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Topological transitions and topological beam splitters in gyromagnetic metamaterials
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Topological transitions unveil a fundamentally novel pathway of research, revealing captivating optical
phenomena in electromagnetic metamaterials. In this work, we give comprehensive pictures of topological
phase diagrams and topological transitions in the gyromagnetic metamaterials (GMs). We comprehensively
demonstrate the topology of all types of equifrequency surfaces of the GMs. The Weyl points and the nodal
line can coexist in the GMs, and they are the critical points in the topological transitions. The localized Fermi arc
surface states exist at the boundary between the vacuum state and GMs owing to the bulk-edge correspondence
of the material system. Full-wave simulations reveal that topological surface waves can smoothly transmit
forward around the square defect without reflection or scattering. Remarkably, different types of topological
beam splitters are demonstrated utilizing the topological surface waves in the GMs. We theoretically demonstrate
that the physical mechanism of achieving the topological beam splitters is caused by different group velocity
directions of the Fermi arcs surface states of the material system. Moreover, the topological wave division and
controllable propagation of the Fermi arc surface states can be achieved by adopting the different boundary
configurations and gyromagnetic parameters in the topological beam splitters. Our work could broaden insights
into topological wave physics and provide more flexibility for photonic devices in the electromagnetic media.

DOI: 10.1103/PhysRevB.109.085429

I. INTRODUCTION

The topological phases of matter are protected by the
global characteristics of the band structure and have robust-
ness to the local perturbations (defects) [1–7]. Topological
phases possess nontrivial chiral edge states at the boundary
because of the bulk-edge correspondence [8–10]. The
research on topological phases in photonic systems originated
from solid-state materials, and then a lot of new topological
phases have been found and demonstrated experimentally,
such as the topological Chern vector [11], chiral zero mode
[12,13], and skyrmion surface state [14]. In particular, the
topological semimetals possess three different types due
to the dimensionality of the band structure degeneracies:
zero-dimensional (0D) Dirac and Weyl semimetals [15–19],
one-dimensional (1D) nodal line (chain/ring) semimetals
[20–23], and two-dimensional (2D) nodal surface semimetals
[24,25]. Recently, the photonic topological semimetals have
become a hot topic because of their fascinating application
prospects, including topological negative refraction [26,27],
copropagating Fermi arc surface states [28,29], and
topological switches [30]. Moreover, the nodal line (surface)
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semimetals can transform into the Dirac semimetals and
Weyl semimetals when symmetry-lowering mechanisms
(such as spin-orbit coupling) are introduced into the
system [31,32].

In photonic systems, the transmission of light in bulk
materials can be described by the equifrequency surface. It
is similar to the Fermi surface of electrons in the crystal
structures [33]. Different from the conventional ellipsoidal
and spherical shaped equifrequency surfaces studied in the
natural medium, the hyperbolic equifrequency surfaces of
singular types can be found in metamaterials [34–37]. Par-
ticularly, the hyperbolic equifrequency surfaces have distinct
dispersion features that are unattainable in the conventional
ellipsoidal and spherical equifrequency surfaces. The hy-
perbolic equifrequency surfaces have demonstrated several
unusual features, including subwavelength imaging, nega-
tive refraction, and spontaneous emission [34,36]. On the
other hand, different forms of equifrequency surfaces have
dissimilar topological characteristics. A new method to con-
trol light-matter interactions can be achieved by altering
the topology of equifrequency surfaces in electromagnetic
metamaterials [34]. In general, the ellipsoidal and spheri-
cal closed-shape equifrequency surfaces cannot be smoothly
transformed into the hyperbolic open-shape equifrequency
surfaces; i.e., the topological transitions occur during this
change process [34,36].
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In recent years, the topological beam splitters based on the
topological edge states in the phononic crystals and photonic
crystals have been proposed and studied [38–41]. Based on
the topological beam splitting effect, some interesting applica-
tions can be achieved in the topological phononic crystals and
photonic crystals, such as on-chip valley-dependent quantum
information [38], the topological valley Hall effect [40], and
temporal beam splitters [41]. However, phononic crystals and
photonic crystals generally rely on complex structures and
carefully designed geometric dimensions. By contrast, gyro-
magnetic metamaterials (GMs) are kinds of electromagnetic
metamaterials [42–45]. They are homogeneous continuum
media and the electromagnetic response of the GMs can be
described by effective electromagnetic tensors (the permit-
tivity and permeability tensors). The GMs do not possess
time-reversal symmetry owing to the magneto-optical effect
under an external magnetic field. Recently, the GMs have
been extensively investigated in the fields of non-Hermitian
triply degenerate points [42], Weyl semimetals [43], and uni-
directional disorder-immune propagation [44]. Moreover, the
commonly used material is the yttrium iron garnet to realize
the GMs in the experiment [44,45].

