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Electron-hole collision limited resistance of gapped graphene

Arseny Gribachov and Dmitry Svintsov *

Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

Vladimir Vyurkov
Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

and Valiev Institute of Physics and Technology RAS, 36/1 Nahimovsky Ave., 117218 Moscow, Russia

(Received 21 November 2023; accepted 7 February 2024; published 21 February 2024)

Collisions between electrons and holes can dominate the carrier scattering in clean graphene samples in the
vicinity of the charge neutrality point. While electron-hole limited resistance in pristine gapless graphene is well
studied, its evolution with induction of band gap Eg is less explored. Here, we derive the functional dependence
of electron-hole collision limited resistance of gapped graphene ρeh on the ratio of gap and thermal energy
Eg/kT . At low temperatures and large band gaps, the resistance grows linearly with Eg/kT and possesses a
minimum at Eg ≈ 2.5kT . This contrasts to the Arrhenius activation-type behavior for intrinsic semiconductors.
Introduction of impurities restores the Arrhenius law for resistivity at low temperatures and/or high doping
densities. The hallmark of electron-hole collision effects in graphene resistivity at charge neutrality is thus the
crossover between exponential and power-law resistivity scalings with temperature.
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I. INTRODUCTION

The problem of minimal dc graphene conductivity σmin

observed at charge neutrality has been a subject of long de-
bate since the discovery of graphene. Experimental studies
have shown that σmin varies slightly between samples and
with changing the temperature [1–3], which posed questions
about the universality of this quantity. Numerous theoreti-
cal works attempted to derive σmin from Kubo’s formula for
clean graphene at zero frequency of electric field ω, zero
temperature T , and doping εF [4–6]. The apparent “universal”
result appeared to depend on the order of taking the limits of
zero frequency, temperature, and doping [7]. The latter fact is
indicated on the deficiency of the “clean graphene” model for
the derivation of universal minimal conductivity.

The first resolution of the minimal conductivity puzzle
appeared by realizing that graphene at charge neutrality has
some residual doping. This doping comes from random im-
purities in the sample, arranged in positively and negatively
charged clusters. The free carriers tend to screen these im-
purity charges, forming the electron-hole puddles [8]. The
root-mean-square density of charge carriers appears to be
nonzero. Instead, it is proportional to the impurity density ni

and so is the carrier scattering rate. These two proportionali-
ties lead to a very weak dependence of σmin on the density of
residual impurities and temperature, which can be considered
as “approximate universality” [9,10].

With the current level of graphene technology, the density
of residual impurities can readily be lower than the density of
thermally activated electrons and holes nth ≈ 8×1010 cm−2
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[11]. In such a situation, electron-hole puddles and impu-
rity scattering make a minor contribution to the resistivity.
The scattering between electrons and holes (e-h scattering)
now governs the experimentally measured value of minimum
conductivity [12–15]. A strong violation of the Wiedemann-
Frantz relation between electrical and thermal conductivity at
charge neutrality [16] and the appearance of new electron-
hole sound waves [17] also indicate the dominant role of e-h
scattering in clean samples. A scaling estimate of e-h limited
conductivity was presented in Ref. [18] and resulted in σmin =
Cα−2

c e2/h, where αc = e2/h̄v0 is the Coulomb coupling con-
stant, v0 is the velocity of massless electrons in graphene, and
C is the numerical prefactor. A rigorous solution of the kinetic
equation using the variational principle confirmed the result
and established C ≈ 0.76 [19,20].

While most theoretical and experimental studies were
devoted to the electron-hole scattering in pristine gapless
graphene, little attention has been paid to the same process
in gapped systems. The gap induction in a single graphene
layer is possible under lattice reconstruction on boron nitride
substrates [21]. The gap is readily induced in a graphene
bilayer under the action of transverse electric field [22,23].
The derivatives of graphene are not the only examples of two-
dimensional (2D) electron systems with small energy gap.
Another family is represented by quantum wells based on
mercury cadmium telluride of subcritical thickness [24,25].
Given the large variety of clean 2D systems with small band
gap and their potential applications in nano- and optoelectron-
ics, it is natural to study the factors limiting their electrical
resistivity, particularly, the inevitable electron-hole scattering.
In Ref. [26] it was suggested that e-h scattering time weakly
depends on the induced gap in such systems. An attempt to
evaluate and measure the electron-hole limited resistivity was
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presented in [27]. These results cannot be considered as sat-
isfactory because the e-h scattering times τeh in the presence
of band gap Eg were not derived, but rather suggested. The
authors of [27] have proposed a universal function f (Eg/kT )
governing the scaling of e-h limited conductivity with band
gap; the function possessed a quadratic maximum at Eg = 0
and dropped exponentially at Eg/kT � 1. Such dependence
was seemingly confirmed by the experiment.

