagonal-
izing the Hamiltonian, we obtain the single-particle energy
levels and carrier eigenstates as discretized pseudospinors of
envelope functions for each subband.

Next, we use the configuration-interaction approach to cal-
culate the exciton (bound electron-hole pair) and negative
trion (two electrons and a hole) states with a configuration
basis constructed of 12 electron and 12 hole states. Taking
into account the Coulomb interaction and phenomenological
electron-hole exchange interaction (corresponding to 60 µeV
splitting of bright exciton states), we obtain the exciton and
trion eigenstates. Next, within the dipole approximation [77],
we calculate the interband optical transition dipole moments
for the lowest-energy bright transitions. For the exciton, the
dipole moment is given by

d = −
∑

jl

ih̄e

m0EX
c jl〈�l |P|� j〉, (2)

where m0 is the electron mass, EX is the exciton (optical
transition) energy, � j(l ) are eight-component pseudospinors
of electron envelope functions for the jth conduction (lth
valence) single-particle eigenstates spanned in the standard
eight-band k · p basis, c jl are the coefficients for expansion
of the exciton eigenstate in the electron-hole configuration
basis, and P = (m0/h̄)∂Hk·p/∂k is the momentum operator
defined with respect to the k · p Hamiltonian. Out of the two
bright exciton states in the ground-state manifold, we choose
the higher-energy one for further analysis. This is based on
its polarization properties having more regular dependence on
QD geometry and magnetic field. Similarly, for the transition
between the trion state and a given mth electron eigenstate,

d = −
∑

jl

ih̄e

m0(ET + E1 − Em)
(c jml − cm jl )〈�l |P|� j〉, (3)

where ET is the trion state energy, Em is the mth electron
eigenstate energy (so that E1 is the ground-state single-particle
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energy), and c jml are the coefficients for expansion of the trion
eigenstate in the configuration basis.

We consider a single, selected transition and hence assume
the QD to be a two-level system. The in-plane part of the
interband dipole moment characterizing the relevant transition
in the QD is parametrized as

d = d0

(
cos(χd ) cos(�d ) − i sin(χd ) sin(�d )
cos(χd ) sin(�d ) + i sin(χd ) cos(�d )

)
, (4)

consistently with the parametrization of the field polarization
defined in Eq. (1), with d0 denoting the magnitude of the
dipole moment and with the same geometrical interpretation
of the dipole angles χd and �d (see Appendix).

C. Coupling

The emission rate of the quantum emitter into a given
eigenmode within the dipole approximation is given by

γk ∝ |d∗ · ek|2, (5)

where ek is the electric field of the guided mode with wave
vector k and by the scalar product we mean a · b = ∑

i aibi.
In the presence of a transverse field component, ek �= e−k.
Therefore, the emission rates into counterpropagating modes
are in general not equal (γk �= γ−k), resulting in a nonzero
chirality factor defined as the normalized difference between
the forward and backward emission rates

D = γk − γ−k

γk + γ−k
. (6)

As the light-matter coupling depends on the polarization state
of the emitter, one is able to engineer this coupling by tuning
the emitter polarization parameters.

An important advantage of photonic crystals is that they
can enhance the emission of a quantum emitter into a desired
guided mode due to the broadband Purcell effect and strong
suppression of the coupling to radiation modes by the pho-
tonic bandgap effect [78–82]. Only QDs that simultaneously
exhibit chiral coupling and high Purcell enhancement may
fully benefit from chiral quantum optics. The Purcell factor
reads [83]

Fk(r) = 3πc2ang(k)

ω2
k

√
ε(r)

|d̂∗ · êk(r)|2, (7)

where d̂ = d/d0, êk = ek/ẽk0 with the normalization ẽk0 =
[
∫

SC d3rε(r)|ek(r)|2]
1/2

, ωk is the mode frequency, ε(r) is
the relative electric permittivity at the point r, SC indicates
integration over a single supercell, and the group index for the
considered mode is given by

ng(k) = 2c(Ue,k + Uh,k)∣∣∫
SC d3rRe[e∗

k(r) × h∗
k(r)]

∣∣ , (8)

where c is the speed of light in vacuum, hk is the magnetic
field of the mode, and Ue,k(Uh,k) is the time-averaged electric
(magnetic) field energy in the super-cell volume. As a con-
sequence of the enhancement of emission to a desired mode
and suppression of coupling to radiation modes, a near-unity
efficiency of emission into the desired guided mode (the β

factor) is achievable [84], even in the fast light regime [41],

FIG. 2. (a) Projected TE band structure of the PCW displaying
waveguide modes (orange). The gray regions mark the membrane
guided modes (dark gray) and radiation modes (light gray) that are
not bound to the membrane. The solid line indicates the guided
mode considered in our study, whereas the dashed curves represent
other, potentially leaky modes. The wavenumber chosen for further
investigation is highlighted by the red dot. (b) Group index ng of the
considered guided mode as a function of mode energy.

and it is remarkably robust with respect to the position of the
emitter in the waveguide [84].