In this work, we study the topological transitions and
achieve the topological beam splitters in the GMs. We an-
alytically calculate the conditions for the critical points of
topological transitions and comprehensively draw the topo-
logical phase diagrams by solving the bulk state equation of
the GMs. We demonstrate that node lines and Weyl points can
coexist in GMs. These nodal lines and Weyl points are the crit-
ical points in the topological transitions and possess the spatial
inversion symmetry protection mechanism. The surface waves
at the boundary between the vacuum state and GMs are
demonstrated to propagate robustly against the multiple-step
transition by the COMSOL numerical simulation. Remark-
ably, we can realize the topological beam splitters between
the GMs and vacuum state based on the topological surface
waves. We reveal that the physical mechanism of achieving
the topological beam splitters is caused by the different group
velocity directions of the Fermi arc surface states of the
vacuum state–GMs system. Moreover, the topological beam
splitters can be made direction reconfigurable by manipulat-
ing the locations of the vacuum state and GMs.

This paper is organized as follows. In Sec. II, three-
dimensional (3D) band structure, the topological phase
diagram, Weyl points, and nodal lines of the GMs are in-
vestigated. Topological transitions in the GMs are studied in
Sec. III. The topological surface wave and topological beam
splitter are shown in Sec. IV. Finally, we summarize the work
and present our conclusions in Sec. V.

II. 3D BAND STRUCTURE, TOPOLOGICAL PHASE
DIAGRAM, WEYL POINT, AND NODAL LINE

OF THE GMs

The relative permittivity and permeability tensors of the
GMs can be described as

ε = diag(εt , εt , εz ),μ =
⎛
⎝ μt ig 0

−ig μt 0
0 0 μz

⎞
⎠, (1)

where εz = 1 − ω2
p/ω

2, μt = 1 + ωmω0/(ω2
0 − ω2), and g =

ωmω/(ω2
0 − ω2). ωp is the plasma frequency, ω represents the

angular frequency, and ωm and ω0 are the characteristic fre-
quency and resonance frequency [11], respectively. Moreover,
εt (εt = 2) and μz (μz = 1) in Eq. (1) are frequency-
independent constant values.

The corresponding GMs can be realized by using the pe-
riodic multilayered structure of the metal-ferrite superlattice
[36]. Using layered material to construct an effective meta-
material has been widely accepted and used in the designing
of electromagnetic metamaterials [46,47]. The whole system
can regarded be as a single anisotropic medium when the
layers are thin enough. Then, based on the effective medium
theory, the effective constitutive parameters can be obtained.
Particularly, the layered media and the thickness of each layer
can be adjustable in a reasonable range. This gives us the
freedom to realize the required electromagnetic parameters of
the GMs in Fig. 1.

In the GMs, the constitutive relation is given by(
D
B

)
=

(
ε 0

0 μ

)(
E
H

)
. (2)

Combining ∇ × E = iωB and ∇ × H = −iωD, Maxwell
equations in the GMs can be recast to a 6×6 matrix form,

[(
iκ 0

0 iκ

)
− iω

(
I 0

0 −I

)(
0 μ

ε 0

)](
E
H

)
= 0, (3)

where I represents the identity tensor matrix and
κ = [0,−kz, ky; kz, 0,−kx; −ky, kx, 0]. For simplicity, the
angular frequency ω, characteristic frequency ωm, and plasma
frequency ωp are normalized to ω0, and the wave vector k is
normalized to k0 (k0 = ω0/c), where c represents the speed
of light in the free space. In the GMs, the wave propagation
of the electric field E can be described as

