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Chiral surface and hinge states in higher-order Weyl semimetallic circuits
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We propose a 3D topolectrical network that can be tuned to realize various higher-order topological gapless
and chiral phases. We first study a higher-order Dirac semimetal phase that exhibits a hinge-like Fermi arc linking
the Dirac points. This circuit can be extended to host highly tunable first- and second-order Weyl semimetal
phases by introducing a nonreciprocal resistive coupling in the x-y plane that breaks time reversal symmetry. The
first- and second-order Weyl points are connected by zero-admittance surface and hinge states, respectively. We
also study the emergence of first- and second-order chiral modes induced by resistive couplings between similar
nodes in the z direction. These modes, respectively, occur in the midgap of the surface and hinge admittance
bands in our circuit model without the need for any external magnetic field.
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I. INTRODUCTION

Topological materials can be classified as either gapped
or gapless based on their energy-band spectra in momentum
space [1–5]. The former hosts many exotic phenomena
ranging from topological insulators [6,7], integer quantum
Hall insulators [8–10], and topological superconductors
[11,12] to higher-order topological insulators (HOTIs)
[13,14]. These gapped topological phases are characterized
by topological invariants such as the Chern number [15],
Berry phase [16,17], and Z2 invariant [18]. In contrast, gapless
topological systems are characterized by the nature of their
band-degeneracy points where two or more bands touch one
another in momentum space. These band-degeneracy nodes
are classified as either Dirac points (DPs) [19] or Weyl points
(WPs) [20], depending on their symmetries. DPs emerge
only when both time-reversal and inversion symmetries are
present in a system. In contrast, WPs appear in the band
dispersion if either or both symmetries are broken. Both types
of band-touching points appear and annihilate pairwise. Two
important classes of topological systems that host WPs and
DPs are Weyl semimetals [3,21–24] and Dirac semimetals
[25,26], respectively. In addition, it is worth noting that the
energy-band dispersion can also feature a distinct type of
band collapsing points, referred to as phenomenal points
[27–29]. At these exceptional points, multiple eigenstates
converge to a single, nonzero eigenenergy value, resulting in
remarkable phenomena such as robust localized spectra and
the restoration of biorthogonality among the eigenstates of a
non-Hermitian system.

Recently, a class of three-dimensional (3D) topologi-
cal phases named higher-order topological insulators, which
go beyond the usual bulk-boundary correspondence, has
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been discovered [13]. In general, a d-dimensional nth-order
topological insulator can host topologically protected (d-n)-
dimensional gapless boundary states [30–32]. HOTIs are
insulating in the bulk or surfaces and become metallic only
when edges or hinges are introduced, respectively. They
present intriguing multidimensional topological phenomena
ranging from corner states to hinge states [13,14,33,34]. Inter-
estingly, such unconventional nontrivial boundary modes are
robust against system disorders and are protected by certain
crystalline symmetries (e.g., reflection and mirror symme-
tries). Meanwhile, Weyl and Dirac semimetals have isolated
band-touching points and exhibit unconventional properties
such as the chiral anomaly and, in particular, Fermi arcs
[35–38]. However, owing to the difficulties involved in finding
suitable materials and the complexity in tuning model param-
eters, only a few experimental realizations of higher-order
Weyl semimetals (HOWSMs) [39,40] and Dirac semimetals
(HODSMs) [40] have been reported so far in acoustic crystal
systems [41–43]. Interestingly, other higher-order nontriv-
ial topological phases with unconventional topological band
structures have been proposed in a multitude of platforms,
e.g., in photonic [44,45], mechanical [46], and acoustic [47]
systems, and in ultracold atomic gases in optical lattices
[48,49], polaritons [50,51], microcavities [52], optical waveg-
uides and fibers [44,53], non-Hermitian systems [54–56], and
others [57]. Each of these platforms comes with experimental
complexities and drawbacks, which makes them vulnerable to
perturbations and nonuniformities.

In the search for alternative platforms to serve as exper-
imental test beds for investigating topological states, lattice
arrays with lossless electrical components such as induc-
tors and capacitors known as topolectrical (TE) circuits have
emerged as a frontrunner [23,27,29,58–72], as they offer bet-
ter ability for tuning and modulating the system parameters.
Because TE circuits are not constrained by physical dimen-
sionality but rely solely on the mutual connectivities between
the voltage nodes, HOTIs and higher-order gapless systems
[39,40,73,74] (i.e., HODSMs and HOWSMs) can be readily
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implemented using conventional electrical components. The
gapless points in HODSMs and HOWSMs are protected by
crystal symmetries and the WPs are connected by higher-
order hingelike Fermi arc states rather than conventional
surface arc states [39]. This suggests that highly robust hinge
states can be achieved on the TE platform.

In this paper, we propose TE circuit networks that host
HOWSM and HODSM nontrivial states that can be switched
on and tuned solely by the choice of circuit parameters. We
first construct a prototypical 2D TE circuit model, which ex-
hibits a 2D quadrupole phase. To realize the gapless HOWSM
and HODSM phases, we then stack copies of the 2D circuit
lying on the x-y plane on top of one another along the z direc-
tion and couple the adjacent layers diagonally via a common
stacking capacitor Cz. The stacking capacitor has the effect of
modifying the intra- and intercell hopping in the effective 2D
Laplacian as well as introducing an additional kz dependence.
Because the 3D circuit still obeys time-reversal and inversion
symmetry, the circuit hosts pairs of DPs with higher-order
topology. These symmetries can be broken by introducing
a non-reciprocal resistive coupling that connects the nodes
within a unit cell diagonally on the x-y plane. The symmetry
breaking results in the emergence of first- and second-order
WPs connected by a zero-admittance flat band, similar to
surface and hinge Fermi arcs [75,76], respectively. A tilting
capacitor Ct that connects the same types of nodes along the
z axis can be further introduced to give rise to a tilted admit-
tance dispersion while retaining the higher-order topology. A
signature of these higher-order topologies is the localization
of the squared amplitude of the nodal voltages, which is the
TE equivalent of the quantum mechanical particle density,
along the hinges of a 3D system having a nanowire geometry,
i.e., with open boundary conditions (OBCs) along two dimen-
sions. Finally, the chiral symmetry of the circuit lattice can
be broken by introducing loss (positive resistance) and gain
(negative resistance) terms between the same type of nodes in
adjacent layers. This will result in the emergence of midgap
chiral surface and hinge states in the midgap of the admit-
tance spectra. These chiral modes are resilient against system
perturbations and disorders. Therefore, both first- and second-
order chiral states can be induced in the proposed TE circuit
without any external magnetic field. These higher-order topo-
logically nontrivial chiral states may find many applications
in fault tolerant quantum computing [77], robust signal multi-
plexing [78], and dissipationless interconnects [79].

II. RESULTS

A. Topolectrical model

To realize higher-order topological gapless states, we con-
sider a 3D TE circuit consisting of inductors, capacitors,
resistors, and operational amplifiers, as shown in Fig. 1. The
TE circuit has a unit cell [indicated by the dashed box in
Fig. 1(a)] consisting of four sublattice nodes denoted as 1,
2, 3, and 4. The intracell and intercell couplings on the x-y

plane are given by the capacitances of C1 and C2, respectively.
The coupling strength linking nodes 4-1-4 in the y direction
has a negative sign, denoting the inductive nature of the cou-
pling (i.e., −|Ci| = (ω2Li )−1, where ω is the frequency of the
driving alternating current in the circuit). Additionally, the
resistive couplings between the diagonal nodes within a unit
cell are nonreciprocal and direction dependent, and are given
by iRd (−iRd ) for the solid (dashed) lines [Fig. 1(a)], where
the resistive couplings in capital letters (e.g., Rj) are related to
the physical resistance r j through Rj = 1/(iωr j ). Note that
the positive and negative resistive elements in a TE circuit
correspond to loss and gain terms in quantum mechanics. The
π -phase shift or change of sign in the resistive coupling can
be achieved by using the impedance converter setup shown in
Fig. 1(b). The combination of two identical resistors r1 and
an ideal operational amplifier with supply voltages V +

dd and
V −

dd effectively changes the resistance between nodes P and Q
from ra to −ra, thus behaving as a negative resistance con-
verter with a resistive coupling of −iRa (see Appendix A 1 for
more details). These nonreciprocal loss (iRd ) and gain (−iRd )
terms are crucial in breaking the time reversal symmetry of
the circuit to allow the system to host higher-order WPs, as
will be discussed later.