The present paper is aimed at a rigorous derivation of
electron-hole scattering time and conductivity at the neutrality
point in gapped graphene. Our formalism is based on a kinetic
equation with carrier-carrier collision integral; the carriers are
assumed interacting via unscreened Coulomb potential. We
find that, at large band gaps, the conductivity scales as σmin ∝
kT/Eg. This behavior differs essentially from conventional
Arrhenius-type activation.

The non-Arrhenius behavior of minimal conductivity can
be explained with simple gas kinetics arguments. The free
path time of a trial electron against a dilute hole background is
inversely proportional to the hole density τeh ∝ n−1

h ∝ eEg/2kT ,
i.e., grows exponentially with gap induction. The Drude con-
ductivity is proportional to the product of electron density
and free-path time, σmin ∝ neτeh/m∗. As electron and hole
components are balanced at charge neutrality, ne = nh, the
leading Arrhenius exponents are canceled in the expression
for conductivity. Eventually, the conductivity depends on the
gap only via effective mass, m∗ = Eg/2v2

0 . This justifies the
hyperbolic dependence of σmin on Eg.

The above intuitive explanation is missing the long-range
character of Coulomb interaction. In classical plasmas, the
latter led to a log-divergent collision integral [28]. We show
that no such divergences appear during the evaluation of
conductivity. The collision integral converges both at small
momentum transfers q → 0 as such momenta do not change
the electric current and at large momenta q → ∞ due to
small quantum-mechanical overlap between scattered states.
All in all, our variational derivation results in the following
expression for the conductivity at charge neutrality valid at
Eg � kT :

σmin = 8

π

e2

h
α−2

C

kT

Eg
. (1)

II. VARIATIONAL APPROACH TO KINETIC EQUATION
WITH CARRIER-CARRIER COLLISIONS

Electron states in the gapped graphene are described by a
“massive” Dirac Hamiltonian

ĤD =
[

Eg/2 v0( p̂x − i p̂y)

v0( p̂x + i p̂y) −Eg/2

]
.

Such Hamiltonian is applicable to the single layer graphene
aligned to a boron nitride substrate and to a 2D electron sys-
tem in CdHgTe quantum wells. Its applicability to graphene
bilayer is limited, as the latter has a quadratic band touching
at Eg = 0. In Sec. V we will discuss which of our results
are independent of the particular structure of the low-energy
Hamitonian.

The dc conductivity is obtained by solving the kinetic
equation with respect to distribution function, which we

FIG. 1. Scattering diagrams for the processes contributing
to graphene resistivity at the charge neutrality point: electron-
impurity, electron-electron, and electron-hole scattering (normal and
annihilation-type processes).

linearize as fp = f0 − 	e/h,p∂ f0/∂ε; here 	e/h,p is the lin-
ear function of electric field E and the subscripts e and h
distinguish between electrons and holes. We restrict our con-
sideration to the carrier-carrier and carrier-impurity collisions.
The former involve electron-electron (e-e), hole-hole (h-h),
and electron-hole (e-h) collisions (Fig. 1). The kinetic equa-
tion for electrons takes on the form

−e(E · vp)
∂ f0

∂ε
= −Cei{	e,p} − Cee{	e,p} − Ceh{	e,p,	h,p}

(2)

and similarly for holes with apparent change of signs. At
charge neutrality electrons and holes move in the opposite
directions; thus 	e,p = −	h,p ≡ 	p. The complex structure
of carrier-carrier collision integrals makes the exact solution
of (2) impossible, at least in the nondegenerate case [29]. For
this reason, we use the variational approach with a reason-
able trial form of distribution function to get an estimate of
the resistivity [30,31]. The problem of resistivity is weakly
sensitive to the specific form of 	p (unlike the problems of
thermoelectric coefficients [32]); thus the variational approach
is efficient for predicting its functional dependence.

