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High-Q resonances in periodic photonic structures
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The support of high-Q resonances in all-dielectric nanostructures are necessary for the enhancement of light-
matter interactions. By introducing some perturbations into periodic structures to enable an engineered coupling
between the supported bound modes and the exterior environment, quasibound modes can consequently be
achieved. However, the nature of those modes is still in need of clear investigation. In this work, we employ
two geometrically similar binary gratings and demonstrate with both numerical and experimental results that
two fundamentally different bound modes may lie behind the high-Q resonances reported in the literature: the
bound state in the continuum (BIC) and the guided modes in subwavelength photonic lattices. These two modes
have distinct dependences of the Q factor on the wave vector and when they are converted into quasibound
(leaky) modes, the same behaviors are retained. We find that only those high-Q resonances with the predecessor
of guided modes have robust Q factors over a large range of wave vectors and frequencies, which suggests the
high tunability of resonances with comparable Q values by the incident angle. In contrast, the BIC provides more
versatility for dealing with optical resonances with both high-Q factors and exotic polarizations. These findings
correct the general misunderstanding of the origin of high-Q resonances in periodic photonic structures and will
significantly broaden the landscape of all-dielectric nanophotonics.

DOI: 10.1103/PhysRevB.109.085426

I. INTRODUCTION

In recent years, all-dielectric nanostructures have garnered
significant attention due to their unique optical properties,
e.g., supporting multiple exotic resonances of both the elec-
tric and magnetic types, which suggest a large variety of
potential applications across various domains [1]. Particu-
larly, the ultralow absorption loss has prompted a continuing
exploration of all-dielectric micro/nanostructures supporting
various physical mechanisms for achieving light-matter in-
teractions at different intensities [2]. However, it is known
that the strength of light-matter interactions occurring in the
near field can be indirectly characterized by the quality factor
(Q factor) of the far-field resonance, as the latter is inher-
ently associated with the maximum enhancement of local
electric field [3]. Compared to the plasmonic counterpart of
resonances in the metallic nanostructures, all-dielectric nanos-
tructures support resonances with a relatively large modal
field in the volume of dielectric components, making it nec-
essary to design high-Q resonance to achieve a large local
electric field. The most widely used design strategy to this
goal, although somewhat obscure, is to start with some well-
confined bound modes (BMs), which exhibit infinite-Q factors
(i.e., zero linewidth) due to their inability to radiate into free
space. Through some intentional geometric perturbations or
modified incident conditions, these BMs can be transformed
into quasi-BMs with the possibility of being coupled with
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external radiation. One typical example of the BMs that
has been extensively exploited in recent years is the bound
state in the continuum (BIC) [4–6], which was initially in-
troduced in quantum mechanics [7] and has subsequently
found widespread applications in optics [8], acoustics [9],
and other physical fields. Although conventional BICs can-
not be accessed from free space, they can be engineered
into quasi-BICs (QBICs) with high-Q factors. For example,
by introducing some geometric perturbations into a photonic
system supporting the symmetry-protected BIC (SP-BIC), the
original eigenmode with strict antisymmetric distribution can
be slightly perturbed, enabling a small yet nonzero overlap
with the external plane waves and giving rise to the for-
mation of QBICs [4]. This important feature has led to its
extensive applications in molecular fingerprint retrieval [10],
thermal emitters [11,12], biosensors [13,14], nonlinear optics
[15,16], and so on. Although the interaction of multiple lo-
calized modes in a single dielectric nanostructure can also
give rise to BIC/QBIC modes [17], the Q factor is not high
(Q < 103). Therefore, periodic array structures that support
nonlocal QBIC modes have become preferred for achieving
ultrahigh-Q factors. A surging number of papers appear every
year reporting the realization of high-Q resonances based on
periodic structures; however, we noticed from the literature
that when people work on the high-Q resonances supported by
periodic structures with geometric perturbations, they tend to
classify all of them as QBIC without thinking seriously about
the origin. However, for some cases, when the geometric per-
turbation vanishes, the high-Q resonances may restore to other
infinite-Q modes other than BIC. In this situation, a clear and
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comprehensive investigation of the underlying physics behind
those high-Q resonances is still missing.