To induce the higher-order gapless states with richer topo-
logical properties compared to their first-order counterparts,
it is necessary to extend the TE circuit vertically in the z
direction by stacking the two-dimensional (2D) x-y layers of
the circuit shown in Fig. 1(a). The nodes in the unit cell are
coupled diagonally in the x-z plane to the adjacent layer by a
common capacitor Cz [see Fig. 1(c)]. The diagonal couplings
within a unit cell on the y-z plane, which are of strength −Cz,
are provided by an inductor [see Fig. 1(d)]. These interlayer
couplings of ±Cz effectively modify the intracell couplings
of the original admittance matrix of the 2D x-y circuit layer
from C1 → C1 + 2Cz cos kz if we regard the vertical wave
vector kz as a model parameter. This modification translates
the circuit Laplacian into a mathematically equivalent 2D
SSH model, as will be discussed later. Additionally, the same
types of nodes are connected to the adjacent vertical layers by
a common tilting capacitance Ct . Aside from the interlayer
capacitive and inductive couplings, there are also resistive
ones. Nodes 1 and 4 (nodes 2 and 3) are connected to the
corresponding nodes in the upper adjacent layer by a positive
(negative) resistive coupling iRc (−iRc), respectively. These
resistive couplings adopt the opposite sign when coupling to
the lower adjacent layer [see Figs. 1(c) and 1(d)]. Finally, all
the electrical nodes are connected to ground by a common
inductor L and capacitor C [see Fig. 1(e)]. The capacitance C
plays the role of the eigenenergy analogous to the Schrödinger
equation [23,61,63], while the common inductance L allows
tuning of the resonant frequency of the circuit. The other ca-
pacitors and resistors connecting each node to the ground [see
Fig. 1(e)] ensure that the diagonal elements in the Laplacian
matrix have the desired form as presented later in Eq. (1) [23].

The TE circuit depicted in Fig. 1 can be described in
reciprocal space by the four-band circuit Laplacian,

Y (ω, k) = iω((C1 + C2 cos kx )σx ⊗ σ0 + C2 sin kxσy ⊗ σz + (C1 + C2 cos ky)σy ⊗ σy)

+ (C2 sin kyσy ⊗ σx + iR1γ1 − (2(C1 + C2) − (ω2L)−1)σ0 ⊗ σ0) + Yz(kz, ω), (1)
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FIG. 1. Schematic of a TE circuit hosting higher-order semimetal states. (a) Cross section of the TE lattice model on the x-y plane. The
blue, green, orange, and magenta circles represent the 1, 2, 3, and 4 sublattice sites or nodes, respectively. The dashed rectangle delineates a unit
cell. The cartoon at the left of the lattice model schematically illustrates the crystal plane depicted. The intracell and intercell couplings along
the x and y axes are given by capacitors C1 and C2, respectively. Note that there is an additional π -phase shift in the coupling linking the 4-1-4
nodes along the y axis compared to that linking the 2-3-2 nodes. The negative capacitance represents a frequency-dependent inductance (i.e.,
−Ci = (ω2Li )−1). Nonreciprocal resistive couplings ±iRd link diagonal nodes within the unit cell, giving rise to the breaking of time-reversal
symmetry which is a requirement in realizing the Weyl-semimetal phase. (b) Negative impedance converter for providing an extra phase shift
of π (change of sign) to the impedance and therefore converting a lossy resistive term Ra to a gain term −Ra. (c) Cross section of the TE lattice
model on the x-z plane with the cut line at two different positions. The circuit is extended along the vertical z direction by stacking layers of
the circuit lattice on the x-y plane described in (a) using capacitors, inductors, and resistors. Nodes 2 and 4, which are diagonal to each other,
are connected by a common capacitor Cz. (d) Cross section of the TE lattice model on the y-z plane with the cut line at two different positions.
The diagonal nodes of the cut lines along the 4 − 1 − 4 and 2 − 3 − 2 nodes are connected by an inductor −Cz and capacitor Cz, respectively.
Note that, for (c) and (d), the same type of nodes are connected along z axis by a resistive element Rc with alternating signs and a tilting
capacitance Ct . (e) Grounding mechanism of the TE circuit for all four types of nodes. The common grounding capacitor C serves the role of
the eigenenergy while the common inductor L is added to make the momentum-independent diagonal elements in the Laplacian matrix zero,
which is analogous to setting the on-site energy to zero for a condensed matter tight-binding Hamiltonian.
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where Yz(ω, kz ) is given by

Yz(ω, kz ) = iω(2Cz cos kz(σx ⊗ σ0 + σy ⊗ σy))

+ (2Rc sin kzσz ⊗ σz + 2Ct cos kzσ0 ⊗ σ0

− 4Czσ0 ⊗ σ0), (2)

where σi denotes the ith Pauli matrices in the sublat-
tice space, σ0 is the 2×2 identity matrix, γ1 = (σy ⊗ σx )
(σy ⊗ σz ), Ci(−Ci ) is the coupling capacitance (inductance),
and R1 and Rc are the resistive coupling strengths that
break time-reversal and chiral symmetry, respectively. We
set the resonant frequency in such a way that the k-
independent coefficients of the identity matrix vanish (i.e.,
ωr = 1/

√
2L(C1 + C2 + 2Cz )). This is equivalent to setting

the on-site energy to zero at each lattice site in a tight-binding
Hamiltonian [80].

As we shall show in the remainder of this paper, in general,
Eq. (1) describes a 3D Weyl semimetal system that hosts
multiple band-touching WPs. Each of these WPs may be
a first-order WP, at which the system switches between a
first-order Chern insulator and a topologically trivial phase,
or a second-order WP, in which the system switches between
a first-order Chern insulator phase and a 2D second-order
quadrupole topological insulator phase. For some parame-
ter ranges, the system may contain a mixture of first- and
second-order WPs and therefore present a hybrid phase where
topologically trivial, and first and second-order 2D topologi-
cal phases exist at different kz values.

B. Higher order Dirac semimetals: R1 = 0, Rc = 0, Ct = 0

In the absence of the resistive couplings and the tilting ca-
pacitance Ct and at resonant frequency, the TE circuit satisfies
chiral, inversion, reflection (across all three of the x, y, and
z axes) and mirror rotation symmetries. Mathematically, the
circuit Laplacian in Eq. (1) satisfies the following:

CY (ωr, kx, ky, kz )C−1 = −Y (ωr, kx, ky, kz ),

IY (ωr, kx, ky, kz )I−1 = Y (ωr,−kx,−ky,−kz ),

TY (ωr, kx, ky, kz )∗/(iω)T−1 = Y †(ωr,−kx,−ky,−kz )/(iω),

MxY (ωr, kx, ky, kz )Mx
† = Y (ωr,−kx, ky, kz ), (3)

MyY (ωr, kx, ky, kz )My
† = Y (ωr, kx,−ky, kz ),

MzY (ωr, kx, ky, kz )Mz
† = Y (ωr, kx, ky,−kz ),

MxyY (ωr, kx, ky, kz )Mxy
† = Y (ωr, ky, kx, kz ),

where C, I, T , Mi, and Mxy are the chiral, inversion, time
reversal, reflection about the ith axis with i ∈ {x, y, z}, and
xy mirror-rotation (i.e., about the x̂ + ŷ direction) operators,
respectively.