Within this approach, the kinetic equation being the linear
integral equation with respect to 	p is considered as an ex-
tremum condition of a functional Q[	] being quadratic in 	p.
The procedure of generating Q[	] from a linear equation (2)
is inverse to obtaining an Euler-Lagrange equation from a
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given functional in variational calculus. Proceeding this way,
we find an explicit form of Q[	] [33]:

Q[	] = Qei[	] + Qee[	] + Qeh[	] − Qfield[	], (3)

Qfield[	] = −eN
∑

p

(vp · E)
∂ f0

∂ε
	p, (4)

Qei[	] = N

2

∑
pp′

∂ f0

∂ε
(	p − 	p′ )2W ei

pp′ , (5)

Qee[	] = N

8

1

kT

∑
pkq

f0(p) f0(k)[1 − f0(p′)][1 − f0(k′)]

× W ee
pk,p′k′[(	p + 	k ) − (	p′ + 	k′ )]2, (6)

Qeh[	] = N

8

1

kT

∑
pkq

f0(p) f0(k)[1 − f0(p′)][1 − f0(k′)]

× W eh
pk,p′k′[(	p − 	k ) − (	p′ − 	k′ )]2. (7)

Above, W ei, W ee, and W eh are the Fermi golden rule scatter-
ing probabilities of electron-impurity, electron-electron, and
electron-hole collisions. The corresponding scattering dia-
grams are shown in Fig. 1. Recalling the large spin-valley
degeneracy factor for graphene N = 4, we neglect the ex-
change scattering for electron-electron collisions; the latter
is possible if only both electrons have the same spin and
belong to the same valley. For electron-hole collisions, the
exchange (or annihilation) scattering cannot be neglected. An
electron and a hole undergoing an annihilation process should
still have the same spin and valley, yet the emanating virtual
photon can produce the final-state pair with any spin in any
valley. This results in equal orders of magnitude for normal
and annihilation e-h scattering even in the large-N limit. With
these prerequisites, we adopt the scattering probabilities in the
form

W ei
pp′ = 2π

h̄
nimp|V (q)|2|M++

pp′ |2δ(εp − εp′ ), (8)

W ee
pk,p′k′ = 2π

h̄
N |V (q)|2|M++

pp′ |2|M++
kk′ |2δ(εp + εk − εp′ − εk′ ),

(9)

W eh
pk,p′k′ = 2π

h̄
N[|V (q)|2|M−−

pp′ |2|M++
kk′ |2 + |V (p + k)|2

× |M+−
pk |2|M+−

p′k′ |2]δ(εp + εk − εp′ − εk′ ), (10)

where N = 4 is the degeneracy factor, εp = (E2
g /4 + p2v2

0 )1/2

is the energy spectrum in the gapped graphene, V (q) =
2πe2/κ|q| is the Fourier-transformed Coulomb potential, κ is
the background dielectric constant, and Mss′

pp′ is the overlap of
chiral wave functions between bands s and s′ (s = +1 for the
conduction and s = −1 for the valence band, respectively):

∣∣Mss′
pp′

∣∣2 = εpεp′ + (Eg/2)2 + ss′(v0p · v0p′)
2εpεp′

. (11)

A fundamental difference between effects of e-e and e-h
collision integrals should be mentioned at that stage. There is
a difference in signs with which the function 	p enters the
expressions (6) and (7). It stems from the fact that Q[	] is

sensitive only to the collisions changing the electric current;
the quadratic-in-	 expression in square brackets of (6) and (7)
are proportional to this change. Naturally, the current carried
by two particles with momenta p and k depends on their
charge, which explains the difference of collision integrals for
e-e and e-h scattering.

Our trial distribution function is selected as

	p = τ e(vp · E), (12)

where τ is the parameter subjected to the optimization having
the meaning of transport relaxation time and vp = ∂εp/∂p is
the electron velocity. The angular dependence of 	p ∝ cos θp
is dictated by the angular dependence of the driving term in
kinetic equation (E · vp) ∝ cos θp. The dependence on abso-
lute value of momentum 	p ∝ vp is important to reproduce
the finite resistivity of gapless graphene. Other forms lead
to the log-divergent collision integral due to the prolonged
interaction of carriers with collinear momenta [20]. In the
gapped case, 	p given by (12) is not the only possible choice,
but we stick to it for traceability of our result to the preceding
studies.

The optimization of the functional Q[	] with respect to the
scattering time yields the following result:

τ = D

C
, σ = Dτ, (13)

where D is the Drude weight and C = Cei + Cee + Ceh is the
net collision rate. The Drude weight is given by a conventional
expression,

D = −N e2

2

∑
p

v2
p

∂ f0

∂ε
, (14)

which has the following asymptotics:

D = N e2kT

4π h̄2

⎧⎨
⎩ln 2 + (

ln 2 − 1
8

)( Eg

2kT

)2
, Eg 
 kT,

2 Eg/kT −2
Eg/kT exp

(− Eg

2kT

)
, Eg � kT .