In this work, we reveal that beyond the concept of BIC,
another type of BM can also be engineered to achieve high-Q
resonances. It is the guided modes (GMs) type, which has
been well described in many optics textbooks but has received
less attention in all-dielectric nanophotonics. Noteworthy,
apart from regular optical waveguides, many subwavelength
photonic lattices can also support well-confined GMs [18]. A
typical example of such kind of lattices is a high refractive
index photonic crystal slab (PCS) [19] supporting a series of
GMs which are completely confined within the slab layer.
When some period-increasing perturbations are introduced
into the unit cell of the periodic structures, the first Brillouin
zone (FBZ) shrinks, leading to the flipping of the GM disper-
sion from below the light line to be above it and the generation
of new high-Q resonances, which we refer to as quasi-GMs
(QGMs) [20] hereinafter. Compared to the QBICs, the QGMs
are expected to exhibit different behaviors. The predecessor
GMs exhibit infinite-Q factors over a large spectral band and
a large range of wave vectors, e.g., the dispersion of the GMs
extends to infinite wave vectors for an optical waveguide or
to the entire FBZ for a periodic photonic lattice. As a result,
the QGMs exhibit robust Q factors across a large proportion
of the FBZ, i.e., the Q factors remain weakly affected by
the change of wave vector. Furthermore, the QGMs can also
offer the same advantages as the QBICs with an inverse de-
cay rate as a function of the perturbation magnitude. From
the perspective of topological nature, the BIC point exhibits
a vortex center carrying an integer topological charge. By
introducing perturbations, the BIC splits into two circular
polarization points with half-integer topological charges, a
characteristic that plays a crucial role in chiral applications.
In contrast, the GM, with the entire dispersion below the
light line and that can no longer radiate into free space, does
not have such topological features. Thus, upon transforma-
tion into QGM, the far-field distribution across the entire
band in the momentum space exhibits linear polarization
characteristics.

We further present our investigations with both numerical
and experimental results on the comparison between these
two types of high-Q resonances, i.e., QBICs and QGMs, with
the emphasis on the different Q-factor evolution behaviors
of them at different wave vectors. We make use of two ge-
ometrically similar binary grating structures on a low-loss
lithium niobate on an insulator (LNOI) substrate to demon-
strate the difference. Both gratings consist of two dielectric
ridges within one unit cell. One is the symmetry-breaking
grating (SBG), where a different width is introduced to gen-
erate the geometric asymmetry between adjacent ridges. In
this structure, the period of the lattice remains unchanged
whether or not the width difference is present. The other is
the period-doubling grating (PDG), in which the introduction
of a nonzero width difference between alternating ridges will
result in a sudden doubling of the lattice period. For the SBG
with vanishing ridge width difference, the SP-BIC modes are
supported at the � point, exhibiting the topological feature of
polarization singularities with infinite-Q factors. As the wave
vector increases from 0, the Q factor decays rapidly. When the
symmetry breaking is introduced into the structure by using

FIG. 1. Schematic figure of BIC and GM dispersions, as well as
the Q evolutions at the presence of geometric perturbations. (a) and
(c) represent the typical dispersions of two bound modes (BIC and
GM) in the energy-momentum space. The blue dashed line represents
the light line in air. (b) and (d) describe the dependence of Q factors
for different modes as a function of wave vector before and after the
perturbation, respectively. The color represents the magnitude of the
Q factor.

the width difference, the resulting QBICs still inherit the same
trend. In contrast, for the PDG with vanishing period-doubling
perturbation, the grating restores to a subwavelength lattice
supporting the GMs. With a nonzero perturbation, the GMs
will be transformed into QGMs, which exhibit stable Q factors
over a wide spectral band and a large range of wave vectors.
Although the Q factors of both QBIC and QGMs can be
flexibly adjusted by varying the magnitude of perturbation,
these two modes retain from their predecessors a different
dependence of the Q factors on the wave vector. Some nu-
merical investigations and experimental results are presented
to support our statement. These insights into the origin of
high-Q resonances in periodic photonic structures will correct
the current misunderstanding of the underlying physics in pe-
riodic photonic structures and help provide new guidelines for
the design of high-Q resonances, which are essential for the
manipulation of light-matter interactions using all-dielectric
nanostructures.