In terms of the Pauli matrices, these operators are explic-
itly given by C = σz ⊗ σ0, I = σ0 ⊗ σy, T = σ0 ⊗ σ0,Mx =
σx ⊗ σz,My = σx ⊗ σx, andMz = σ0 ⊗ σ0.

In our subsequent analysis of the system, we will also
occasionally find it useful to treat kz as a tunable parameter
rather than referring to a spatial dimension, i.e., we regard
Y (ωr, kx, ky, kz ) as describing a quasi-2D system in x and y
indexed by the parameter kz. In a TE context, this can always
be realized by interpreting Eq. (1) as the Laplacian for a 2D

circuit in which the Yz(ω, kz ) term is now an on-site potential
parameterized by the tunable parameter kz, which is realized
in the circuit by connecting capacitors, inductors, and resistors
with the appropriate values at each voltage node to the ground.

Taking kz as a parameter in this way, Y (ωr, kx, ky, kz ) is
also symmetric under the 2D particle–hole conjugation (P2D),
time-reversal (T2D), and chirality C2D operations,

P2DY (ωr, kx, ky, kz )trP−1
2D = −Y (ωr,−kx,−ky, kz ), (4)

T2DY (ωr, kx, ky, kz )∗/(iω)P−1
2D = Y (ωr,−kx,−ky, kz )/(iω),

(5)

C2DY (ωr, kx, ky, kz )trC−1
2D = −Y (ωr,−kx,−ky, kz ), (6)

where P2D = σx ⊗ σ0, and T2D and C2D have the same forms
as T and C, respectively. The quasi-2D system hence be-
longs to the BDI Altland-Zimbauer (AZ) class [81], for which
the first-order topological states are not characterized by any
topological invariant.

In the absence of the resistive couplings and tilting capac-
itance Ct , the admittance eigenvalues of Eq. (1) for the bulk
periodic system take the form of

J (ω, kx, ky, kz )

= ±ω

√∑
i=x,y

((C1 + 2Cz cos kz + C2 cos ki )2+(C2 sin ki )2).

(7)

The admittance band gap closes at (kx, ky, kz ) = (0, 0, κz
D1)

and (kx, ky, kz ) = (0, 0, κz
D2), where κz

D1 = ± cos−1(−C1+C2
2Cz

)
and κz

D2 = ± cos−1
(−C2−C1

2Cz

)
. We consider the

first case where the bands touch at κD1
z (a similar behavior

occurs for the other case where band gap closing occurs at
κD2

z ). If |C1 + C2| < |2Cz|, the inversion and time-reversal
symmetries guarantee the existence of pair of twofold
degenerate DPs in k space for the bulk admittance band
structure [see Fig. 2(a)]. The imposition of a finite width, i.e.,
OBCs, on this system along the x direction while retaining
periodic boundary conditions (PBCs) along the y and z
directions results in a nanoplate geometry. Surface edge states
localized near the x boundaries of the nanoplate now emerge
and connect the pair of DPs [see Fig. 2(b)]. These midgap
edge modes are Fermi arc states that connect two gapless
points with opposite topological charges in conventional
(first-order) Weyl semimetals [22,23].

Next, we now further impose a finite width on the y direc-
tion so that a nanowire geometry with OBCs in the x and y
directions and PBCs in the z direction is formed. The Fermi
arc states in the nanoplate geometry now become quantized
into subbands because of the geometrical confinement along
the y direction and no longer cross the gap [Fig. 2(c)]. A
nearly flat state linking the two DPs appears in the admittance
dispersion along the kz axis [see Fig. 2(c)]. This state is a
higher-order state because it emerges only when the system
is confined along two directions. Figure 2(d) shows that this
state is indeed a hinge state, using the example of the kz = 0
states—the square of the voltage amplitude (the analog of
the probability density) is localized along the corners of the
nanowire cross section.
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FIG. 2. (a) Admittance dispersion relation for the infinite (bulk) TE circuit model described in Eq. (1) at kx = 0. Clearly, there exists a
pair of Dirac points on the ky axis. (b) Admittance spectrum of the TE circuit in a nanoplate geometry consisting of 15 unit cells in the finite
x direction and PBC in the infinite y and z directions with ky = 0. Note the two Fermi arc edge states connecting the Dirac points. (c) The
admittance dispersion of the TE circuit in the nanowire geometry with PBCs along the z direction and OBCs in both the x and y directions.
Note the flat-band hinge state connecting two Dirac points. (d) Squared nodal voltage amplitude distribution of the kz = 0 hinge state in the
nanowire geometry. Only the nodes at the corner exhibit significant voltages, indicating the presence of topological conducting hinge states.
The cartoon on top of each panel indicates the confinement geometry (bulk, or confinement along one or two directions) considered in the
respective panel. The common parameters are C1 = −2 mF, C2 = 2 mF, Cz = 0.8 mF, Rc = 0, and Ct = 0.

Because the Laplacian obeys both chiral C and mirror
rotational symmetries Mxy [see Eqs. (3)], the Laplacian can
be transformed via a unitary transform into a block diagonal
form along the kx = ky = k high-symmetry line [13,33]. The
transformed Laplacian is given by

χ−1Y (ωr, k, kz )χ =
[
Y1(ωr, k, kz ) 0

0 Y2(ωr, k, kz )

]
, (8)

where χ is a unitary transformation. The diagonal elements of
the transformed block matrix [45] can be expressed as

Y1,2(ωr, k, kz ) = (C1 + 2Cz cos kz + C2 cos k)σx

+ η1,2C2 sin kσy, (9)

where, η1,2 = 1 (−1) for Y1 (Y2), respectively. [The fact that
the matrix in Eq. (8) is related to Y (ωr, k, kz ) via a unitary
transform can be verified by noting that they share the same
set of eigenvalues.] Interestingly, Eq. (9) represents a modified
SSH model with a kz-dependent intracell coupling. Therefore,
the resultant (4×4) admittance matrix in Eq. (8) can be re-
garded as two decoupled SSH blocks. If we consider kz as a
model parameter, the winding number (W) of the TE circuit,
which serves as its topological index, can be obtained (see
Appendix for details) as

W =
{

2, if
∣∣C1+2Cz cos kz

C2

∣∣ � 1

0, otherwise.
(10)
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The above results thus show that the parameter regime with
flat hinge states connecting the two DPs in Fig. 2(c) carries a
topological index of two, confirming its character as a higher-
order hinge Fermi arc. We can thus classify the circuit as a
HODSM.

C. Higher-order chiral hinge states in higher order topological
circuit array: R1 = 0, Rc �= 0, Ct = 0

In the previous section, we discussed the evolution of
HODSM phases in a LC circuit lattice. In this subsection, we
will study the effect of resistive coupling along the z direction
[in the form of a finite Rc in Eq. (1)] on the higher-order
topology of the circuit model. A nonzero Rc in Eq. (1)
corresponds to alternating iRc and −iRc couplings between
adjacent layers of the circuit along the z direction, as shown
in Figs. 1(b) and 1(c).