[κ · (ωμ)−1 · κ + ωε]E = 0. (4)

Equation (4) represents the master equation of the GMs and
can be specifically written in the component form

⎛
⎜⎜⎜⎝

− k2
z a+(k2

y −ω2εt )b
ωb

kxky

ω
+ ik2

z ωm

b − kz (iωkyωm−kxa)
ωb

kxky

ω
− ik2

z ωm

b − k2
z a+(k2

x −ω2εt )b
ωb − kz (−iωkxωm−kya)

ωb

− kz (−iωkyωm−kxa)
ωb − kz (iωkxωm−kya)

ωb − (k2
x +k2

y )a+(ω2
p−ω2 )b

ωb

⎞
⎟⎟⎟⎠

⎛
⎜⎝

Ex

Ey

Ez

⎞
⎟⎠ = 0, (5)

where a = −ω2 + ω2
0 + ω0ωm and b = −ω2 + ω2

0 +
2ω0ωm + ω2

m.
In the above square matrix [Eq. (5)], the existence

of nontrivial solutions for electric fields E requires that
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FIG. 1. 3D band structure, topological phase diagram, Weyl point, and nodal line of the GMs. (a) 3D band structures (kx = 0) for GMs
[based on Eq. (6)]. The green and cyan dashed boxes show Weyl points and nodal points (projection of the nodal lines), respectively. (b) The
topological phase diagram in GMs where the values of μt , g, μz, εt , and εz change with the angular frequency ω. The Roman numerals I–VI
represent six different topological phases. The electromagnetic parameters of the GMs are εt = 2, ω0 = 1, ωm = 2, and ωp = 2.5. (c) and
(d) The dispersion along the z and y directions of the GMs, respectively. The pink and black lines represent the dispersions of the LM and TM
of the Weyl point and nodal line, respectively. (e) and (f) The projection of the Weyl point and nodal line in the kx-ky plane, respectively.

its determinant be zero. In particular, the characteristic
equation of the GMs can be given by
(
k4

x + k4
y

)
aω2εt + d

(
ω2 − ω2

p

) + k2
x (e + f ) − k2

y (g + h) = 0,

(6)

where d = −2aω2k2
z εt + bω4ε2

t + k4
z (−ω2 + ω2

0 ), e =
ω2εt (−bω2 + 2ak2

y − aω2εt + bω2
p), f = k2

z [εt (−ω4 +
ω2ω2

0 ) + a(ω2 − ω2
p)], g = ω2εt [aω2εt + b(ω2 − ω2

p)], and
h = k2

z [εt (ω4 − ω2ω2
0 ) + a(−ω2 + ω2

p)].
To demonstrate the existence of the Weyl point and nodal

line in the GMs [Fig. 1(a)] and study their related topological
characteristics, we deduced the expressions of the transverse
mode (TM) and longitudinal mode (LM) that form the Weyl
point and nodal line based on the eigen-electric-field of the
GMs. Along the z axis (kx = ky = 0), the characteristic equa-
tion [Eq. (6)] of the GMs can be further described as

ω2 − ω2
p = 0, (7)

(−ω2
0 + ω2

)
k4

z + 2ω2k2
z εt

(
ω2

0 + ω0ωm − ω2
)

+ ω4ε2
t

(−ω2
0 − 2ω0ωm − ω2

m + ω2
) = 0. (8)

Equations (7) and (8) are the LM and TM of the Weyl points.
Based on Eq. (7), the angular frequency threshold of the GMs
[Fig. 1(b)] is ω = ωp. In the GMs, Eq. (8) can be solved to

obtain the dispersion relation as

k±
z1 = ±ω

√
εt (ω0 + ωm − ω)√

ω0 − ω
,

k±
z2 = ±ω

√
εt (ω0 + ωm + ω)√

ω0 + ω
. (9)

Equation (9) determines how many TMs can exist in the GM
system along the z-axis direction under the specific angular
frequency ω condition.