II. STRUCTURE AND RESULTS

Figure 1 shows schematically the different properties of
BICs and GMs, and their derivatives (QBIC and QGM) in the
energy-momentum space. According to the topological expla-
nations of BIC [21], the BICs are the singularities in the po-
larization mapping of the far-field radiations. In other words,
they only appear at discrete frequency and wave-vector points
within the continuum, i.e., above the dashed blue line of light
dispersion in air. As depicted in Fig. 1(a), the two stars denote
the existence of two different types of BICs: the left one
for the SP-BIC (at kx = 0) and the right one for the accidental
BIC, respectively [5]. The SP-BIC can only be located at
the � point while the accidental BIC happens at the spectral
positions where destructive interference occurs between two
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radiation channels. Other types of BICs may not be supported
by the binary grating structures investigated in this work and
thus are omitted for clarity. Taking SP-BICs as an example,
they exhibit infinite-Q factors only at the � point and the
Q factor drops very fast as the wave vector increases from
zero [5], as shown in Fig. 1(b). Here we refer to all the high-
Q resonances related with BIC as QBIC modes. So, unlike
the BICs, the QBICs are not singularity states and have no
one-to-one correspondence with the BIC. Even without any
geometric redesign, the QBICs can still be achieved by the
external perturbation, i.e., using the same structure support-
ing the BICs but at the wave vectors slightly deviating from
that of the BIC [see the top line in Fig. 1(b) or Fig. 4(a) in
[5]]. In practical applications, a normal incidence is preferred,
and one usually relies on the introduction of geometric per-
turbations to the structures to transform the SP-BIC into a
QBIC state, and then the infinite-Q factor at the � point will
correspondingly become finite and the vortex point carrying
integer topological charges will split into two semi-integer
circularly polarized points. As illustrated in Fig. 1(b), a larger
perturbation will lead to a further decrease of the general Q
factors. Furthermore, the high dependence of the Q factor on
the wave vector in the original BIC will be retained in the
QBICs, and its high values can only be maintained within
a small range of wave vectors near the � point due to the
dual effects of both the geometric and the wave-vector per-
turbations. In large contrast with BIC, the GMs in Fig. 1(c)
exhibit steep dispersion below the light line. Because the GMs
are well-confined modes and their fields cannot escape, they
can be considered as having infinite-Q factors and do not
have topological characteristics similar to BIC. By varying
the wave vector, the corresponding frequency can be signifi-
cantly tuned, indicating that the infinite-Q factor occurs at any
point along the dispersion curve, i.e., within a broad spectral
range. When period-increasing perturbations are introduced
into the structure, the FBZ shrinks due to the lattice distortion,
leading to the folding of GMs above the light line to form
new leaky modes (QGMs). As shown in Fig. 1(d), since the
QGMs are a derivative of the GMs, the insensitivity of the
Q factor to the wave vector is inherited. That means, apart
from the possibility of Q-factor control by the magnitude of
perturbation, which is the same as the QBIC, all the Q factors
of the QGMs at the same perturbation will have the additional
asset of high robustness over wave vectors, i.e., the Q factor
remains weakly affected by the wave vector. This is very
important for many optical applications where one can tune
the resonance by varying the incident angle while the Q factor
remains almost stable. It is not possible to achieve using the
QBIC resonance which, although it can be tuned by varying
the incident angle as well, it has the highest Q factor only at a
certain wave vector.