A finite Rc breaks the reflection symmetry in the x and
z directions, as well as the chiral symmetry. However, it
preserves inversion symmetry, as well as the reflection sym-
metry in the y direction. Treating the system as a quasi-2D
system, where kz is regarded as a tunable parameter rather
than a spatial dimension, Rc breaks the symmetry of the sys-
tem under the 2D particle-hole conjugation P2D and chirality
C2D operatons. The quasi-2D system hence belongs to the
AI Altlad-Zimbauer class, for which there is no first-order
topological invariant.

The finite Rc also breaks the degeneracy of the bulk admit-
tance dispersion such that the two pairs of twofold degenerate
bands in the admittance spectrum split into four nonoverlap-
ping bands, as shown in Fig. 3(a). (The presence of four bands
can be seen from the fact that there are two separate sheets
below the bulk band gap and two separate sheets above the
band gap.) Compared to the zero-Rc scenario shown in Fig. 2,
where the doubly degenerate band-touching DPs exist at only
two distinct points in k space that lie on the ky = 0 line, the
finite Rc results in the emergence of bulk WPs at four distinct
points in k space that are displaced away from ky = 0.

These WPs demarcate the ky boundaries of the k-space
region where band-touching points due to midgap states exist
when a finite width is introduced along the x direction to
form a nanoplate, as shown in Fig. 3(b). Figure 3(b) shows
the projection of the bulk WPs on the ky–kz plane (the four
circles) and the (logarithm of the) band gap where the dark
blue arc corresponding to very small magnitudes of the band
gap indicates the band-touching points of the midgap surface
states. Figure 3(c) shows an exemplary dispersion relation for
the nanoplate at the specific value of ky = 0, which is denoted
by the black dotted line in Fig. 3(b). Four distinct midgap
Fermi arc surface states are clearly evident in the dispersion
relation.

Finally, when OBCs are imposed in both the x and y direc-
tions and PBCs in the z direction to form a nanowire geometry,

a pair of chiral hinge states that crosses at kz = 0 and closes
the gap emerges. In both Figs. 2 and 3, where R1 = Rc = 0,
the preservation of time-reversal symmetry results in a net
Chern number of zero calculated by treating kz as a tunable
parameter at all kz values in the system despite the presence
of surface states in the nanoplate geometry. (More details on
the Chern number are provided in the Appendix A 2.) The
higher-order hinge states in both Figs. 2(c) and 3(d) can also
be characterized by the quantized quadrupole moment index
by treating the system as a quasi-2D system parameterized by
kz. In this case, the quadropole index has a finite value only
when the Chern number is 0 [39,82]. The absence of a finite
Chern number at all k points when R1 = Rc = 0 allows the
higher-order hinge states to coexist within the same kz ranges
as the first-order surface states, unlike the examples with a
finite Chern number due to broken time-reversal symmetry
that we study later.

D. Tilted chiral hingestates : R1 = 0, Rc �= 0, Ct �= 0

We consider the effects of tilting on the admittance band
dispersion. As can be seen from Eq. (1), a finite value of Ct

leads to a tilt in the dispersion. In Fig. 4, we plot the admit-
tance spectra as a function of kz for nonzero Ct . The presence
of tilt leads to a drastic modification of the edge and chiral
hinge states. Interestingly, the edge states survive even when
the whole spectra becomes overtilted when we consider a TE
system with OBCs in the x direction and PBCs in the y and z
directions [whose dispersion is shown in Fig. 4(a)]. However,
both edge states acquire the same sign of the admittance slope
in the vicinity of each DP.

The chiral hinge modes that emerge when OBCs are im-
posed on both the x and y directions show some peculiar
characteristics [see Fig. 4(b)]. The two chiral hinge states
propagate in a direction that is valley dependent. At kz = 0,
both chiral hinge modes have zero group velocity, but at finite
values of |kz|, they exhibit the same sign of the admittance
slopes, as shown in Fig. 4(b). In other words, the hinge states
in the K (K ′) valley propagate with positive (negative) group
velocities in the z direction. These overtilted higher-order
edge and hinge states can be termed as type-2 topological
states [61] and show a sharp contrast to the type-1 surface and
hinge states where both the K and K ′ valleys host states with
both positive and negative group velocities.

E. Higher-order chiral Weyl semimetals: R1 �= 0, Rc �= 0, Ct = 0

We will now construct a TE circuit model that hosts Chern
insulator states by breaking time-reversal symmetry through
the incorporation of finite nonreciprocal (R1) resistive
couplings into the circuit. From Eq. (1), we obtain the
kz-dependent admittance dispersion at (kx = ky = 0) as

J (ω, kz ) = ±ωR1 ± ω

√
2
(
(C1 + C2)2 + 2C2

z + R2
c + 4(C1 + C2)Cz cos kz + (

2C2
z − R2

c

)
cos(2kz )

)
. (11)

A finite R1 breaks the time-reversal, Mx, and My symmetries
while preserving the My and inversion symmetries. Treating

kz as a parameter rather than a spatial dimension, R1

preserves the symmetry of the system under 2D particle–hole
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FIG. 3. (a) Bulk admittance band dispersion for the TE model described in Eq. (1) with finite Rc at kx = 0. A nonzero value of Rc displaces
the Weyl points away from the ky axis. (b) Logarithm of the band gap in a nanoplate geometry with 15 unit cells along the x direction and
PBCs along the y and z directions. The dark blue arcs with large negative values correspond to the band-touching points of the Fermi arcs
on the ky-kz plane. The Fermi arcs terminate at the ky-kz plane projections of the bulk Weyl points, which are denoted as circles. The black
dotted line indicates ky = 0, at which the admittance spectrum in (c) is plotted. (c) Admittance spectrum of a circuit in (b) at ky = 0. (d) Chiral
topological hinge states appear when OBCs are imposed in both the x and y directions. The common parameters are C1 = −2 mF, C2 = 2 mF,
Cz = 0.8 mF, Rc = 0.8 mF, and Ct = 0.

conjugation P2D but breaks chiral symmetry under C2D.
The quasi-2D system hence belongs to the D AZ class.
When a finite Rc is further imposed on the system on top of
the finite R1, the inversion and conjugation symmetries
are broken as well, and the quasi-2D system belongs
to the A AZ class. The first-order topology of both the
A and D AZ classes can be characterized by the Chern
number.

The broken TRS symmetry due to R1 allows for the
emergence of WPs that demarcate the boundaries between
first-order topologically nontrivial Chern insulator phases and
either the topologically trivial phase or the 2D quadruopole
insulator phase. When R1 �= 0, the system hosts a pair of WPs
at (0, 0, kWeyl

z ), where kWeyl
z is the resistive element-dependent

position of the WPs on the kz axis and is given by

kz = ± cos−1

(
− (C1 + C2)Cz

2C2
z − R2

c

±1

2

2C2
z R2

1 + R2
c (2C1 + C2)2 − 8C2

z − R2
1 + 4R2

c

)
(
2C2

z − R2
c

)2

)
.

(12)

To explain the role of the nonreciprocal resistive element R1

on the behavior of the WP, we can further simplify Eq. (12)
by considering the case where Rc = 0,

kz = ± cos−1

(
−2(C1 + C2) + η

√
2R1

4Cz

)
, (13)
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FIG. 4. Type-2 chiral modes in TE model with a finite tilting capacitance Ct . (a) Surface admittance spectra for a TE circuit with OBCs
in the x direction with 15 unit cells, and PBCs in the y and z directions at ky = 0. (b) Admittance dispersion exhibiting type-2 hinge modes
in a TE circuit with OBCs in both the x and y directions (with 15 unit cells along both these directions). Note that the two chiral hinge states
propagate in a valley-dependent direction, i.e., they exhibit only positive (negative) group velocity in the z direction at the K (K ′) valley. The
common parameters are C1 = −2 mF, C2 = 2 mF, Cz = 0.8 mF, Rc = 0.2 mF, R1 = 0 mF, and Ct = 2.75 mF.

where η can take the values of ±1. The two possible values for
η correspond to two different types of WPs with distinct Fermi
arc behavior, which we refer to as first-order and second-order
WPs for reasons that will become apparent shortly. Depending
on whether real solutions for kz exist for only η = 1, only
η = −1, or both η = ±1, we will obtain pairs of only first-
order WPs, only second-order WPs, or both types of WPs,
respectively.

