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Photogalvanic effect induced by intervalley relaxation in a strained
two-dimensional Dirac monolayer
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We theoretically study the photogalvanic effect in a strained two-dimensional transition-metal dichalcogenide
monolayer due to deformation-induced lowering of the monolayer symmetry and electron-density difference in
opposite valleys. This effect arises as a system response to a scalar nonequilibrium perturbation (electron-density
difference in the valleys), which is in contrast with the conventional photogalvanic effect, represents the second-
order response to an external electromagnetic radiation. Using the description of linear and nonlinear interband
recombination, we develop a theory for a p-type and an intrinsic monolayer semiconductor. We show that at
low temperatures, the photogalvanic current is caused by the impurity relaxation processes controlling the valley
population imbalance.
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I. INTRODUCTION

The photogalvanic effect (PGE) is the transport phe-
nomenon consisting in the appearance of a stationary current
in the sample exposed to an external alternating electro-
magnetic (EM) field [1–4]. This effect is different from the
light pressure or the photon drag effect [5], nonuniformity
of a sample or light intensity, like the photo-induced Dem-
ber effect (currents arising in p − n junctions under external
illumination). Phenomenologically, conventional PGE can be
described by the relation between the current density and an
external electromagnetic field jα = χαβγ EβE∗

γ . Depending on
the polarization of the external EM field and the symmetry of
the crystal lattice, one can distinguish between the linear and
circular PGE. Such a PGE has been broadly studied in conven-
tional semiconductors [1–11] and superconductors [12,13].

From the general perspective, any factor which drives the
system out of the equilibrium state can produce the PGE
current [14]. Such a factor, or generalized force as it is
called in statistical physics, can be a scalar, vector, or even
a tensor. Electric field is an example of a generalized force;
other known examples include a temperature gradient and
particle-density gradient. Besides, the current can be caused
by scalar generalized forces such as the temperature difference
[15] or particle concentration difference between different
subsystems (or their time derivatives). An example of a tensor-
generalized force can be constructed from second spatial
derivatives of the scalar quantities, etc. An electric current can
be excited in the system by the effects described by the higher
orders of the vector fields together with their cross products.
A general expression for a current density caused by the scalar
F , vector Fj , and tensor Fi j fields reads

ji = γ
(0)

i F + γ
(1)

i j ∂ jF + γ
(2)

i j Fj + γ
(3)

i jk FjFk + γ
(4)

i jk Fjk + ....

(1)

The symmetry of the system determines the coefficients
γ

(0)
i , γ

(1)
i j , γ

(3)
i jk , and γ

(4)
i jk . The quantity γ

(0)
i may exist in

materials with built-in polar axis (like pyroelectrics or ferro-
electrics), whereas the tensors γ

(3)
i jk �= 0 or γ

(4)
i jk �= 0 demand

the absence of reflection symmetry.
In this paper, we focus on the PGE effect stemming from

the first term in Eq. (1) in nonpyroelectric crystals. This
term describes the PGE response to the scalar perturbation,
such as the temperature difference or particle concentration
difference between different subsystems. Recently it was
shown [15] that the PGE current can arise due to the energy
relaxation of hot electrons to the equilibrium state in noncen-
trosymmetric quantum wells. The current originates from the
real-space shift of the wavepackets of Bloch electrons due to
the electron scattering by phonons, which tends to restore the
thermal equilibrium between the electron and phonon sub-
systems. Thus, the current is determined by the temperature
difference �T between electron gas and the crystal lattice
temperatures.

We aim to develop a theory of PGE current response due
to the uniform electron concentration difference �N in the
sample. As a test-bed system we consider a transition metal
dichalcogenide (TMD) monolayer MoS2. The band structure
of this material consists of two valleys coupled by time-
reversal symmetry. Another important property of MoS2 is
the valley-dependent optical selection rules: a given valley
is populated by the external EM field with certain circular
polarization. Changing the circular polarization changes the
valley, which is pumped by electrons due to interband optical
transitions. Thus, the electrons in two valleys can be con-
sidered as two subsystems with different electron densities.
In the simplest case when one of the valleys is empty, whereas
the other one is pumped, a PGE current arises in the system.
It is proportional to the difference of electron populations
j ∝ �N , and depends on the intervalley relaxation processes.
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The expected slowness of intervalley relaxation may enhance
this effect.