To reveal the underlying mechanism in the mode transfor-
mations illustrated in Fig. 1 and quantitatively demonstrate
the different Q-factor evolution behaviors against wave vec-
tors for QBICs and QGMs, we conducted detailed numerical
studies on two binary grating structures. As illustrated in
Figs. 2(a) and 2(c), we designed Polymethyl Methacrylate
(PMMA) binary gratings with a refractive index of 1.49 on
a commercially available z-cut 365-nm-thick lithium niobate
(LN) thin film bonding on a 2.5-µm-thick SiO2 buffer on a

quartz substrate. The LN thin film on insulator has become an
attractive platform in recent years due to its strong electro-
optic effects, providing promising prospects for innovative
applications in micro- and nano-optical devices. Importantly,
the LN has been considered a key material in the field of
nonlinear optics due to its large second-order nonlinear sus-
ceptibility χ (2) and extremely low optical loss from near
ultraviolet to mid-infrared region. By carefully designing the
structure on this platform, the original one-ridge grating [in
Fig. 2(c)] has a period of P = 410 nm, and the ridge height
and width were chosen as h = 200 nm and w = 150 nm,
respectively. All the length values are constant throughout
this work and the only variable to change is the difference
δ in ridge width. All the numerical calculations are performed
using the commercial software of COMSOL MULTIPHYSICS

based on the finite-element method. The numerical models
are built with two-dimensional structures, with Floquet pe-
riodic boundary conditions applied within the unit cell to
the x direction. The Q factor of a resonance observed in the
far-field spectrum can be calculated by Q = ωr/(2ωi ) where
ωr and ωi are the real and imaginary parts of the obtained
complex frequency in the eigenfrequency analysis. Without
the loss of generality, we only considered the TE0 mode,
with the electric field along the length direction (y) of the
ridges. For the SBG shown in Fig. 2(a), which is assumed
to have a periodicity of 2P to maintain consistency with the
PDG, the distance between adjacent grating centers, d , is
much smaller than the regular grating period 2P. A value of
d = 300 nm is used throughout this work. So, the introduction
of the width difference δ, although this breaks the symmetry,
does not change the period. When δ vanishes, due to the
mirror symmetry across the center of the air gap between
the two ridges, the system supports SP-BIC at the � point,
which is marked by the blue circle in Fig. 2(b). The electric
field distribution at this BIC point is presented in the up
inset, exhibiting an antisymmetric profile with a zero overlap
with the incident plane wave, preventing any in-coupling or
out-escaping of the mode, equivalent to an infinite-Q mode.
When the perturbation of δ�0 is introduced in the geometry,
the asymmetry between the ridge widths leads to the mode
distribution slightly away from the antisymmetric profile
[although hardly observable from the down inset of Fig. 2(b)]
and enables a nonzero coupling with incident plane waves
[4], which suggests a switching from the BIC to the QBIC
states. As we explained above, the QBICs exist only in a small
wave-vector range. For other states along the same dispersion
curves but at larger wave vectors, the effect of QBICs fades
away. As will be shown later, in that case the background of
regular guided mode resonances (GMRs) dominates. In other
words, the QBIC are within the same dispersion curves as
the background GMRs, but only at small wave vectors. This
phenomenon was alternatively interpreted by attributing the
symmetry-protected BIC to the coupling between two GMRs
[22]. In contrast with SBG, the PDG in Fig. 2(c) exhibits
a different behavior. When the width difference between al-
ternating ridges vanishes, the structure restores to a regular
grating with a period of P. This subwavelength-period grating
supports a set of GMs whose dispersion curve appears below
the light line across the whole FBZ in the wave-vector domain
(−π/P, π/P), as shown by the solid blue line in Fig. 2(d).
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FIG. 2. (a) Schematic diagram of a SBG (d � P and the period remains unchanged regardless of δ). When the perturbation of symmetry
breaking is introduced, the SP-BIC at the � point will transform into a QBIC state. (b) Dispersion structures of the BIC and QBIC/GMR,
where the blue circle indicates the position of the BIC and the green lines are the dispersion curves of the QBIC at smaller kx and the GMRs
at large kx . The insets represent the field distribution of the real part of Ey for both the SP-BIC (up) and the QBIC (down) at the � point.
(c) Schematic diagrams of a regular grating structure (period: P) and the PDG (period: 2P). When period-doubling perturbation in the form of
width difference between alternating ridges is introduced, the supported GMs transform into the QGMs. (d) Dispersion curves of the original
GMs (blue line) and subsequent QGMs (green line), where the insets represent the field distribution of the real part of Ey for GMs and QGMs
at the wave-vector positions kx = π/P and kx = 0, respectively.