We first consider the case where Eq. (13) has real solutions
only for η = +1. Figure 5(a) shows the dispersion relation for
an exemplary set of parameters for which this condition holds
in a nanoplate geometry with OBCs along the x direction
and PBCs along the y and z directions at ky = 0. A pair of
midgap surface states with a nearly flat dispersion crosses
the band gap at large values of |kz|. Figure 5(b) shows (the
logarithm of) the band gap magnitude on the ky–kz plane and
the projections of the two bulk WPs. The dark blue regions
lying on the ky axis, which represent very small magnitudes
of band gap, correspond to the minimum energy difference
between the hole- and particlelike surface states. In particular,
the hole- and particlelike surface states touch along a certain
pair of ±kz values lying on the ky axis, where the band gap
tends towards 0. The kz values of the projections of the bulk
WPs, which are denoted by the horizontal dotted lines, demar-
cate the boundaries of the regions at which the surface states
exist. These bulk WPs are band-touching points at which the
system undergoes topological phase transitions between the
first-order topologically nontrivial phase with a finite Chern
number and midgap states, and either the topologically trivial
phase, at which no midgap states exist, or the second-order
quadrupole TI phase, at which midgap states exist only in the
nanowire geometry but not the nanoplate geometry. The WPs
in Fig. 5 are first-order WPs because they mark transitions
between the first-order topological and topologically trivial
phases. The absence of second-order midgap states in this

system can be seen from the absence of midgap hinge states
that cross the band gap in the nanoplate geometry [Fig. 5(c)]
and the large magnitude of the band gap in Fig. 5(d).

We now consider the effects of setting Rc to a finite
value for the same parameter settings as in Figs. 5(a)–5(d).
Figure 5(e) shows the admittance relation in the nanoplate
geometry at ky = 0. Similar to the Rc = 0 case, a pair of
surface states is present at large |kz| values. Compared to
the Rc = 0 case, the surface states in the finite Rc case evi-
dently have a larger kz dispersion, and the minimum energy
difference between the hole- and particlelike states shown in
this plot occurs at kz = ±π . From the plot of the logarithm
of the band-gap magnitude across the entire ky–kz plane in
Fig. 5(f), it can be seen that these trends can be attributed to
the shifting of the minimum energies of the midgap surface
states away from the ky axis (except at kz = ±π ) induced by
the finite Rc. In particular, the zero-energy states where the
hole- and particlelike surface states touch do not lie on the
ky = 0 line, but rather at a pair of ±|ky| values with finite
magnitudes. Figure 5(f) also shows that, although the bulk
WPs are displaced away from the ky = 0 line by the finite Rc,
the kz values of the bulk WPs still demarcate the boundaries
of the kz ranges at which surface states exist. Figures 5(g) and
5(h) show that second-order hinge states are still absent in the
nanowire geometry even after the introduction of a finite Rc.

In comparison, Fig. 6 shows the counterpart to Fig. 5 for
a parameter set where Eq. (13) has solutions only for η = −1
at Rc = 0. Similar to Figs. 5(a) and 5(b), Figs. 6(a) and 6(b)
show that first-order surface states exist in a nanoplate geom-
etry within a kz region bounded by the projections of the bulk
WPs. The kz range that hosts the surface states corresponds to
that in which the Chern number has a finite value, while the
kz values of the bulk WPs are those where phase transitions
between topological phases with 0 and finite Chern numbers
occur when the bulk band gap closes at the WPs. In contrast

085430-8



CHIRAL SURFACE AND HINGE STATES … PHYSICAL REVIEW B 109, 085430 (2024)

FIG. 5. Evolution of the admittance band structure of the circuit model in Eq. (1) with nonzero resistive elements when only η = +1
solutions exist for Eq. (13). (a) Admittance spectrum of a TE circuit exhibiting only first-order chiral states with a finite R1 and zero Rc with
15 unit cells along the x direction and PBCs along the y and z directions at ky = 0. The presence of gap-crossing surface states is evident at
large |kz| values. (b) The logarithm of the band gap on the kz–ky plane for the system in (a). The two black circles denote the projections of the
bulk Weyl points on the kz–ky plane. The kz values of these points demarcate the boundaries at which surface states, which correspond to the
dark blue areas, indicating small values of band gaps, exist in the nanoplate geometry. The vertical black dotted line denotes the ky = 0 line
that (a) is plotted for. (c), (d). The (c) admittance spectrum and (d) logarithm of the band gap for the system in (a) in a nanowire geometry with
OBCs along the x and y directions and PBCs along the z direction. The horizontal black lines in (c) and (d) denote the kz values of the bulk
Weyl points. No chiral hinge states emerge in the admittance spectrum in (c), which is further corroborated by the relatively large magnitude
of the band gap for all values of kz. (e)–(h) are the counterparts of (a)–(d) for a system with the same parameters as (a)–(d) except that Rc now
has a finite value of 0.2 mF. The common parameters are C1 = −1 mF, C2 = 2 mF, Cz = 0.4 mF, R1 = 1.414 mF, and Ct = 0 mF.

to Figs. 5(c) and 5(d), Figs. 6(c) and 6(d) show that the bulk
WPs at η = −1 are marked by the emergence of second-order
chiral hinge states that cross the bulk band gap [the fact
that these hinge states cross the bulk gap can be seen from
Fig. 6(d), where the logarithm of the band gap approaches
−∞ at kz = 0]. These hinge states occur in the kz ranges
where the Chern number is zero and there are no first-order
surface states. These WPs are therefore second-order WPs.
Figures 6(e)–6(g) show the counterparts to Figs. 6(a)–6(d)
when a finite Rc of 0.2 is applied. Similar to its effects in
Figs. 5(e) and 5(f), the Rc displaces the minimum energies of
the surface states and their band-touching points away from
the ky axis. This results in the surface states having a larger z

dispersion in Fig. 6(e) and the minimum energy separation
between the hole- and particlelike surface states occurring
away from ky = 0 in Fig. 6(f). Figures 6(g) and 6(h) show
that the higher-order chiral hinge states that emerge in the

nanowire geometry are still present even when a finite Rc is
introduced.