(15)

The scattering rates Cei, Cee, and Ceh are the statistically aver-
aged collision probabilities:

Cei = N e2

2

∑
pp′

∂ f0

∂ε
(vp − vp′ )2W ei

pp′, (16)

Cee = N e2

8kT

∑
pkq

f0(p) f0(k)[1 − f0(p′)][1 − f0(k′)]

× W ee
pk,p′k′[(vp + vk ) − (vp′ + vk′ )]2, (17)

Ceh = N e2

8kT

∑
pkq

f0(p) f0(k)[1 − f0(p′)][1 − f0(k′)]

× W eh
pk,p′k′[(vp − vk ) − (vp′ − vk′ )]2. (18)

Expressions for the e-e and e-h collision rates look very
similar and seem formally of the same order of magnitude.
However, in the parabolic gap case (realized at Eg � kT ),
the momentum conservation upon e-e collisions implies the
conservation of total current by the virtue of proportional-
ity p = m∗vp. This feature is captured by Eq. (17), where
the velocity factor in the square brackets is exactly zero if
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p = m∗vp. Even in the gapless case, where proportionality
between velocity and momentum does not hold, e-e collisions
make a numerically small contribution to resistivity, compared
to the e-h processes [23,34].

Expressions (13)–(18) are the central results of our
paper and enable the direct evaluation of conductivity
for the arbitrary value of the gap. One can resolve the
delta-functional energy constraint in Eqs. (17) and (18) an-
alytically (Appendix A) and proceed with the remaining
four-dimensional integral numerically. A fully analytical ex-
pression for electron-hole scattering-limited resistivity can be
obtained in the limit of large gaps Eg � kT , as described in
Appendix B.

III. GAP-DEPENDENT CONDUCTIVITY LIMITED
BY CARRIER-CARRIER SCATTERING

We start our inspection of collision frequencies τ−1 and
resistivity ρ = σ−1 from the case of pristine graphene, i.e.,
neglecting the electron-impurity collisions. Such a problem
has only two dimensionless parameters: the coupling con-
stant αc = e2/κ h̄v0 and the normalized gap Eg/kT . Within the
Born approximation to carrier-carrier scattering, the collision
frequency and resistivity appear proportional to the coupling
constant squared. Restoring the dimensionality of the collision
rate and resistivity, we are always able to present them in the
form

τ−1
eh = α2

c

kT

h̄
ν̃

(
Eg

kT

)
, (19)

σeh = e2

h̄
α−2

c σ̃

(
Eg

kT

)
, (20)

where ν̃ and σ̃ are the dimensionless collision frequency and
the dimensionless conductivity depending only on the normal-
ized gap Eg/kT .

The resulting dependences of scattering rate and resistiv-
ity on Eg/kT are shown in Fig. 2. The collision frequency
ν̃ decays monotonically with increasing the gap, which re-
flects the lack of thermally excited carriers to collide within
a nondegenerate semiconductor. It is possible to show that
ν̃ ∝ e−Eg/2kT at Eg/kT � 1. Still, the conductivity σ̃eh is scal-
ing with the gap nonexponentially. The reason is that Drude
weight D has a compensating exponential D ∝ e−Eg/2kT ,
which again reflects the exponentially small number of car-
riers in the band. The resulting dependence of σ̃eh on Eg/kT
appears to be hyperbolic at large values of the gap, while the
resistivity scales linearly, ρeh ∝ Eg/kT . The latter scaling can
be ascribed to the enhancement of effective mass in the Drude
formula σeh = ne2τeh/m∗, provided the combination nτeh is
gap independent.

Analyzing the intermediate-gap region, Eg ∼ kT , it is in-
structive to split the electron-hole collision frequency into the
contributions of “normal” and “annihilation-type” scattering.
The dependences of partial collision frequencies on Eg/kT
are both decaying, yet the annihilation collision frequency
decays faster than the normal collision frequency. This fact
is explained by approximate orthogonality of conduction and
valence band states located in the kT window near the edges
of conduction and valence bands. It is the states orthogonality
which reduces the probability of annihilation, |M+−

pk |2 
 1,

FIG. 2. Electron-hole limited resistivity ρeh (a) and associated
collision frequency τeh (b) of pristine gapped graphene at the charge
neutrality point. The collision frequency is scaled by “thermal fre-
quency” α2

c kT/h̄, while the resisitivity is scaled by ρ0 = α2
c h/2e2.

The partial contributions of normal and annihilation-type electron-
hole scattering are shown with red and orange curves, respectively.

and makes the annihilation-type collisions irrelevant to the
conductivity of the large-gap semiconductor. Yet, the annihi-
lation scattering is large in the zero-gap state, even stronger
than the conventional scattering.