When a small perturbation δ is introduced between alternating
ridges, the period of the photonic lattice is distorted from P to
2P and the FBZ shrinks from the original (−π/P, π/P) to
(−0.5π/P, 0.5π/P). The dispersion of the original GMs is
folded at kx = ±0.5π/P and the outer side will appear above
the light line to form QGMs [see the green line in Fig. 2(d)].
Note that two counterpropagating modes exist both for the
GMs and for the QGMs, whose dispersion curves should
consist of two branches with a spectral gap. For simplicity,
only the lower-frequency branch is plotted here. When δ is
much smaller compared to other geometric parameters, the
whole system is weakly perturbed. As a result, the QGMs will
retain the same shape of dispersion as the GMs, which means

f (−kx ) = f (kx ) = f (kx ± π/P) ≈ f0(kx ± π/P), (1)

where f (kx ) and f0(kx ) are the dispersion of the QGMs and
GMs, respectively. So, in practical applications, the frequency
position of QGMs can be directly predicted through GMs to
design the structure.

Although the dispersion curves of both the QBICs/GMRs
and the QGMs extend to a large proportion of the FBZ [cf.
the solid green lines in Figs. 2(b) and 2(d)], the Q factors
of the two modes behave distinctly at different wave vectors.
Figure 3(a) shows that the Q factors of the BIC/QBIC modes
are large only at very small numbers of kx (close to 0). When
δ = 0 nm, as kx increases, the Q value rapidly decreases from
infinity at the � point. That is because a nonzero kx at inclined
incidence will work somehow as an extrinsic perturbation

to the whole excitation condition of SP-BIC. At a nonzero
δ, which can be considered as an intrinsic perturbation, the
SP-BIC transforms into QBIC with a finite-Q factor, but the
value still maintains the same decaying trend as a function
of kx as the original BIC. The dependence of the Q factor
on kx at different magnitudes of perturbation is shown in
Fig. 3(a). It is seen that the Q value at the � point exhibits an
inversely quadratic decay relationship with the perturbation
δ, which is a well-known behavior of QBICs resulting from
the geometric asymmetry [4]. As the wave vector increases,
the Q factor drops very fast and gets saturated at the order of
103 for relatively large wave vectors (kx > 0.02π/P). If no
other physics is involved, the Q factor is expected to continue
decaying at larger wave vectors. To shed more light on the
background Q factor in Fig. 3(a), we designed a control nu-
merical experiment in Fig. 4 using a regular ridge grating with
the same ridge-to-period filling ratio as the SBG with δ = 0 in
Fig. 3(a). We investigated the GMR Q factor as a function of
kx for a regular grating of the same ridge filling ratio given in
Fig. 4(a). The dispersion of the GMR occurring at the second
stop band is well known and is plotted in Fig. 4(b), where
a SP-BIC state at the upper branch is also marked resulting
from an even symmetry across the center of the ridge. Two
different behaviors of the Q factors as a function of wave
vector are found and plotted in Figs. 4(c) and 4(d) for the
two branches of dispersion. Apart from the infinite-Q factor
at the SP-BIC state, one can see that the Q factors approach
the order of 103 at larger wave vectors for both branches. The
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FIG. 3. (a) and (b) show the dependence of Q factor as a function of wave vector at different δ values (0, 1, 10, and 100 nm) for the
BIC/QBIC/GMR and GM/QGM systems, respectively. (c), (d), and (e) show the far-field polarization maps near the � point for BICs, QBICs,
and QGMs, respectively. The blue circle in (c) represents the V point, while the green and red solid dots in (d) represent the positions of the
right (C+) and left-handed (C−) circular polarization points carrying +1/2 topological charge, respectively, and the black line in all results
represents the linear polarization.