The systems in Figs. 5 and 6 serve as specific examples
that band-gap closing at the bulk WPs leads to phase tran-
sitions between topological phases with and without a finite
Chern number. In these systems with broken time-reversal
symmetry due to a finite R1, the topological phases with fi-
nite Chern numbers host first-order topological surface states
but no second-order hinge states. The phases with a Chern
number of 0 may either be topologically trivial and host no
first- or second-order topological zero modes (e.g., the small
|kz| region in Fig. 5), or have a finite QTI index and host
second-order hinge states but no first-order surface states (e.g.,
the small |kz| region in Fig. 6). Besides the WPs at various
values of kz and kx = ky = 0 considered earlier, WPs may
also exist at kx, ky = ±π depending on the values of C1, C2,
Cz, and R1 when Rc = Ct = 0. This implies that the system
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FIG. 6. Evolution of the admittance band structure of the circuit model in Eq. (1) with nonzero resistive elements when only η = −1
solutions exist for Eq. (13). (a) Admittance spectrum of a TE circuit with a finite R1 and zero Rc with 15 unit cells along the x direction and
PBCs along the y and z directions at ky = 0. The presence of midgap surface states is evident at large |kz| values. (b) The logarithm of the
magnitude of the band gap on the kz–ky plane for the system in (a). The two black circles denote the projections of the bulk band-touching Weyl
points on the kz–ky plane. The kz values of these points demarcate the boundaries at which surface states, which correspond to the dark blue
areas with small values of band gaps, exist in the nanoplate geometry. The vertical black dotted line denotes the ky = 0 line that (a) is plotted
for. (c), (d) (c) The admittance spectrum and (d) logarithm of the band gap for the system in (a) in a nanowire geometry with OBC along
the x and y directions and PBCs along the z direction. The horizontal black lines in (c) and (d) denote the kz values of the bulk Weyl points.
Gap-closing chiral hinge states are evident in the admittance spectrum in (c) at the kz range where no surface states exist in the nanoplate
geometry. The presence of these chiral states is further corroborated by the small magnitudes of the band gap for all values of kz. (e)–(h)
The counterparts of (a)–(d) for a system with the same parameters as (a)–(d) except that Rc now has a finite value of 0.2 mF. The common
parameters are C1 = 2.5 mF, C2 = 2 mF, Cz = 0.4 mF, R1 = 1.414 mF, and Ct = 0 mF.

may undergo multiple or no phase transitions as kz is varied
while the other parameters are fixed. Fig. 7(a) shows the kz–C1

phase diagram for a parameter set that encompasses those in
Figs. 5(a)–5(d) and 6(a)–6(d). For this set of parameters, there
are at zero or two WPs at each value of C1, and the QTI
(quadrupole TI) regions on the C1–kz plane are sandwiched
by the 1CI (first-order Chern insulator) regions. The phase
transitions that occur with the variation of kz in this system
therefore occur only between the 1CI and topologically trivial
phases, for example, at C1 = −1 mF as shown in Fig. 5, or
between the QTI and 1CI phases, for example, at C1 = 2.5 mF
as shown in Fig. 6. There are also values of C1 at which there
there are no WPs and hence no phase transitions, such as in
the C1 = 2 mF case shown in Figs. 7(b) and 7(c), which is a
1CI phase for all values of kz. Figure 7(b) shows that there
are two topological zero modes on the ky = 0 line belonging

to two pairs of surface-state bands that are separated along
the kz axis in this case when a nanoplate geometry is imposed
on the system, while the large magnitudes of the band gap
in the nanowire geometry in Fig. 7(c) show that there are no
second-order hinge states in the system. Figure 7(e) shows
the phase diagram for another set of parameters for which
there may now be multiple pairs of WPs at different values
of kz for a given value of C1. For example, Fig. 7(d) and the
projections of the WPs on the ky–kz plane in Fig. 7(e) show
that as kz is varied from π to 0 at C1 = 1.5, three WPs at
ky = 0 or ky = ±π are crossed, between which the system
switches from the 1CI to the QTI phase, QTI phase back to
the 1CI phase, and the 1CI phase to the topologically trivial
phases. These phases are corroborated by the magnitudes of
the band gaps for the nanoplate geometry in Fig. 7(e), where
dark blue spots corresponding to surface state topological
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FIG. 7. kz–C1 plane phase diagram. (a) Phase diagram for a system with C2 = 2 mF, Cz = 0.4 mF, R1 = 1.414 mF, and Ct = Rc = 0 mF.
The trivial (gray), first-order Chern insulator (1CI, blue), and second-order quadrupole TI (QTI, green) phases are denoted in different colors.
The black lines at the boundaries between the different phases denote the kz values of the bulk WPs at the given value of C1. The vertical
white dotted lines at C1 = −1 and C1 = 2.5 mF denote the first- and second-order WP systems shown in Figs. 5 and 6, respectively, while
the black dotted line at C1 = 2 mF denotes the C1 value of 1CI phase shown in Fig. 6. (b) The logarithm of the band gap for an exemplary
first-order Chern insulator system with the parameters shown in (a) and C1 = 2 mF in a nanoplate geometry with OBCs along the x direction
and PBCs along the y and z directions. There are two topological-zero energy states indicated by the dark blue spots on the ky = π line
indicated by the white dotted line. The inset shows the dispersion of the surface states at ky = π plotted on a linear admittance scale. There
are no bulk WPs for this parameter set. (c) The logarithm of the band gap when a nanowire geometry with OBCs along the x and y directions
are imposed on the system and PBCs along the z direction. The large magnitudes of the band gap indicate the absence of higher-order hinge
states in the system. (d) The phase diagram for a system with C2 = 2 mF, Cz = 2 mF, R1 = 1.414 mF, and Ct = Rc = 0 mF. The black dotted
line at C1 = 1.5 denotes the C1 value of the system hosting both first- and second-order WPs in (e). (e) The logarithm of the band gap for
an exemplary first-order Chern system with the parameters shown in (d) and C1 = 1.5 mF in a nanoplate geometry with OBCs along the x
direction and PBCs along the y and z directions. The black dotted lines indicate the kz values of the bulk WPs, the projections of which on
the ky–kz plane are indicated by the circles. These lines form the boundaries between regions where surface states, indicated by the dark blue
streaks corresponding to small values of band gaps, are present or not present. (f) The logarithm of the band gap for a nanowire geometry with
OBCs along the x and y directions and PBCs along the z direction. The very small magnitudes of the band gaps around kz ≈ ±2 indicate the
presence of hinge state zero modes at these kz values.

zero modes are present in the 1CI kz ranges bounded by the
WPs, and by the small magnitudes of the band gaps for the
nanowire geometry in Fig. 7(f), corresponding to topological
zero modes of the hinge states in the QTI phase in kz ranges
sandwiched between those of the 1CI phase. This system is
therefore a hybrid chiral hinge system that hosts both first-
and second-order WPs simultaneously.

In summary, we have realized both topological first- and
second-order chiral states and Weyl semimetallic phases by
varying electrical resistive parameters in a TE circuit without
the requirement of any external magnetic fields. Higher-order

topologically nontrivial systems (which include topological
insulators and Weyl and Dirac semimetals) host distinct hinge
states that are expected to be robust against perturbations
because the direction of their propagation is locked to their
pseudospin. They are also applicable to the study of Majorana
fermions, which are actively being investigated for applica-
tions in fault-tolerant quantum computing [77]. This robust
unidirectional property, in which current flow is allowed in
only one direction along a hinge, implies that a chiral hinge
current excited at one hinge in a cuboid circuit cannot flow
into another hinge situated diagonally opposite from the hinge
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being excited [78,83]. This property can therefore be exploited
for robust topological signal multiplexing by utilizing the mul-
tiple discrete degrees of freedom in the system [79]. Finally,
HOWSM states with hinge states open the possibility for
robust dissipationless interconnects [67] and analogs of truly
1D superconducting nanowires [84].