Along the y axis (kx = kz = 0), the characteristic equa-
tion [Eq. (6)] of the GMs can be further given by

−k2
y + ω2εt = 0, (10)

ω2
[(

ω2
0 + 2ω0ωm + ω2

m − ω2
)(

ω2
p − ω2

)
+ (

ω2
0 + ω0ωm − ω2

)
k2

y

]
εt = 0. (11)

Equations (10) and (11) represent the TM and LM of the
nodal line. Equation (10) can then be solved to obtain the
dispersion relation as ±ky = ω

√
εt ; that is, under a specific

angular frequency ω condition, only two ky correspond to it.
Then, based on Eqs. (10) and (11), the angular frequency

085429-3



LI, HAN, QI, YAN, ZHAO, AND LIU PHYSICAL REVIEW B 109, 085429 (2024)

FIG. 2. Topological transitions of the GMs. (a) Highly anisotropic material when the angular frequency ω → 0. (g) The ellipsoidal
equifrequency surface at the angular frequency ω = 2.7. (b)–(f) and (h) The different types of equifrequency surfaces caused by the change
of the angular frequency ω: (b) ω = 0.9, (c) ω = 1.1, (d) ω = 1.9, (e) ω = 2.05, (f) ω = 2.2, and (h) ω = 3.2, corresponding to phase I–VI
regions in Fig. 1(b), respectively. The electromagnetic parameters of the GMs are εt = 2, ω0 = 1, ωm = 2, and ωp = 2.5.

threshold of the GMs [Fig. 1(b)] is given by

ω2 =
√

ω2
0 + 2ω0ωm + ω2

m + ω2
p − ω2

0εt − ω0ωmεt − k
√

2(1 − εt )
, (12)

where k =
√

4(ω0 + ωm)2ω2
p(−1 + εt ) + [ω2

0 + 2ω0ωm + ω2
m + ω2

p − ω0(ω0 + ωm)εt ]
2
. In the GMs, the conditions for εt = 0

and k = 0 are ω1 = √
ω0(ω0 + ωm) and ω3 = ω0 + ωm, respectively. Moreover, the resonance frequency ω0(|μt | = |g| → ∞)

exists in the GMs. Therefore, based on Eqs. (7) and (12), we demonstrate that the Weyl point and nodal line are the critical points
in the topological transitions [Fig. 1(b)].

In the GMs, the dispersion characteristics of the electro-
magnetism components of Eq. (1) are shown in Fig. 1(b).
Here, the phase diagram of different effective electromagnetic
parameter combinations is distinguished by Roman numerals
I–VI: in particular, εz < 0 and μt > g > 0 in region I; εz < 0
and g < μt < 0 in region II; g < εt < 0 and μt > 0 in regions
III and IV; μt > εz > 0, g < 0, and μt < |g| in region V; and
μt > εz > 0, g < 0, and μt > |g| in region VI.

In Figs. 1(c) and 1(d), based on Eqs. (7), (8), (10), and (11),
we give the specific distribution of the TM and LM of the
Weyl point and nodal line. In particular, the black lines and
pink lines represent the TM and LM, respectively. The Weyl
point [Eq. (7)] and nodal line [Eq. (11)] have flat or negative
dispersion of the LM, respectively, as shown in Figs. 1(c) and
1(d). At the angular frequencies ω = ωp [Eq. (7)] and ω =
ω2 [Eq. (12)], we see the projection of the Weyl point and
nodal line in the kx-ky plane, as depicted in Figs. 1(e) and 1(f).
The Weyl point and nodal line have a 0D degenerate point
[Fig. 1(e)] and 1D degenerate line [Fig. 1(f)] in their 3D band
structures, respectively.

The topological characteristic of the Weyl points and
nodal line in the GMs can be characterized by the
nonzero topological charges (Chern numbers, C). Mathe-
matically, the topological charges of the Weyl points and
nodal line are described as the surface integral of the

Berry curvature [�(k)] in momentum space at the angu-
lar frequencies ω = ωp and ω = ω2: C = 1

2π

∫∫
�(k) · ds =

1
2π

∫∫ ∇k × 〈U(k)|i∇k|U(k)〉 · ds, where U(k) = [E, H]T

represents the eigenpolarization mode of the GMs [1]. In
particular, the Berry curvature of the Weyl points and the
nodal line can be calculated at every point (ky, kz ) on the 2D
equifrequency surface of the GMs (the specific distributions
of Berry curvature are given in Fig. 6 of the Appendix).