To determine the average coupling of the propagating mode
with a QD emitter with a given polarization at a random
in-plane position, we average the directionality over half the
area of the waveguide core. Since QDs cannot lie within the
air holes and efficient coupling to the guided mode is only
possible in the waveguide area, we restrict the averaging to
the vicinity of the core indicated by the blue shaded region
in Fig. 1(b). We consider half of the core region because the
same coupling in the other half can be obtained by inverting
all polarizations (note that averaging over the full core region
formally always results in a vanishing average directionality).
Furthermore, to suppress couplings with transverse magnetic
modes, we place the quantum emitter in the symmetry plane
z = 0 [dashed line in Fig. 1(b)].

III. RESULTS

A. Waveguide modes

Using the finite-element method, we first determine the
photonic TE-like bands, shown in Fig. 2(a), and the corre-
sponding group indices [Fig. 2(b)] for the photonic crystal
waveguide. The defect modes are plotted with lines, whereas
the extended modes in the photonic crystal and the extended
modes propagating in the air (radiation modes) are repre-
sented as dark- and light-gray-shaded areas, respectively. We
see that the chosen structure supports one well-confined mode
plotted with a solid line. In addition, there are three modes
near the bulk modes (dashed) that are anticipated to leak into
the continuum in practice. The favorable guided mode spans a
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FIG. 3. Polarization ellipticity angle χf (a) and orientation angle
�f (b) within the core area of the PCW unit cell in the z = 0 plane
for the considered mode. States having right- and left-handed ellipses
are shown in green and purple, respectively. The red crosses in
(a) indicate C points with circular polarization.

wide frequency range, offering a good spectral adjustment to
the QD transition. In addition, it is a well-confined mode and,
therefore, selected for further consideration.

Next, we calculate the polarization properties of the
selected mode and extract the polarization parameters as de-
scribed in the Appendix. We show the ellipticity angle χf

in the z = 0 plane as a function of position in Fig. 3(a) and
the orientation angle �f in Fig. 3(b). We can clearly see
in Fig. 3(a) that each of the two helicities (right-handed in
green and left-handed in purple) appears almost exclusively
in one half of the waveguide. While the white line in the plot
indicates linear polarization, the very dark spots, highlighted
by the red crosses, mark circular polarization (C points).
Apart from these tiny regions, part of which lie close to the
air holes, the selected mode shows predominantly elliptical
polarization. This again illustrates the potential of elliptical
polarization for flexible device design [49].

B. Emitter coupling

We now consider a QD emitter coupled to the electric field
of the selected guided mode. In the first step, we treat the emit-
ter formally, characterizing its polarization by the orientation
and ellipticity angles (�d, χd). For every polarization state of
the dipole transition moment, we calculate the directionality
from Eq. (6) at a given point in the structure. As previously
shown [49], with an appropriately polarized emitter, perfect
directionality can be reached at a given position. However, in
view of the random placement of the QD, a more informative
figure of merit appears to be the directionality averaged over
the QD position. Therefore, we average the result over half
the core region [blue shaded region in Fig. 1(b)], as discussed
above. Figure 4 presents the average directionality of the
QD emission for different polarization states of the dipole
transition moment of the QD for ka/(2π ) = 0.31 [ng ≈ 4.4,
red dot in Fig. 2(a)]. The average directionality varies with
both angles, reaching extreme values of ±0.58 for the opti-
mal elliptical polarization with (�d, χd ) = (0,∓0.178π ) and

FIG. 4. (a) Map of the averaged directionality of the emission
from a randomly placed QD as a function of the polarization of the
transition dipole moment parametrized by orientation angle �d and
ellipticity angle χd. Yellow lines illustrate polarization states for a
given �d and χd, while the yellow crosses indicate the maximum and
minimum values of average directionality. (b) Cut line of the map in
(a) for the orientation angle �d = 0.

zero for all linear polarizations. The optimal parameter values
correspond to the in-plane dipole d̂ = (0.848,∓0.53i), which
represents an ellipse oriented along the propagation direction.