III. CONCLUSION

In this paper, we proposed a tunable scheme to realize var-
ious topological and chiral phases in a TE network consisting
of basic electrical components such as resistors, inductors,
and capacitors. We first constructed the circuit model for a
2D quadrupole topological insulator using these basic com-
ponents. We then extended the original 2D TE circuit in the
vertical z direction by stacking copies of the 2D circuits one
on top of another. By coupling the nodes in adjacent layers
diagonally using a common stacking capacitor Cz, we can
modulate the intra- and intercell coupling of the effective
2D Laplacian to realize a richer set of topological proper-
ties associated with gapless states in 3D. For instance, we
obtained a flat band with higher-order hinge states that con-
nect two gapless nodes together. The gapless nodes exhibit
Dirac or Weyl semimetalic characteristics depending on the
circuit symmetries. Interestingly, the chiral symmetry of the
hinge states can be broken by adding resistive couplings be-
tween equivalent nodes on adjacent layers. In this case, two
hinge states survive and propagate with positive and negative
group velocities in the z direction. Furthermore, by incor-
porating tilting capacitances, both chiral modes in a given
valley can be made to propagate in the same direction but
opposite to that of the corresponding modes in the other valley.
The flat-band edge and hinge states in these 3D layered TE
circuits may find applications in sensors with high sensitiv-
ity and ultralow dissipation, owing to their tunability and
chirality.
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APPENDIX

1. Negative resistance converter with current inversion
and dynamic stability of op-amps

To induce a negative imaginary on-site potential (i.e.,
gain term) in the TE circuit array, we use the unity gain
operational amplifier (op-amp) circuit shown in Fig. 8 to
provide an additional π phase modulation with respect to the
original resistance value. The circuit comprises two feedback
capacitors with the same capacitance Ca, an operational

FIG. 8. Illustration of a simple negative resistance converter with
current inversion.

amplifier, and a resistance R. The relation between the input
current and the voltage along the forward (node p to q) and
backward (node q to p) directions can be expressed in the
matrix form (

Ipq

Iqp

)
= 1

R

(
−1 1

−1 1

)(
Vp

Vq

)
, (A1)

where Ii j and Vi denote the current passing from the ith to the
jth node and the voltage at the ith node respectively. From
Eq. (A1), we can easily obtain

Ipq = −Iqp = −Vp − Vq

R
. (A2)

Therefore, for the coupling from node p to q, the resistance
will acquire a phase of π relative to the coupling from node
q to p, and behave as a negative resistor with a value of −R.
If we replace the resistance by an inductance or capacitance
or a combination of a resistance and capacitance, Eq. (A1)
translates to a general schematic of a negative impedance
converter with current inversion.

2. Topological invariants

a. Winding number

As explained in the main text, the circuit Laplacian de-
scribed in Eq. (1) at resonant frequency but without tilting
capacitance (i.e., Ct = 0) respects both chiral and mirror ro-
tational symmetry around the xy plane. The Laplacian can
therefore be transformed into a block diagonal form along a
high symmetry line (i.e., kx = ky = k) after a simple unitary
transformation,

χ−1Y (ωr, k, kz )χ =
[

Y1(ωr, k, kz ) 0

0 Y2(ωr, k, kz )

]
, (A3)

where Y1(ωr, k, kz ) and Y2(ωr, k, kz ) are given by

Y1(ωr, k, kz ) = (C1 + 2Cz cos kz + C2 cos k)σx + C2 sin kσy

(A4)

and

Y2(ωr, k, kz ) = (C1 + 2Cz cos kz + C2 cos k)σx − C2 sin kσy,

(A5)

and χ is the unitary transformation matrix. If we consider kz

as a tunable parameter, the winding number of Y1(ωr, k, kz )
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can be obtained explicitly as

W1 = − i

2π

∮
ψ†∂kψ dk

= 1

2π

∫ k=2π

k=0
dk

[
tan−1

(
sin k

C1+2Cz cos kz

C2
+ cos k

)]

= θ (C2 − (C1 + 2Cz cos kz )), (A6)

where θ is the Heaviside step function and ψ is the eigenstate
of Y1(ωr, k, kz ). Similarly, the winding number of Y2(ωr, k, kz )
can be calculated as

W2 = −θ (C2 − (C1 + 2Cz cos kz )). (A7)

Therefore, the resultant winding number of the 4×4 matrix in
Eq. (1) is given by

W =W1 −W2 =
{

2, if
∣∣C1+2Cz cos kz

C2

∣∣ � 1

0, otherwise,
(A8)

as shown in Eq. (10).

b. Chern number

For a quasi-2D system where kz is treated as a tunable
parameter rather than a spatial dimension, the Chern number
C at given value of kz is given by

C(kz ) = 1

2π

∫
d2k Tr

(
∂kx Aky (kx, ky; kz ) − ∂ky Akx (kx, ky; kz )

)
,

(A9)

where A is the Berry curvature matrix in which
the (m, n)th element, [Aki ]

m,n, is given by [Aki ]
m,n =

〈u(m)(kx, ky, kz )|∂ki u
(n)(kx, ky, kz )〉, and |u(m)(kx, ky, kz )〉 is

the mth eigenvector of the bulk Laplacian matrix Eq. (1).

c. Quadrupole TI index

Treating kz as a tunable parameter rather than a spatial
dimension, the quadrupole TI index for our system can be
defined by a pair of integers p(kz ) = (px(kz ), py(kz )) in which

px(kz ) = − 1

2π2

∫
dk Tr

(
Ãky (kx, ky; kz )

)
, (A10)

py(kz ) = − 1

2π2

∫
dk Tr

(
Ãkx (kx, ky; kz )

)
. (A11)

Here,[
Ãky

] j, j′ = −i
〈
w j

x (kx, ky; kz )
∣∣∂kyw

j
x (kx, ky; kz )

〉
, (A12)[

Ãkx

] j, j′ = −i
〈
w j

y (kx, ky; kz )
∣∣∂kx w

j
y (kx, ky; kz )

〉
, (A13)

and the |w j
(x,y)(kx,ky;kz )〉s are, in turn, the eigenvectors of the

Wannier bands below the Wannier gap. For the 4×4 system
considered here, |w j

x(kx,ky;kz )〉 is given by the eigenvector with
the smaller eigenvalue of

Wx(kx, ky; kz )

= lim
Ny→∞

Ny∏
ny=1

⎛
⎜⎝ ∑

j, j′∈occ

∣∣∣∣u( j)

(
kx, ky

+ 2πny

Ny
, kz

)〉 〈
u( j′ )

(
kx, ky + 2π (ny − 1)

Ny
, kz

)∣∣∣∣
⎞
⎟⎠,

(A14)
where the summation over j and j′ runs over only the eigen-
vectors with the two smallest eigenvalues, and Wy(kx, ky; kz ) is
defined analogously.

The QTI phase in our system corresponds to one where
both px(kz ) and py(kz ) have nonzero values, and the trival and
first-order Chern insulator phases one where both px(kz ) and
py(kz ) are zero.

The data and computer codes that support the plots and
other findings of this paper are available from the correspond-
ing author upon reasonable request.
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7, 294 (2013).
[21] S. M. Rafi-Ul-Islam, Z. B. Siu, C. Sun, and M. B. A. Jalil,

Phys. Rev. Appl. 14, 034007 (2020).
[22] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P.

Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai,
T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[23] S. Rafi-Ul-Islam, Z. B. Siu, C. Sun, and M. B. Jalil, New J.
Phys. 22, 023025 (2020).

[24] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201
(2013).

[25] S. M. Young and C. L. Kane, Phys. Rev. Lett. 115, 126803
(2015).

[26] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[27] S. M. Rafi-Ul-Islam, H. Sahin, Z. B. Siu, and M. B. A. Jalil,
Phys. Rev. Res. 4, 043021 (2022).

[28] K. Zhang, Z. Yang, and C. Fang, Nat. Commun. 13, 2496
(2022).

[29] S. M. Rafi-Ul-Islam, Z. B. Siu, and M. B. A. Jalil, Phys. Rev. B
103, 035420 (2021).

[30] T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska,
M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši et al.,
Phys. Rev. Res. 2, 023265 (2020).

[31] S. Longhi, Phys. Rev. Res. 1, 023013 (2019).
[32] M. Ezawa, Phys. Rev. B 100, 045407 (2019).
[33] S. Kempkes, M. Slot, J. van Den Broeke, P. Capiod, W.