III. TOPOLOGICAL TRANSITIONS IN GMs

Based on the topological diagram in Fig. 1(b), we specif-
ically give the distributions of equifrequency surfaces in the
different regions [Fig. 1(b)]. In the GMs, there are differ-
ent topology forms of the equifrequency surface because of
the relation between the permittivity and permeability ten-
sor components at different angular frequencies [Eq. (1)].
Therefore, the equifrequency surface can essentially vary by
changing the angular frequency, as shown in Fig. 2. Moreover,
the equifrequency surfaces of the GMs are symmetric about
the x-y plane (Fig. 2).

If ω → 0, the electromagnetic parameter εz [Eq. (1)] ap-
proaches infinity. In this case, the radius of the equifrequency
surfaces (pink plane) of the GMs is very large. Hence, the
equifrequency surfaces are two flat planes in momentum
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FIG. 3. Band structures, Fermi arc surface state, and topological surface wave. (a) Fermi arc surface states at the interface between the
GMs and the vacuum state. The gray regions are the common band gaps in momentum space. (b) and (c) Mode profiles |E | of the Fermi arc
surface states of the points A and B in (a), respectively. The x > 0 and x < 0 regions represent the vacuum state and GMs, respectively. (d) and
(e) Numerical simulations (ω = 2.48) of propagation of the topological surface waves on the multiple step-type configurations, corresponding
to A and B in (a), respectively. The green pentagrams present the electric dipoles. The electromagnetic parameters of the GMs are kz = 3.6,
εt = 2, ω0 = 1, |ωm| = 2, and ωp = 2.5.

space, as illustrated in Fig. 2(a). In the phase I region of the
topological diagram [Fig. 1(b)], the equifrequency surfaces
(mixed-type dispersion) contain a twofold type-I hyperboloid
(pink) and ellipsoid (orange) along the z axis of the GMs, as
shown in Fig. 2(b). In the phase II region, the equifrequency
surfaces of the twofold type-I hyperboloid in Fig. 2(b) be-
come the twofold type-II hyperboloid form, as illustrated in
Fig. 2(c). These two types of hyperboloids (type-I and type-II)
in this paper are topologically nonequivalent because there
is a hole in the type-II hyperbolic equifrequency surfaces
that cannot be transformed into type-I through continuous
deformation. Notably, the equifrequency surfaces (mixed-type
dispersion) of the GMs are a twofold type-I hyperboloid
(pink) and torus (pink) along the z axis in the phase III re-
gion, as shown in Fig. 2(d). The equifrequency surfaces are
a twofold type-I hyperboloid (pink) because there are Weyl
points (εz = 0) along the z axis when ω = ωp, as shown in
Fig. 2(e).

In the phase IV region, similar to Fig. 2(d), the equifre-
quency surfaces return to the twofold type-I hyperboloid
(pink) and torus (pink) form, as illustrated in Fig. 2(f). In
the phase V region, k±

z1 [Eq. (9)] represent the nonphysical
solutions owing to ω0 + ωp < ω. Therefore, only one ellip-
soidal equifrequency surface exists in the GMs, as shown in
Fig. 2(g). Moreover, there are two ellipsoid equifrequency sur-
faces (different radii) because of the time-reversal-symmetry
breaking of the GMs, in the region VI [Fig. 2(h)]. Thus,
by only changing the angular frequency ω in the GMs
[Fig. 1(b)], the topological transitions can be realized; i.e., the
equifrequency surfaces from a closed-form ellipsoid or torus
change to the open-form type-I or type-II hyperboloid, as
shown in Fig. 2.

IV. TOPOLOGICAL SURFACE WAVE AND
TOPOLOGICAL BEAM SPLITTERS

Now, we study the Fermi arc surface states supported by
the interface between the GMs and the vacuum state in the
common band gap regions [gray shaded region in Fig. 3(a)].