Large frequency of annihilation-type collisions at Eg = 0
and its rapid decay at Eg � kT result in a nontrivial depen-
dence of resistivity on band gap Eg/kT . At small induced
gaps, the resistivity decays due to the rapid cancellation of
annihilation-type scattering and reaches a minimum at Eg ≈
2.5kT . At larger values of Eg, the resistivity grows linearly due
to the enhancement of effective mass. The presence of such
annihilation minimum on the gap dependence of resistance
is a natural hallmark of the carrier-carrier collision limited
transport.

To conclude the study of resistivity in pristine gapped
graphene, we point to the main steps in deriving an approx-
imate expression for resistivity at large band gaps. In that
case, exchange electron-hole and electron-electron contribu-
tions to C can be neglected. The Fermi distribution functions
are reduced to the Boltzmann exponents, which simplifies the
energy integration. The natural cutoff for the transferred mo-
mentum q appears order of Eg/v0—otherwise, the scattered
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electron cannot reside on the dispersion curve. The latter fact
disables the appearance of the Coulomb logarithm [28] in the
expression for resistivity. Performing these steps, described
in detail in Appendix B, we arrive at the conductivity of
graphene with large induced gap in the form

σeh(Eg � kT ) = 8

π

e2

h
α−2

c

kT

Eg
. (21)

This value is very different numerically from the e-h limited
conductivity of gapless graphene, obtained in Ref. [20] and
reproduced in our calculations:

σeh(Eg = 0) = 0.76
e2

h
α−2

c . (22)

Despite numerical and functional differences between small-
and large-gap asymptotics of σeh, both (21) and (22) can be
presented in a similar form. This is achieved by introducing
the “running” coupling constant depending on the average
thermal carrier velocity 〈v2

p〉

α2
c = e4

κ2h̄2
〈
v2

p

〉 . (23)

Here 〈v2
p〉 = v2

0 in the gapless state (αc → αc) and 〈v2
p〉 =

2kT/m∗ in the limit of the large gap. With the notation (23),
we present the large-gap conductivity as

σeh(Eg � kT ) = 2

π

e2

h
α−2

c ≈ 0.6
e2

h
α−2

c . (24)

We may now speculate that the gap-dependent electron-
hole collision limited conductivity of the variable-gap semi-
conductor is more universal than it was assumed previously
[27]. First, the scaling of σeh with the gap is nonexponential
and much slower. Second, the conductivity can be expressed
only via conductance quantum e2/h and the running coupling
constant αc, with a numerical prefactor very weakly depend-
ing on the gap.

IV. OBSERVABILITY OF THE ELECTRON-HOLE
CONDUCTIVITY IN DISORDERED SAMPLES

It is now tempting to compare the magnitudes of the
carrier-carrier and carrier-impurity contributions to the re-
sistivity in realistic disordered samples. Within the adopted
variational approach, the contributions of these scattering
channels to the collision frequency and resistivity are additive:

1

τ
= 1

τeh
+ 1

τei
, (25)

ρ = ρeh + ρei. (26)

From scaling considerations, the e-i collision frequency
should be of the form

τ−1
ei = α2

c

nimp

(kT/h̄v0)2

kT

h̄
ν̃ei

(
Eg

kT

)
. (27)

The normalized electron-impurity collision frequency ν̃ei de-
pends weakly on the scaled band gap Eg/kT and tends to

FIG. 3. Dependence of normalized electron-impurity collision
frequency ν̃ei (a) and resisitivity ρei (b) on the band gap scaled by
temperature EG/kT . Solid lines show the result of full variational
calculation; dashed lines stand for small-gap and large-gap asymp-
totics, Eqs. (28) and (29).

constant values both in the limits Eg → 0 and Eg � kT :

ν̃ei ≈
{

12 ln 2 − 3 EG
kT , EG 
 kT,

π2 EG/kT
2+EG/kT , EG � kT .

(28)

The resistivity limited by e-i collisions interpolates between
a constant at zero gap and Arrhenius-type activation at large
gap:

ρei = ρ0
(kT/h̄v0)2

nimp

{
12 − 3

ln 2
EG
kT , EG 
 kT,

π2

2 exp
( EG

2kT

)
, EG � kT,

(29)

where we have introduced the “universal resistivity” ρ0 =
α2

c h/2e2. The full dependence of electron-impurity collision
frequency and resistivity along with their asymptotic values
(28) and (29) are shown in Fig. 3.