Benalcazar, D. Vanmaekelbergh, D. Bercioux, I. Swart, and
C. M. Smith, Nat. Mater. 18, 1292 (2019).

[34] B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang,
M.-H. Lu, and Y.-F. Chen, Phys. Rev. B 98, 205147 (2018).

[35] A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133
(2012).

[36] Z. B. Siu, C. Yesilyurt, M. B. Jalil, and S. G. Tan, Sci. Rep. 7,
4030 (2017).

[37] D. I. Pikulin, A. Chen, and M. Franz, Phys. Rev. X 6, 041021
(2016).

[38] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Science
349, 613 (2015).

[39] Sayed Ali Akbar Ghorashi, T. Li, and T. L. Hughes, Phys. Rev.
Lett. 125, 266804 (2020).

[40] H.-X. Wang, Z.-K. Lin, B. Jiang, G.-Y. Guo, and J.-H. Jiang,
Phys. Rev. Lett. 125, 146401 (2020).

[41] Q. Wei, X. Zhang, W. Deng, J. Lu, X. Huang, M. Yan, G. Chen,
Z. Liu, and S. Jia, Nat. Mater. 20, 812 (2021).

[42] Z. Wang, D. Liu, H. T. Teo, Q. Wang, H. Xue, and B. Zhang,
Phys. Rev. B 105, L060101 (2022).

[43] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy,
B. Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603
(2014).

[44] B.-Y. Xie, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P. Zhan,
M.-H. Lu, Z.-L. Wang, and Y.-F. Chen, Phys. Rev. Lett. 122,
233903 (2019).

[45] T. Liu, Y.-R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda,
and F. Nori, Phys. Rev. Lett. 122, 076801 (2019).

[46] R. Süsstrunk and S. D. Huber, Science 349, 47 (2015).

[47] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.
Zhang, Phys. Rev. Lett. 114, 114301 (2015).

[48] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Adv. Phys. 56, 243 (2007).

[49] K. Sun, W. V. Liu, A. Hemmerich, and S. D. Sarma, Nat. Phys.
8, 67 (2012).

[50] Y. Zhang, Y. Kartashov, L. Torner, Y. Li, and A. Ferrando,
Opt. Lett. 45, 4710 (2020).

[51] Y. Chen, Z.-K. Lin, H. Chen, and J.-H. Jiang, Phys. Rev. B 101,
041109(R) (2020).

[52] E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Phys. Rev. B
99, 081302(R) (2019).

[53] X.-W. Luo and C. Zhang, Phys. Rev. Lett. 123, 073601
(2019).

[54] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, and M. B. A. Jalil,
Phys. Rev. B 106, 245128 (2022).

[55] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, C. H. Lee, and
M. B. A. Jalil, Phys. Rev. Res. 4, 043108 (2022).

[56] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, Md. S. H. Razo, and
M. B. A. Jalil, Phys. Rev. B 109, 045410 (2024).

[57] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner,
and W. T. Irvine, Proc. Natl. Acad. Sci. USA 112, 14495
(2015).

[58] N. A. Olekhno, E. I. Kretov, A. A. Stepanenko, P. A. Ivanova,
V. V. Yaroshenko, E. M. Puhtina, D. S. Filonov, B. Cappello,
L. Matekovits, and M. A. Gorlach, Nat. Commun. 11, 1436
(2020).

[59] H. Sahin, Z. B. Siu, S. M. Rafi-Ul-Islam, J. F. Kong, M. B. A.
Jalil, and C. H. Lee, Phys. Rev. B 107, 245114 (2023).

[60] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling,
L. Molenkamp, C. Lee, A. Szameit, M. Greiter, and R.
Thomale, Nat. Phys. 16, 747 (2020).

[61] S. M. Rafi-Ul-Islam, Z. Bin Siu, and M. B. A. Jalil,
Commun. Phys. 3, 72 (2020).

[62] T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W.
Molenkamp, and T. Kiessling, Phys. Rev. B 99, 161114(R)
(2019).

[63] S. Rafi-Ul-Islam, Z. B. Siu, and M. B. Jalil, Appl. Phys. Lett.
116, 111904 (2020).

[64] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T.
Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert et al.,
Nat. Phys. 14, 925 (2018).

[65] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, and M. B. A. Jalil,
Phys. Rev. Res. 5, 013107 (2023).

[66] C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys. 28,
1 (2018).

[67] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,
Phys. Rev. Lett. 122, 247702 (2019).

[68] S. Rafi-Ul-Islam, Z. B. Siu, and M. B. Jalil, New J. Phys. 23,
033014 (2021).

[69] J. Bao, D. Zou, W. Zhang, W. He, H. Sun, and X. Zhang,
Phys. Rev. B 100, 201406(R) (2019).

[70] S. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, C. H. Lee, and M. Jalil,
arXiv:2108.01366.

[71] X. Zhang, B. Zhang, H. Sahin, Z. B. Siu, S. M. Rafi-Ul-Islam,
J. F. Kong, B. Shen, M. B. A. Jalil, R. Thomale, and C. H. Lee,
Commun. Phys. 6, 151 (2023).

[72] S. M. Rafi-Ul-Islam, Z. B. Siu, H. Sahin, C. H. Lee, and
M. B. A. Jalil, Phys. Rev. B 106, 075158 (2022).

085430-14

https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1038/nature10871
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1103/PhysRevApplied.14.034007
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1088/1367-2630/ab6eaf
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.115.126803
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevResearch.4.043021
https://doi.org/10.1038/s41467-022-30161-6
https://doi.org/10.1103/PhysRevB.103.035420
https://doi.org/10.1103/PhysRevResearch.2.023265
https://doi.org/10.1103/PhysRevResearch.1.023013
https://doi.org/10.1103/PhysRevB.100.045407
https://doi.org/10.1038/s41563-019-0483-4
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1038/s41598-017-03991-4
https://doi.org/10.1103/PhysRevX.6.041021
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevLett.125.266804
https://doi.org/10.1103/PhysRevLett.125.146401
https://doi.org/10.1038/s41563-021-00933-4
https://doi.org/10.1103/PhysRevB.105.L060101
https://doi.org/10.1103/PhysRevLett.113.027603
https://doi.org/10.1103/PhysRevLett.122.233903
https://doi.org/10.1103/PhysRevLett.122.076801
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1038/nphys2134
https://doi.org/10.1364/OL.396039
https://doi.org/10.1103/PhysRevB.101.041109
https://doi.org/10.1103/PhysRevB.99.081302
https://doi.org/10.1103/PhysRevLett.123.073601
https://doi.org/10.1103/PhysRevB.106.245128
https://doi.org/10.1103/PhysRevResearch.4.043108
https://doi.org/10.1103/PhysRevB.109.045410
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1038/s41467-020-14994-7
https://doi.org/10.1103/PhysRevB.107.245114
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s42005-020-0336-0
https://doi.org/10.1103/PhysRevB.99.161114
https://doi.org/10.1063/1.5140516
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1103/PhysRevResearch.5.013107
https://doi.org/10.15625/0868-3166/28/1/11722
https://doi.org/10.1103/PhysRevLett.122.247702
https://doi.org/10.1088/1367-2630/abe6e4
https://doi.org/10.1103/PhysRevB.100.201406
https://arxiv.org/abs/2108.01366
https://doi.org/10.1038/s42005-023-01266-1
https://doi.org/10.1103/PhysRevB.106.075158


CHIRAL SURFACE AND HINGE STATES … PHYSICAL REVIEW B 109, 085430 (2024)

[73] B. Roy, Phys. Rev. Res. 1, 032048(R) (2019).
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