We consider the 3D translation invariant in the y-z plane and
stratified structures along the x axis, as shown in Fig. 3(a).
The half-spaces x > 0 and x < 0 are occupied by the vacuum
state and GMs, respectively. According to Maxwell equations,
the eigenstates on each side of the interface (x = 0) can be
obtained by the nontrivial solutions of the electric field E and
magnetic field H.

In the vacuum state, the two independent eigenstates can
be given by

E1 = [−kykx1, i
(
k2

y − ω2), ikykz
]
, H1 = (iωkz, 0, ωkx1),

(13)

E2 = [
kzkx1,−ikykz, i

(−k2
z + ω2

)]
, H2 = (iωky, ωkx1, 0),

(14)

where kx1 =
√

k2
y + k2

z − ω2 represents the attenuation con-

stant inside the vacuum state. On the other hand, two
independent eigenstates of the GMs can be described as

E3 = (E3x, E3y, E3z ), H3 = (H3x, H3y, H3z ), (15)

E4 = (E4x, E4y, E4z ), H4 = (H4x, H4y, H4z ). (16)

Then, applying Maxwell boundary conditions at x = 0 for the
tangential magnetic fields and electric fields can lead to the
4×4 constraint matrix M determinant problem, i.e.,

Det[M] =

∣∣∣∣∣∣∣∣∣∣

E1y E2y E3y E4y

E1z E2z E3z E4z

H1y H2y H3y H4y

H1z H2z H3z H4z

∣∣∣∣∣∣∣∣∣∣
= 0. (17)

Equation (17) represents the characteristic equation of the
Fermi arc surface states between the vacuum state and GMs
[Fig. 3(a)].

Based on Eq. (17), we obtain the Fermi arc surface states
between the vacuum state and GMs when kz = 3.6, as shown
by the blue and black lines in Fig. 3(a) (more distributions
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|E|
max

min

(a)

Vacuum

Vacuum

g<0

g<0

Vacuum

Vacuum

g>0

g<0

g<0Vacuum

Vacuumg<0

g<0Vacuum

Vacuumg>0

Vacuum

Vacuum

g<0

g<0

Vacuum

Vacuum

g<0

g>0

g<0 Vacuum

Vacuum g<0

g>0 Vacuum

Vacuum g<0

x
y

(b) (c) (d)

(e) (f) (g) (h)

Port 1

Port 2 Port 4

Port 3

FIG. 4. Topological beam splitter by a cross waveguide (+ type). (a)–(h) The four-channel material system for the electromagnetic routine
that consists of the vacuum state and GMs. The electromagnetic parameters of the GMs are the same as in Fig. 3.

of Fermi arc surface states at different frequencies ω are
given in Fig. 7 of the Appendix). For the vacuum state–
GMs system, the Fermi arc surface states are located in the
common band gap region [Fig. 3(a)]. Therefore, these Fermi
arc surface states possess local properties because there is
no radiation mode entering the bulk states of the vacuum
state and GMs. Moreover, we obtain the relative bandwidth
α (α = 0.238388) of the Fermi arc surface states [see the
gray region in Fig. 3(a)]. The two different points A and B
on the Fermi arc surface states both possess local charac-
teristics, as shown in Figs. 3(b) and 3(c). The points A and
B correspond to the Fermi arc surface states of the GMs
with electromagnetic parameters g < 0 and g > 0 [Eq. (1)],
respectively. For the vacuum state and GMs, the asymmetries
of the one-dimensional electric field mode profile are caused
by the different skin depths of the Fermi arc surface states in
the two media, as illustrated in Figs. 3(b) and 3(c). Moreover,
it should be noted that only the Fermi arc surface states in
the common band gap regions [Fig. 3(a)] can be localized at
the boundary. Otherwise, they will leak to the vacuum state
and GMs. We give the time snapshots of the electric field |E |
(COMSOL Multiphysics) of the points A and B on the Fermi
arc surface states [Fig. 3(a)], as shown in Figs. 3(d) and 3(e).
In these numerical simulations (COMSOL 2D frequency do-
main), an electric dipole can be used as the source located on
the interface between the vacuum state and GMs. The surface
wave in Figs. 3(d) and 3(e) can transmit without any reflection
against the multiple step-type structural defects. It can directly
demonstrate the topological characteristics of the GMs system
from the physical phenomenon level. Moreover, by flipping
the gyromagnetic parameters g of the GMs, the transmission
direction of the surface waves between the vacuum state and
GMs can be reversed, as shown in Figs. 3(d) and 3(e). The
physical mechanism of achieving the reversal of propagation
direction of the surface wave is caused by opposite gap Chern
numbers [Cgap = +1(Cgap = +1)] of the vacuum state–GMs
system, as illustrated in Fig. 3(a).