results suggest that the remaining background Q factors in
Fig. 3(a) at larger kx are due to the regularly excited GMRs
[23] in the same photonic lattice and has nothing to do with
QBIC. Strictly speaking, the modes supported by the SBG

FIG. 4. (a) Schematic diagram of a regular grating (period 2P).
(b) Dispersion curves for the regular grating structure in (a). (c) and
(d) illustrate the dependence of the Q factor on the wave vector for
the two bands in (b).

structure in Fig. 2(a) can only be claimed as QBICs at small
wave vectors along its dispersion in Fig. 2(b) while the rest at
larger wave vectors are still GMRs instead, as labeled by the
dashed lines in Figs. 3(a) and 4(d). This further confirms our
previous statement that the QBICs only occur in a small range
of wave vectors.

For the GMs, everything is different. Its dispersion curve
exhibits a continuous line shape with an infinite-Q factor
along the entire band, as shown by the top line in Fig. 3(b).
With the introduction of δ, the GMs transform into QGMs,
whose Q factors, although finite, still exhibit a high robustness
over the wave vectors. This trend can be found in the lower
lines in Fig. 3(b) for different values of δ. As δ increases,
the Q factor of QGM at each frequency point also exhibits an
inversely quadratic relationship with δ. Importantly, for each
δ value, QGM still maintains the robustness of the Q value
against kx. So, the QGM keeps the same advantage as the
QBIC that the Q factor can be steered by the magnitude of
perturbation and has the superiority that the high-Q factors
are not limited to small wave vectors. Both the trend of Q
factors for QBIC and QGM as a function of wave vector are
consistent with our predictions in Figs. 1(b) and 1(d). Since
it is known that the near-field enhancement capability of a
resonance is inherently connected to the Q value in the far-
field spectrum, the above results of steep QGM dispersion [in
Fig. 2(d)] and stable Q-factor values at different wave vectors
[in Fig. 3(b)] suggest that it is possible to achieve robust
high-Q resonances in terms of broad spectral band and large
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FIG. 5. Top view SEM images for the two binary grating structures of SBG (a) and PDG (b); (c) and (e) The simulated results of
the transmittance spectra at randomly selected incident angles for the supported QBICs (c) and QGMs (e), respectively; (d) and (f), the
experimentally measured transmittance spectra of the fabricated SBG (d) and PDG (f) samples at multiple incident angles, respectively.

wave-vector range. The spectral tuning can be easily achieved
by varying the incident angle, while the Q factors remain
unaffected, which is of significant importance for applications
such as nonlinear optics with multiple inputs.

Besides the different evolution trends of Q factor as a func-
tion of wave vector, we have also investigated the difference
between QBICs and QGMs in terms of far-field polarization
distributions. It is known that a BIC can be considered as
the singularity vortex (V points) in the polarization directions
of the far-field radiations [21,24,25]. To characterize the po-
larization properties of the system, the polarization states of
the Bloch mode can usually be mapped onto the Poincaré
sphere [26], whose coordinates are specified by the Stokes
parameters S0, S1, S2, and S3. The V points (S0, S1, S2,

S3 = 0) usually carry integer topological charges at the �

point. In the continuum, a nondegenerate eigenmode with
an in-plane wave vector k matches only propagating waves
with the same in-plane wave vector. The far-field radiation
polarization vectors projected onto the xy plane are referred
to as d (k) = dx(k)x̂ + dy(k)ŷ. The characteristic of vortices
is their topological charge. Here, the topological charge (q)
carried by BIC is defined as [21]

q = 1

2π

∮
C

dk · ∇kφ(k), (2)

where φ(k) = 1/2 arg[S1(k) + iS2(k)] (−π/2 � φ � π/2)
is the orientation angle of the polarization state, and C is a
simple closed path in the k space. The calculated V point in
Fig. 3(c) corresponds to the SP-BIC supported by the SBG in
Fig. 2(a). When the symmetry of the structure is broken (e.g.,
δ = 1 nm), the SP-BIC transforms into QBICs, where the vor-
tex singularity with an integer topological charge splits into
two half-integer circularly polarized singularities (C points)
along the symmetry axis, as shown in Fig. 3(d). This feature