It becomes clear now that the e-h scattering-limited resis-
tivity is dominant over impurity-limited if the hole density
exceeds the impurity density. With increasing the band gap,
the number of thermally excited carriers is reduced, while the
density of impurities remains approximately constant. This
makes us conclude that e-h collisions always become weak
at Eg/kT � 1.

The latter conclusion is illustrated in Fig. 4, where the total
resistivity is shown as a function of inverse temperature at
various impurity densities and band gaps. At the smallest band
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FIG. 4. Temperature-dependent resistivity ρ of gapped graphene
under the combined action of electron-hole and impurity scattering
for various values of band gap: Eg = 20 meV (a), Eg = 50 meV (b),
and Eg = 100 meV (c). The resistivity is scaled by ρ0 = α2

c h/2e2.
Curves of different colors correspond to different impurity densities
nimp: red curve in each panel corresponds to the pristine graphene;
gray dashed line is a guide for the eye showing the Arrhenius
behavior.

gap Eg = 20 meV [Fig. 4(a)], the total resistivity is dominated
by e-h collisions in a wide temperature range starting from
the highest temperatures to (kT )−1 ≈ 60 eV−1 (T ≈ 200 K).
With increasing the band gap to Eg = 50 meV and then to
Eg = 100 meV [Figs. 4(b) and 4(c)], we observe quite a rapid
increase in total resistivity. The total resistivity deviates from
the electron-hole limited one already at nearly room tempera-
ture and becomes dominated by impurities. The Arrhenius law

for impurity scattering is expectantly fulfilled: the logarithm
of resistivity vs T −1 becomes linear (see the gray dashed curve
in Fig. 4). We suggest that the seeming agreement between
the exponential e-h conductivity scaling function f (Eg/kT ) of
Ref. [27] and experiment was due to the presence of residual
impurities, which guaranteed the restoration of Arrhenius law.

The density of impurities in gapped graphene should be
pretty low to observe the effects of electron-hole scattering be-
low the room temperature. For Eg = 20 meV and nimp = 2 ×
109 cm−2, the e-h and e-i contributions to resistivity become
equal to each other at T ≈ 90 K. Such density of impurities is
achievable in high-quality van der Waals heterostructures.

V. DISCUSSION AND CONCLUSIONS

We have performed a systematic variational evaluation of
resistivity due to electron-hole and electron-impurity scat-
tering in gapped graphene. We have found that, for pristine
graphene, the resistivity at the charge neutrality point scales
as ρeh ∝ Eg/kT . The scaling is nonexponential and violates
the empirical Arrhenius law. This fact is related to simul-
taneous reduction in carrier density and collision frequency
with increasing the band gap. A weak residual dependence
of resistivity on the gap is due to the gap-dependent effective
mass within the Dirac model.

Another important feature of gap-dependent resistivity
ρeh(Eg/kT ) is the presence of minimum achieved at Eg ≈
2.5kT . This minimum is provided by the competition of
two opposite effects occurring upon gap induction: the en-
hancement of effective mass and reduction in probability of
electron-hole annihilation scattering. Such an annihilation
minimum is quite sensitive to the numerical values of the
normal and annihilation scattering probabilities. Rigorously
speaking, the minimum may not appear for other model po-
tentials of electron-hole scattering, e.g., statically screened or
dynamically screened Coulomb interaction. Still, the effects
of screening should be small in the gapped case Eg/kT � 1,
where the number of free carriers is low.

Our consideration was limited here to carrier-carrier and
carrier-impurity scattering. At elevated temperatures, the
carrier-phonon scattering can become dominant. Inclusion of
acoustic phonon scattering is achieved similarly to carrier-
impurity scattering, Eq. (5), with the scattering probability
replaced with

W e−ph
pp′ = 2π

h̄

T

h̄ωq
D2 q2 h̄

ρωq
|M++

pp′ |2δ(εp − εp′ ), (30)

where D ∼ 10 eV is the deformation potential constant, ρ is
the sheet density of graphene, q = p − p′ is the transferred
momentum, ωq = sq is the phonon spectrum, and s ∼ 103

m/s is the speed of sound. The above expression is valid
in the phonon equipartition mode, i.e., when the speed of
sound is well below the carrier thermal velocity. The de-
tailed computation of phonon-induced resistivity ρe−ph(T )
in gapped graphene is beyond the scope of our paper. Yet,
the anticipated dependence ρe−ph(T ) is the growing function
of temperature, while electron-hole limited resistance decays
with T , ρeh ∝ T −1. We can therefore expect the presence
of a resistance minimum at some temperature T ∗, which is
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dictated by competition of electron-hole and electron-phonon
scattering.