It should be noted that the conventional PGE is determined
by the fourth term in Eq. (1). The microscopic mechanisms of
this PGE transport phenomenon is based on specific electron-
impurity or electron-phonon scattering mechanisms, known
as skew scattering, shift scattering, and anomalous velocity
contribution related to the electron Berry phase [1–11]. All
these mechanisms are well known and theoretically studied in
TMDs, particularly in MoS2 monolayers [16–18].

Besides the conventional mechanisms, PGE may arise due
to the trigonal warping of the electron valleys. This mecha-
nism is valley selective: the PGE current flows in the opposite
directions in different valleys. Destroying the time-reversal
symmetry produces a nonzero net PGE current in the sample
[19–22].

However, in all these PGE transport effects, the driving
generalized force is the external electric field. It is stationary
in the monolayer plane or it is alternating in time (if external
EM wave is considered).

In the present paper we suggest a PGE transport based on
another microscopic mechanism. Formally, it is determined
by the first term in Eq. (1) and it is related to anisotropic inter-
valley electron-impurity scattering. We show that the built-in
vector γ (0)

α is induced in a TMD monolayer by uniform strain.
In the next section we present a phenomenological analysis

showing the relation between γ (0)
α and the deformation tensor,

and derive the general PGE current expression permitted by
the MoS2 point group. Further, we develop the microscopic
theory of the effect. The final sections deal with discussions
and conclusions.

II. PHENOMENOLOGICAL ANALYSIS

The PGE consists in the emergence of electric current as
the response to the scalar force determined by the electron-
density difference �N , according to Eq. (1), jα = γ (0)

α �N .
The TMDs, in particular MoS2, do not have built-in polar
axes, and thus γ (0)

α = 0. The situation is dramatically different
in the presence of a uniform strain. Indeed, the deformation
tensor reads

ui j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2)

where u is the vector describing the displacement. Thus, in
the presence of strain, γ (0)

α = λαβγ uβγ , and it is nonzero if the
media supports the nonzero elements of the third-rank tensor
λαβγ , which takes place in noncentrosymmetric media. MoS2

belongs to the D3h symmetry group, which does not contain
an inversion center. Thus, the PGE current in the presence of
a weak uniform deformation and intervalley electron-density
imbalance can be written in the phenomenological form

jα = λαβγ uβγ �N. (3)

The quantity �N is a pseudoscalar, whereas jα is a polar
vector, hence, λαβγ is a third-rank pseudotensor with nonzero
elements [23]

λxxx = −λxyy = −λyxy = −λyyx = λ. (4)

FIG. 1. The two-valley band structure of MoS2 monolayer and
the scheme of electron transitions describing the valleys-selective
interband pumping, the interband recombination, and intervalley re-
laxation processes.

Thus,

jx = λ(uxx − uyy)�N, jy = −λ(uxy + uyx )�N, (5)

where uxy = uyx. The PGE is determined by the parameter λ.
Below, we find its value from a microscopic theory.

III. MICROSCOPIC THEORY

To develop a theoretical description of the PGE effect,
let us first consider a p-type doped MoS2 monolayer at zero
temperature (Fig. 1). We assume that in the equilibrium, both
the K and K ′ valleys are occupied by (equilibrium) holes with
no electrons in the conduction band. Furthermore, an external
uniform circularly polarized EM field pumps only one valley
with electrons. We will call this valley the active valley. In
nonequilibrium but stationary regime, the relaxation processes
such as interband recombination and intervalley relaxation
stabilize the system, producing stationary nonequilibrium dis-
tribution function of electrons. Thus, the interband pumping
provides an isotropic distribution of electrons in the active val-
ley. Due to the symmetry of active and passive valleys (Fig. 2),
the intervalley electron transitions to the passive valleys do not
produce a PGE current. However, the presence of strain de-
stroys the triangle symmetry, and a net PGE current emerges.
As a microscopic mechanism of relaxation, we will consider
the intervalley electron scattering off the Coulomb impurities.
Then, the PGE current is determined by the balance equa-
tions for the distribution function of K and K ′ electrons.