Interestingly, the average directionality decreases with in-
creasing group index. This is illustrated in Fig. 5, where
we present the average directionality calculated for different
wave numbers corresponding to increasing values of ng. As
the light slows down from (a) to (c), the maximum average
directionality decreases and the optimal ellipticity angle tends
to approach circular polarization. Moreover, it is well known
that in-plane backscattering between the counterpropagating
modes scales as n2

g [85], leading to large losses in the slow
light regime. Since for the chosen mode the group index
increases with wave number k, both these effects favor low
k. Therefore, we choose a possibly small wave number while
staying away from the light cone to prevent coupling to the
radiation modes.

We further calculate the directionality of emission D from
Eq. (6) as a function of the emitter position, assuming the
optimal transition dipole found above, as well as for the

FIG. 5. Average directionality map of QDs with random in-
plane spatial positioning, as in Fig. 4(a) for (a) ka/(2π ) = 0.35
(ng ≈ 4.85), (b) ka/(2π ) = 0.434 (ng ≈ 15.1), (c) ka/(2π ) = 0.46
(ng ≈ 46.8). Yellow crosses indicate the maximum values of average
directionality.
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FIG. 6. Areas where |D| � 0.9 (left) and Purcell factor (middle,
right) for an optimized elliptical polarization state (a) and a circular
one as a reference (b). In the left panels, the red areas indicate
positive values of D, whereas blue ones denote negative values of
D. The dotted green lines indicate a distance of 40 nm from the air-
dielectric interfaces of the holes. In the middle and right panels the
lines limiting the area where |D| � 0.9 are plotted onto the Purcell
maps to illustrate the overlap between these two quantities.

circular dipole for comparison, and mark the areas where
|D| � 0.9. The calculated maps are shown in the left pan-
els of Figs. 6(a) and 6(b) for the optimal dipole found
above (with χd = −0.178π ) and for a circular dipole (with
χd = −0.25π ), respectively. In the left panels, the areas with
|D| � 0.9 are marked by red (propagation in +x direction)
and blue (propagation in −x direction) colors, and we can
directly see that in the case of elliptical polarization, two
large regions spread continuously throughout the unit cell in
the light propagation direction [Fig. 6(a)]. In contrast, for
circular polarization in Fig. 6(b), the areas form smaller iso-
lated spots. To quantify this difference, the overall area is
about four times larger for optimized elliptical polarization
than the one where a circular dipole is assumed, and more
than six times larger than A = πξ 2, where ξ is the preci-
sion of embedding a QD in a photonic structure, which is
ξ ≈ 40 nm for InGaAs QD [67]. This shows that an emitter
optimized with respect to the average directionality ensures a
technological advantage in the manufacturing of the required
structures.

Optimizing the dipole moment is beneficial only if high
directionality can be combined with efficient emission. There-
fore, in the middle and right panels of Fig. 6, we present
maps of the Purcell factor calculated from Eq. (7) for the
optimal emitter. Although the magnitude of the Purcell factor
is slightly reduced for the elliptically polarized dipole [middle
and right panel in Fig. 6(a)] as compared to the circular dipole
[middle and right panel in Fig. 6(b)], the area of considerable
Purcell enhancement remains essentially unchanged. As a re-
sult, the optimized polarization yields a much more extended
area where high directionality is combined with considerable
Purcell enhancement. Another benefit of the optimal elliptical

FIG. 7. (a) Ellipticity angle of the polarization of the dipole
transition moment in a QD as a function of QD width, illustrating
both the neutral exciton and trion (violet). In the case of an exciton,
three distinct results are shown: for low magnetic fields of 0.1 T
(blue) and 0.2 T (dark green), and a high magnetic field of 0.8 T
(light green). (b) Ellipticity angle of the polarization of the dipole
transition moment in a QD as a function of applied magnetic field
for a neutral exciton. Results are presented for QDs of varying
widths, with dark cyan representing small widths and orange for
larger widths. In both (a) and (b), data are presented for QDs of two
different lengths: L = 20 nm (circles) and 60 nm (squares). The red
dashed line indicates the optimal ellipticity angle found in Fig. 4.

polarization that can be observed in the directionality map is
a small shift of high directionality regions away from the air-
dielectric interfaces of the holes, which is desired to sustain
good optical quality of the QD emitter and compatibility with
current technology: Etching the holes affects their vicinity,
which will alter the optical quality of the QDs in these areas.
A 40-nm-range around the air hole, consistent with current
technology limitations [67], is marked with dotted green lines
in Fig. 6. This favorable shift observed for the optimal dipole
further supports the relevance of the chosen figure of merit for
the optimization.