Our study was devoted to the 2D systems with massive
Dirac-type spectrum. Yet, we argue that the cancellation of
the Arrhenius-type exponents in the T dependence of ρeh is
a general phenomenon which relies only on the Boltzmann
statistics of electrons and holes at Eg � kT and pair interac-
tions between them. The subleading power-law factor in the
T -dependent resistivity can depend on the particular form of
the low-energy electron-hole Hamiltonian. It is not guaranteed
that ρeh ∝ Eg/kT would hold for a massive Kane-type spec-
trum or for a tight-binding spectrum of bilayer graphene. The
establishment of a power-law factor in these materials requires
a separate consideration. A different situation also emerges in
semimetals with overlapping conduction and valence bands,
where CNP is achieved for a degenerate electron-hole system.
Such a situation is realized in HgTe quantum wells above
the critical thickness, where e-h scattering-limited resistivity
scales as T 2 [35,36]. Scattering between degenerate electrons
and degenerate holes can also be realized in drag experiments
[14] and in 2D semiconductors with interband population
inversion [34].

All the above discussion concerned the resistivity of
gapped graphene exactly at the charge neutrality point. Away
from the CNP, the electron-hole collisions make a minor
contribution to the resistivity due to the effect of Coulomb
drag [18,37]. More precisely, the majority carriers tend to
drag the minority ones in the same direction, in spite of the
opposite charges. The codirectional motion of electrons and
holes reduces the strength of their mutual scattering. One may
speculate that e-h scattering tends to nullify its own magni-
tude even for small density imbalance. An estimate of this
imbalance can be obtained from the two-fluid hydrodynamic
model [38] and reads as δn/nT � τeh/τei. Definitely, a similar
estimate could be obtained from a variational method using
two different variational parameters τe and τh. We refrain from
these lengthy calculations due to the expected minor effect of
e-h collisions away from the CNP.

Potential extensions of this work lie in the field of thermo-
electric coefficients of gapped graphene in the electron-hole
collision regime. The interest to thermoelectricity in such a
system stems from (1) enhancement of the Seebeck coefficient
with gap induction even for impurity- and phonon-limited
scattering and (2) further enhancement of thermopower and
reduction in thermal conduction in the hydrodynamic regime
[39,40]. The combination of these factors can make clean
gapped graphene a very strong candidate for thermoelectric
photodetection [41].
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APPENDIX A: RESOLVING THE ENERGY CONSTRAINT
FOR CARRIER-CARRIER SCATTERING

Equations for the scattering rates (17) and (18) are not yet
suitable for numerical evaluation until the energy constraint

given by the delta function is resolved. To achieve this, we
introduce the extra transferred energy variable ω:

δ(εp + εk − εp′ − εk′ )

=
∫

dω δ(ω − εp + εp−q)δ(ω − εk+q + εk ). (A1)

The expressions for Cee and Ceh are factorized into the inte-
grals of the general form

I (p, q, ω) =
∫

d2p F (p, q, θpq)δ(ω − εp + εp−q), (A2)

where F (p, q, θpq) is some smooth function of absolute values
of momenta p and q and the angle between them θpq.

We now integrate over the angle θpq. To achieve this, we
perform a sequence of transformations:

δ(εp−q − εp + ω)

= (εp−q + εp − ω)δ
[
ε2

p−q − (εp − ω)2
]

= 2(εp − ω)δ
[
ε2

p − 2pqv2
0 cos θpq + q2v2

0 − (εp − ω)2
]
.

(A3)

The energy constraint is fulfilled at scattering angle θ∗
given by

θ∗ = arccos

(
ε2

p + q2v2
0 − (εp − ω)2

2pqv2
0

)
. (A4)

Integration over the angle is now straightforward and results
in

I (p, q, ω) = 2
∫

pd p

2pqv2
0

2(εp − ω)

sin θ∗ F (p, q, θ∗). (A5)

The factor of two before the whole expression comes from
two scattering possibilities by angles ±θ∗.