A. Equations of balance and the current density

The steady-state equations of balance accounting for the
intravalley-interband pumping, the interband recombination
processes in both the valleys, and the intervalley relaxation
read

f +
k

τR
= gk +

∑
K

(W +−
kK f −

K − W −+
Kk f +

k ),

f −
K

τR
=

∑
k

(W −+
Kk f +

k − W +−
kK f −

K ), (6)
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FIG. 2. Relative positions of active (pumped) valley K (filled
red circle) and nearest three equivalent passive K ′ valleys (empty
circles). In the absence of strain, the intervalley electron transitions
in directions p1, p2, p3 give the zero net current due to the symmetry.
The uniform strain being applied, say, in p1 direction, destroys the
triangle symmetry and the net current becomes nonzero.

where f +
k is the distribution function of electrons with

the momentum k in the active “+” (K) valley, f −
K is the

electron-distribution function in the passive “−” (K ′) valleys,
numerated by the index i = 1, 2, 3. K = pi + k′ and k′ is
counted from the center of the given “−’s” valley. The vectors
pi determine the positions of passive valleys K ′, see Fig. 2.
The term gk corresponds to the interband generation rate, and
the terms ∝ W describe the intervalley relaxation due to the
electron scattering by impurities.

We will assume that the intervalley relaxation is weak in
comparison with the interband recombination τ−1

R � WkK. It
allows us to solve Eq. (6) by successive approximations. The
distribution functions can be presented in the form f +

k = f 0
k +

δ f +
k and f −

K = 0 + δ f −
K , where the corrections δ f +

k , δ f −
K

are due to the intervalley relaxation processes. A simple
calculation yields f 0

k = τRgk and

δ f +
k = −τ 2

Rgk

∑
K

W −+
Kk , δ f −

K = τ 2
R

∑
k

W −+
Kk gk. (7)

The current density in the active valley reads j+ =
e
∑

k v+
k δ f +

k , whereas the current density in the passive valley
is j± = e

∑
K v±

Kδ f ±
K . Here, the electron momentum is K =

pi + k′, where k′ is counted from the center of the pith val-
ley; v+

k = k/m and v−
K = (K − pi )/m. Thus, the total current

density can be presented in the form

j = −eτ 2
R

3

∑
k,K

(v+
k − v−

K )gkW −+
Kk . (8)

Here, it is assumed that the summation over K includes the
sum over three valleys with reciprocal vectors pi=1,2,3. The in-
tegration over electron momenta k′ inside the passive valleys
must be over the valley region within the first Brillouin zone.
However, it is technically simpler to extend the integration
over the total values of k′ in the valley. As a result, we acquire
a factor of 3, which explains the factor 1/3 in Eq. (8).

This simple analysis shows that in the absence of strain,
Eq. (8) gives a zero current due to symmetric intervalley

scattering of electrons from the active valley K (red) into the
passive valleys K ′ (blue), see Fig. 2.

B. Coulomb impurities-induced intervalley scattering

Let us start with the case without strain. The bare two-band
Hamiltonian of electrons in the MoS2 monolayer in a given
valley reads

H =
(

�/2 vk−
vk+ −�/2

)
, (9)

where � is the material band gap, and k± = ηkx ± iky are
electron momenta counted from the valley center, η = ±1 is
a valley index. The energy eigenvalues of the Hamiltonian
Eq. (9) are Ec,v (k) = ±Ek, Ek =

√
�2/4 + (vk)2. They cor-

respond to the conduction and valence bands in a given valley.
All energies here are counted from the center of the band gap.
An electron wavefunction in the active valley K in Fig. 2 reads

�k(r) =
(

uk
vk

)
eikr

√
S

, (10)

where uk = cos(θk/2), vk = sin(θk/2) exp(−iηϕk ), ϕk is an
angle of between vector k and p1 in Fig. 2, and cos θk =
�/2Ek. In the other passive valleys K ′ characterized by the
position via pi, the wavefunctions have the form (k′ + pi =
K)

�k′ (r) =
(

uk′

vk′

)
ei(k′+pi )r

√
S

. (11)

Thus, the intervalley matrix element describing the intervalley
electron scattering off the impurity potential V (r) reads

M−+
Kk ≡ M−+

k′k = V (k′ + pi − k)(uku∗
k′ + vkv

∗
k′ ), (12)

where V (q) is a Fourier transform of the impurity potential
V (r).