The topological Fermi arc surface states discussed in
Figs. 3(a) and 7 can be useful for designing functional topo-
logical devices based on the GMs. We built the four-channel
vacuum state–GMs system that contains two types (+ type
and M type) of electromagnetic routing channels, as shown in
Figs. 4 and 5. The topological surface waves can bypass sharp
defects and output signals at different ports to achieve topo-
logical beam splitting. The physical mechanism of achieving
the topological beam splitters is caused by different group
velocity directions of the Fermi arcs surface states of the
vacuum state–GMs system (see Fig. 8).

Now, we will study the topological beam splitters in the
vacuum state–GMs system. Here, we take Fig. 4(a) as an
example to specifically analyze topological beam splitting in
the materials system. According to the bulk-edge correspon-
dence, the half-spaces x > 0 and x < 0 are occupied by the
GMs with g < 0 (vacuum state) and vacuum state (GMs with
g > 0); there are Fermi arc surface states propagating in the
positive and negative directions along the y axis, respectively
(see details in Fig. 8 of the Appendix). In particular, when
the Fermi arc surface states are excited from port 1, the sur-
face wave will couple to the Fermi arc surface state of the
half-spaces x > 0 and x < 0 that are occupied by the vacuum
state and GMs with g > 0 along the negative y-axis direc-
tion, and then transmit along the negative y-axis direction,
as illustrated in Fig. 4(a). However, port 3 has no surface
wave output because there is no Fermi arc surface state along
the negative y direction of the half-spaces x > 0 and x < 0
that are occupied by the GMs with g < 0 and vacuum state.
Thus, the topological surface waves are only output at ports
2 and 4 to achieve a controllable transmission direction of
surface wave topological beam splitting effect at the output
port, as shown in Fig. 4(a). Moreover, the topological beam
splitters can be realized direction (shape) reconfigurable by
manipulating the locations of the vacuum state and GMs (+
type and M type form electromagnetic routing channels), as
illustrated in Figs. 4 and 5.
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FIG. 5. M-type topological beam splitter. (a)–(f) The four-channel material system for the electromagnetic routine that consists of the
vacuum state and GMs. The electromagnetic parameters of the GMs are the same as in Fig. 3.

V. CONCLUSIONS

In conclusion, we study the topological transitions and
realize the topological beam splitters in the GMs. By solving
the bulk state equation of the GMs, we analytically calculated
the conditions for the critical points of topological transitions
and comprehensively drew the topological phase diagrams in
the GMs. To demonstrate the existence of the Weyl point and
nodal line in the GMs and prove its related physical properties,
we specifically deduced the equations of the TM and LM
based on the eigen-electric-field that forms the Weyl point and
nodal line of the GMs. Remarkably, it is demonstrated that the
Weyl point and nodal line coexist in the GMs. This nodal line
and the Weyl points are the critical points in the topological
transitions and have the spatial inversion symmetry protection
mechanism. According to the bulk-edge correspondence, the
localized Fermi arc surface states can exist at the interface
between the vacuum state and GMs. The numerical simulation
results demonstrate that the surface waves at the boundary
between the GMs and vacuum state can propagate robustly
against the multiple-step transition. Based on the topological
surface waves, we realize the topological beam splitters be-
tween the GMs and the vacuum state. We reveal that the phys-
ical mechanism of achieving the topological beam splitters is
caused by the different group velocity directions of the Fermi
arcs surface states of the GMs–vacuum state system. Notably,
the topological beam splitters based on the Fermi arc surface
states in the topological GMs can achieve robustness features
to structural perturbations and defects, achieving a control-
lable propagation direction topological optical beam effect in
the GMs. Moreover, the topological beam splitters can be real-
ized direction reconfigurable by manipulating the locations of
the vacuum state and GMs. We believe our work may provide
new insights into the topological wave physics in the homoge-
neous media without any periodicity restrictions, which may
help achieve the topological optical devices in practice.
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FIG. 6. Weyl point, nodal line, and topological charges. (a) and
(c) The 3D band dispersion of the Weyl point and nodal line in
the kx-ky-ω space, respectively. (b) and (d) Berry curvatures and
topological charges of the 2D equifrequency surfaces for the GMs
with kx = 0. The electromagnetic parameters of the GMs are the
same as in Fig. 1.
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FIG. 7. (a)–(d) Equifrequency surfaces of GMs and Fermi arc
surface states at different frequencies ω.