APPENDIX B: RESISTIVITY AT LARGE BAND GAPS

Throughout this section, we work in the units h̄ = k =
v0 = 1. The resistivity of gapped graphene at Eg � T is lim-
ited by normal electron-hole scattering. The annihilation-type
process can be neglected due to its small matrix element,
while electron-electron scattering can be neglected due to the
approximate conservation of current if carriers reside at the
parabolic part of the spectrum. The contribution of normal
e-h scattering to average collision rate C, which we denote
by C++

eh , can be presented in the form [37,42]

C++
eh = e2π2

T

∫
q dq dω|V (q)|2nω[1 + nω]

× [Im�0Im�2 + Im�1Im�1], (B1)

where nω = [eω/T − 1]−1 are the Bose functions, and the
“generalized polarizabilities” �n(q, ω) are defined by

�n(q, ω) = N
∑

p

f0(εp) − f0(εp−q)

εp − εp−q − h̄ω + iδ

× |M++
p,p−q|2(vp − vp−q)n. (B2)
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Representation (B1) is achieved by introducing an extra energy variable ω with the aid of (A1) and developing the square of four
particle velocities:

[vp − vk − vp−q + vk+q]2 = (vp − vp−q)2 + (vk − vk+q)2 − 2(vp − vp−q)(vk − vk+q). (B3)

Evaluation of the imaginary part of the polarizability is achieved with the Sokhotski rule

Im�0(q, ω) = −πN
∑

p

[ f0(εp) − f0(εp−q)]δ[εp − εp−q − ω]|M++
p,p−q|2. (B4)

The angular integration is performed with the aid of the delta function, which results in

Im�0(q, ω) = − N

2π

1√
q2 − ω2

∫ ∞

Emin

dε

[
f0

(
ε + ω

2

)
− f0

(
ε − ω

2

)]
ε2 − q2

4√
ε2 − E2

min

. (B5)

The minimum carrier energy at which the quantum (q, ω) can be absorbed is denoted by Emin:

Emin = q

2

√
1 + E2

g

q2 − ω2
. (B6)

Further integration over energies can be performed in the Boltzmann limit Eg � T . All slowly varying functions of energy ε

can be evaluated at ε = Emin, while the remainder is evaluated exactly:

Im�0(q, ω) = − πN

(2π )2

q2 sinh
(

βω

2

)
√

q2 − ω2

√
π (B2 − 1)

e−βBq/2

√
βBq

, (B7)

where we have introduced the inverse temperature β = T −1 and the dimensionless parameters

B(q, ω) =
√

1 + E2
g

q2 − ω2
, l (q, ω) = ω

q
. (B8)

Similar steps can be done to evaluate Im�1,2 in the Boltzmann limit, which results in

Im�1 = 2π
N

(2π )2
sinh

(
βω

2

)√
q2 − ω2B

√
π

B2 − 1

B2 − l2

e−βBq/2

√
βBq

q
q
, (B9)

Im�2 = 4π
N

(2π )2
sinh

(
βω

2

)√
q2 − ω2B2√π

B2 − 1

B2 − l2

1 − l2

B2 − l2

e−βBq/2

√
βBq

. (B10)

Considerable cancellations appear after collecting the expressions (B7)–(B10) into C++
eh :

C++
eh = π3N2e2α2

c

8

∫
dq dω exp[−βEgqB(q, ω)]

q2B(q, ω)(q2 − ω2)[
q2 + (q2−ω2 )2

E2
g

]2 , (B11)

where q and ω were normalized to the band gap Eg.
Let us inspect the function under the exponent f (q) = qB(q, ω). Considered as a function of q, it has a minimum value

fmin = 1 + ω. Instead of q, we pass to the new variable

τ = qB(q, ω). (B12)

The dimensionless integral in the expression for C++
eh is now recast in the form

I ≡
∫

dq dω exp[−βEgqB(q, ω)]
q2B(q, ω)(q2 − ω2)[

q2 + (q2−ω2 )2

E2
g

]2 = 2
∫ ∞

0
dω

∫ ∞

1+ω

dτ
τ 2

(τ 2 − ω2)2

e−βEgτ√
(τ 2 − ω2 − 1)2 − 4ω2

. (B13)

Integrating over τ , we again proceed with the steepest descent method, i.e., we set τ = 1 + ω in all smooth functions under the
integration sign. This results in

I ≈ (βEg)2

2

∫ ∞

0
dω

(1 + ω)2

[(1 + ω)2 − ω2]2

1

2
√

ω + 1

∫ ∞

1+ω

dτ
e−βEgτ√

τ 2 − (1 + ω)2

= (βEg)2

4
e−βEg

∫ ∞

0
dω

(ω + 1)3/2

(1 + 2ω)2
K0(ωβEg) ≈ πβEg

8
e−βEg. (B14)
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Hence

C++
eh = N2e2α2

8
(βEg)

π

8
e−βEg. (B15)

Substituting C and D in the Boltzmann limit [Eqs. (B15) and
(15)] into the general expression for the conductivity (13), we
find the linear-in-T scaling of conductivity (21).
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