has significantly facilitated the research on achieving higher
circular dichroism bases on BIC over the past 2 years [27–29].
It can also be seen in Fig. 3(d) that the QBICs with elliptical
polarizations only exist within a narrow band of small wave
vectors. For larger kx, all the polarizations switch to linear
polarizations along the y direction. This is consistent with our
above discussions in Fig. 4(d) that the background Q factors
at larger kx are due to the excitations of GMRs. The far-field
polarization of the generated QGMs (at δ = 1 nm) near the
� point is shown in Fig. 3(e). Different from the QBIC, it is
clear that all the QGMs in the k space close to the � point
have linear polarizations and have no vertexing characteristics
at all. This indicates that every resonance in the entire momen-
tum space can be excited by a simple linearly polarized plane
wave. The distinct behaviors of the polarization maps close
to the � point work as a straightforward proof that these two
types of high-Q resonances supported by periodic structures
originate from different physics.

Following the numerical results, we subsequently fabri-
cated these two geometrically similar binary grating structures
of PMMA ridges on an LNOI wafer using electron beam
lithography. Due to the limitation in our optical spectrometer
resolution, we used δ = 80 nm for both structures. The scan-
ning electron microscope (SEM) images of the two structures
are shown in Figs. 5(a) and 5(b), demonstrating excellent
fabrication quality. Both the QBIC and the QGM resonances
undergo a redshift as the incident angle increases, as the nu-
merical results in Figs. 5(c) and 5(e) demonstrate. This trend
is consistent with the dispersions in Fig. 2. We employed a
supercontinuum light source with a manual rotation stage to
mount the sample to achieve a variable oblique incidence. The
details of the fabrication process and the optical measurement
setup can be found in the Supplemental Material [30]. The
beam diameter of the light source is about 2 mm while the
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FIG. 6. The Q factors at a function of incident angle, extracted
from the transmission spectra in Figs. 5(d) and 5(f).

footprint of both gratings is 5 mm×5 mm. In this case, the
incident light from the source can be considered as plane
waves with a single wave vector controlled by the incident
angle. The measured transmittance spectra at different in-
cident angles for both the QBIC and the QGM resonances
can be found in Figs. 5(d) and 5(f). It can be observed that
for the QBIC resonances, as the incident angle increases,
the resonance expands. This is consistent with our previous
discussions, thereby further validating the decaying of the
Q factor in the QBIC system when the wave vector moves
away from the � point. In contrast, the QGM resonances
demonstrate almost constant linewidth as the incident angle
changes and the resonance shifts, both numerically [Fig. 5(e)]
and experimentally [Fig. 5(f)]. To provide a clearer charac-
terization of the changes in linewidth for the two types of
quasi bound modes (QBMs), we extracted the Q factors from
each transmittance spectrum in Figs. 5(d) and 5(f). Figure 6
shows the dependence of the Q factor on the incident angle
for both the QBICs (red) and the QGMs (blue). When the
angle increases from 0° to 3°, the Q factor of QBICs rapidly
decreases from 4000 to 1600. In contrast, for QGMs, the Q
factor remains quite robust with respect to increasing incident
angles and stays around 6400. Compared with the calculated
results, the slight wavelength mismatch and decrease in Q
factor for all the experimental results are mainly attributed
to two aspects. Firstly, the slight spectral shift is caused by
some fabrication errors, as well as additional optical losses
caused by the roughness of the sample surfaces and sidewalls.
According to the temporal coupled-mode theory, when these
two values of Qabs (contribution from absorption loss) and
Qrad (contribution from radiative loss) are equal, the transmit-
tance on resonance reaches zero. The additional losses in the
experiment cause a decrease in Qabs and a resultant mismatch
of it with Qrad, leading to an increase of the transmittance
from zero. Secondly, both the modes exhibit steep dispersion
[see Figs. 2(b) and 2(d)]. In actual measurements, the incident
beam cannot be plane waves and inevitably contains divergent
or focused components. Therefore, when measuring the trans-
mission spectrum at a certain angle, other resonances within
the wavelet vector range are simultaneously excited, resulting

in a slight decrease in the Q factor due to the superposition
of multiple peaks. However, it is important that these experi-
mental results exhibit exactly the same trend as the theoretical
discussion which fully proves our insight in this work into the
origin of supported high-Q resonances in periodic photonic
structures.