APPENDIX

To clearly distinguish between the Weyl point and nodal
line band structure degenerate dimensional, the 3D (kx-ky-ω)
band structures of these nodal points (Weyl point and nodal
line) are given in Figs. 6(a) and 6(c), respectively. According
to Eqs. (7) and (12), it can be obtained that the Weyl point and
nodal line in GMs are located at different angular frequen-
cies ωp = 2.5 [see Eq. (7)] and ω2 = 2.04607 [see Eq. (12)],

FIG. 8. Dispersion relation and symmetry analysis of the topological beam splitter.

respectively. Therefore, the band dispersion characteristics
near the Weyl point and nodal line are analyzed with ωp = 2.5
and ω2 = 2.04607 as the center frequencies in Figs. 6(a) and
6(c), respectively.

In Figs. 6(b) and 6(d), the red and black arrows represent
the outward and inward Berry curvatures, respectively. The
length of the red (black) arrows represents the amplitudes of
the Berry curvatures. For the Weyl points, the Berry curva-
tures of each of its equifrequency surfaces diverge (converges)
in the same direction [see Fig. 6(b)]. However, the nodal line
has an equal amount of opposite divergence (convergence)
Berry curvature for each of its equifrequency surfaces [see
Fig. 6(d)]. Furthermore, we can obtain the Chern number
corresponding to the equifrequency surface of the GMs by
composing the area of the Berry curvature on the entire
surface. Thus, the Weyl points and nodal line have the net
nonzero topological charge (|C| = 1) and zero topological
charge (|C| = 0), respectively.

In the the GMs (g > 0 or g < 0)–vacuum system, the dif-
ference of the topological invariants of the common band gap
remains constant (|Cgap| = 1), so the number of Fermi arc
surface states in the band gap is constant and independent of
frequency ω, as shown in the Fig. 7. Notably, the middle bulk
states of GMs in Figs. 7(a)–7(d) undergo significant changes
at different frequencies ω, with two closed rings undergoing
a process of disappearance [see Fig. 7(b)] and reproduction
[see Figs. 7(c) and 7(d)]. However, the number of the Fermi
arc surface states in the common band gap (gray regions)
does not change because of the gap Chern number |Cgap| = 1
in Fig. 7.

We take Fig. 4(a) as an example to illustrate that the
output signal in the topology beam splitter is output from
two ports. As shown in Fig. 8(a), in the x-y plane (fixed
kz = 3.6), the topological surface wave of interface I only
transmits along the negative y axis, and the wave vector of
the traveling wave in the x direction is zero [see Fig. 8(b)].
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However, at interfaces II and III, surface waves propagate in
the negative (kx < 0) and positive (kx > 0) directions along
the x axis [see Figs. 8(c) and 8(d)], respectively. In addition,
the only difference between the II and III interfaces is the
reversal of the spatial positions of vacuum and GMs. In terms
of symmetry, the Fermi arc surface state at the II interface

can be equivalently regarded as the “time-reversal symmetry
mode” at the III interface. Therefore, when the surface wave
of interface I passes through the intersection point, this mode
is coupled to the Fermi arc of interfaces II and III, and
theoretically, the efficiency of coupling to the two interfaces
is equal, as shown by the black arrows in Fig. 8(e).
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