Finally, we show that the optimal value of the transition
dipole is feasible with neutral exciton transitions within re-
alistic QD characteristics. For a series of QDs described in
Sec. II B with different geometrical parameters, we calcu-
late the single-particle, exciton, and trion eigenstates, as well
as their optical transition dipole moments. In Fig. 7, we
present the analysis of the polarization properties of QDs,
specifically focusing on the ellipticity angle of the transi-
tion dipole. In Fig. 7(a), we study the ellipticity angle as
a function of QD width, for two values of the QD length
and a fixed height-to-width ratio, showing results for both
neutral excitons and trions. For excitons, our analysis reveals
a noteworthy finding: We can achieve the optimal ellipticity
angle in a weak magnetic field regime [blue color in Fig. 7(a)]
for QDs with larger widths. However, these ellipticity angles
are not achievable with trions [violet color in Fig. 7(a)]. In
Fig. 7(b), we further investigate the dependence of the ellip-
ticity of the transition dipole on the applied magnetic field
for neutral excitons. The behavior is qualitatively the same
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for all geometries, with a minor impact of QD width, and
with the length playing a larger role in the case of wider
(higher) QDs. To achieve the situation in which the polar-
ization of the QD transition matches the optimized ellipticity
(marked as a dashed red line) we find that a magnetic field of
B ≈ 0.15 T is sufficient for realistic QD lengths of a few tens
of nm.

IV. CONCLUSIONS

We have studied the possibility of using a QD emitter
for enhancing the chiral coupling to a guided light mode
in a glide-plane waveguide. We choose the spatially aver-
aged directionality as our figure of merit. We show that an
emitter optimized in this way, apart from maximizing the
overall chiral coupling, shows favorable properties from the
point of view of structure manufacturing: It enhances the
area of the waveguide core where the directionality is high
as compared to circularly polarized emitters and offers im-
proved overlap between regions of high directionality and
large Purcell enhancement [49]. Using the k · p method, we
have further demonstrated that optimal polarization properties
can be achieved within realistic compositional and morpho-
logical characteristics of QDs by exploiting neutral exciton
transitions at weak magnetic fields.

Thus, the use of appropriately designed QDs for elliptically
polarized emission is a potential path to improved scalabil-
ity for quantum information processing and communication
devices based on chiral interfaces, partly overcoming the
challenges posed by the lack of precise control over lateral
QD positions in epitaxial QD fabrication, which has hindered
the achievement of efficient chiral interfaces for realistic QD
ensembles so far. This finding presents an important step to-
wards achieving robust chiral coupling in QDs-based photonic
integrated circuits.
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APPENDIX: POLARIZATION ELLIPSE

The polarization state of a mode at a given point or of
an optical transition dipole moment is described in terms of
the geometrical parameters of the polarization ellipse. Two
different parametrizations given by angle pairs �,χ and α, δ

can be used [86] to describe the polarization. The meaning
of those angles is shown in Fig. 8. The ellipticity angle χ

(−π/4 � χ � π/4) is defined as a ratio of the length of the
minor semi-axis of the ellipse u to the length of its major
semi-axis v, such that tan(χ ) = u/v. The orientation (also
known as tilt or azimuth angle) � (−π/2 � � � π/2) is the
angle between the major axis of the ellipse and the x axis,

FIG. 8. An illustration of the polarization ellipse with indicated
parametrization. The parameter δ does not have a straightforward
geometrical representation.

which defines the orientation of the ellipse in its plane. In
the alternative parametrization, δ = δy − δx (0 � δ � 2π ) is
the phase difference between two components of the electric
field. and α (0 � α � π/2) is defined in terms of the Cartesian
components of the field amplitude as tan(α) = e0y/e0x. The
polarization is right handed (RH) if the ellipse is traversed
in a clockwise sense when looking against the propagation
direction (looking “into the beam”, which corresponds to
looking towards the page in Fig. 8 if the electromagnetic
wave propagates in the positive z direction). The RH (LH)
polarization corresponds to positive (negative) values of the
ellipticity angle.

From the simulation, we obtain the electric field amplitudes
of the modes e0x and e0y, as well as the phase difference δ

between them. Next, we calculate the Stokes parameters

S0 = e2
0x + e2

0y,

S1 = e2
0x − e2

0y,

S2 = 2e0xe0y cos(δ),

S3 = 2e0xe0y sin(δ). (A1)

Finally, we determine the ellipticity χ and orientation � angle
from the Stokes parameters

χ = 0.5 arcsin (S3/S0),

� = 0.5 arctan (S2/S1). (A2)

Alternatively, the dipole can also be characterized using a
second set of angles (α, δ),

d =
(

cos(α)
sin(α)eiδ

)
. (A3)

In this case, we can extract the ellipticity and orientation angle
from the relations

cos(2α) = cos(2χ ) cos(2�),

tan(δ) = tan(2χ )/ sin(2�). (A4)
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