As last remarks in this section, we note that although the
regular GMRs can also support high-Q resonances [31], the
realization of ultrahigh-Q resonance based on GMRs needs
the dimension of the grating elements to be vanishingly small
[32,33], which possess either challenges in the fabrication
process or limitations in practical applications. Furthermore,
the small grating elements indicate that the grating layer itself
cannot support well-confined GMs, making the underlayer of
an optical slab structure necessary. In contrast, the QGMs do
not suffer from such kinds of limitation. A high index contrast
grating of subwavelength period without the slab layer can
also support well-confined GMs [18,34] and consequently can
easily help realize high-Q resonances with high robustness
over a large range of wave vectors by harnessing the mech-
anism of period-changing perturbations.

III. CONCLUSION

In summary, we have demonstrated through detailed
numerical and experimental investigations on two geo-
metrically similar binary grating structures, one with a
regular symmetry-breaking perturbation and the other with
a periodic-changing perturbation, that both structures can
support high-Q resonances which originate from two funda-
mentally different physics instead. The former supports the
QBIC resonances whose Q factors decay rapidly as the k
values deviate from that of the predecessor BIC, while the
latter converts the GMs in the original subwavelength periodic
photonic lattices to QGMs. The Q factors of both QBICs and
QGMs can be flexibly controlled by the magnitude of pertur-
bations. However, there are distinctions between BIC/QBIC
and GM/QGM. The positions of BIC/QBIC remain roughly
unchanged in the ω-k space whether the perturbation is
present, or not. However, the transition between GM and
QGM is accompanied by a swing of the dispersion across
the light line. The QBICs inherit the polarization vertexing
property of the original BIC and are preferable for light-matter
interactions where the spin-optical interactions with matters
are involved. The QGMs have another advantage in that the
Q factors are more robust against the wave vectors, indicating
that one can easily achieve a spectral tuning of the resonance
using a single optical geometry while the same level of Q
factor as well as the underlying enhanced electric field are
maintained. Furthermore, in conjunction with the LN thin-
film platform possessing strong electro-optic effects and large
second-order nonlinear susceptibility, a constructive approach
is provided for the design of multidimensional active optical
devices and the generation of spectrally tunable nonlinear
optical processes [35].

Our findings in this work shed more light on the un-
derlying mechanism of many high-Q resonances reported
in the literature using periodic structures and correct some
misunderstandings in this area. We advocate that the nomen-
clature of the high-Q resonance through perturbing a BM
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should be related to its predecessor. In other words, when
the perturbation vanishes, the Q factor of the resonance will
restore from a finite value to infinity. The essence of the
infinite-Q modes should be reflected in the naming of the
high-Q resonance. In this context, many high-Q resonances
reported in the literature nowadays and claiming to be QBICs
are actually QGMs. One typical example is the PCS structure.
By changing the size [36,37], orientation [10], or position of
the elements [38] in a PCS, the photonic lattice can be affected
in either the periodicity in one direction or even the type of
lattice [39]. In either case, the lattice distortion will result in a
change of the FBZ, and the supported GMs in the original
PCS can be engineered correspondingly to become high-Q
leaky modes of QGMs. Although the QBICs can indeed be

supported due to symmetry breaking, according to our anal-
ysis in this work, only those at a very limited range of wave
vectors can be considered as QBICs. While many people seem
to use the nomenclature of QBIC all the time, or introduce
some concepts like Brillouin zone folding driven bound states
in the continuum [40], it is more suitable to use QGMs instead
considering that the predecessor of the high-Q resonances in
periodic structures is GM, but not BIC.
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