In the presence of strain, the TMD monolayer Hamiltonian
reads

H =
(

�/2 v(k − a)−
v(k − a)+ −�/2

)
, (13)

where quasivector potential a describes the strain field as a =
η�(uyy − uxx; 2uxy) and (k − a)± = η(kx − ax ) ± i(ky − ay),
with � being the deformation-potential constant describing
the strength of electron-strain field interaction. For definite-
ness, we assume that η = 1 corresponds to the active valley
K , and η = −1 for passive valleys K ′ located at points pi in
Fig. 2. One can see from Eq. (13) that the strain shifts the
valleys’ centers on a vector, and this shift is proportional to the
valley index η. Thus, the active valley K and passive valley K ′
are shifted in the opposite directions in the reciprocal space.

The intervalley matrix element describing the electron
scattering by the impurity potential V (r) in the presence of
the strain changes as V (K − k) ≡ V (k′ + pi − k) → V (k′ +
pi − k + 2a). A factor of 2 appears because the valleys K
and K ′ being shifted on a in opposite directions effectively
increase the value of K: K → K + 2a. The symmetry prop-
erties of the matrix elements in the presence of strain dictate
(M−+

Kk )∗ = M+−
kK .

Furthermore, we assume that the electrons are scattered
by the Coulomb impurities, thus Vq = 2πe2/ε|q|. We also
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assume that electrons are photoexcited across the band gap �

to the states k in the vicinity of the band minimum vk 
 �.
In this case, the expression for electron energies in the bands
can be simplified as Ek ≈ �/2 + εk, εk = k2/2m, where m is
an effective mass. In the same approximation, one can also set
uk ≈ 1, and vk ≈ 0. Usually pi � 2a + k′ − k, and the matrix
element squared can be expanded as

|M−+
k′k |2 ≈ |M(pi )|2 + ∂|M(pi )|2

∂ (pi)α
(2aα + �kα )

+ 1

2

∂2|M(pi )|2
∂ (pi )α∂ (pi )β

(2aα + �kα )(2aβ + �kβ ),

(14)

where �k = k′ − k. The PGE stems from the correction de-
termined by the cross term in Eq. (14):

δ|M−+
k′k |2 = ∂2|M(pi )|2

∂ (pi )α∂ (pi )β
(aα�kβ + aβ�kα ). (15)

For the Coulomb impurities |M(pi )|2 = niV 2
p , where p = |pi|

and Vp = 2πe2/p, we find

δ|M−+
k′k |2 = 2nimp

∂2V 2
p

∂2 p

(a · pi )(�k · pi )

p2

+ 2
nimp

p

∂V 2
p

∂ p

(
(a · �k) − (a · pi )(�k · pi )

p2

)
.

(16)

The correction to the intervalley scattering probability, which
contributes to the PGE current, reads

δW −+
Kk = 2π〈δ|M−+

k′k |2〉δ(εk′ − εk ), (17)

where 〈...〉 means the averaging (sum over positions pi) over
nearest three passive valleys K ′, εk = h̄2k2/2m is an electron
dispersion in active “ + ” valley, whereas εk′ = h̄2k′2/2m is
an electron dispersion in all i = 1, 2, 3 passive “ − ” valleys
counted from their centers k′ = 0. Since εk′ does not depend
on the valley position pi, it is possible to take the sum over pi

in Eq. (16). Furthermore, the components of the PGE current
Eq. (5) are determined by the single parameter λ. Therefore,
it is possible to consider only jx. Thus, keeping only ax com-
ponent in Eq. (16) and taking into account that p1 = p(−1, 0)
and p2,3 = p(1/2,±√

3/2), we find from Eq. (16)

∣∣M (1)
k′k

∣∣2 = 6nimpV
2
p

ax(k′
x − kx )

p2
,

∣∣M (2,3)
k′k

∣∣2 = ±4
√

3nimpV
2
p

ax(k′
y − ky)

p2
,

and, finally,

〈δ|M−+
k′k |2〉 =

∑
pi

δ|M−+
k′k |2 = 6nimpV

2
p

ax(k′
x − kx )

p2
. (18)

C. Interband generation rate and PGE current in
p-type TMD monolayer

The interband generation rate, describing the absorption of
the electromagnetic field, reads

gk = 2π |Mcv|2δ(ω − � − 2εk )θ [�/2 − |μ| + εk], (19)

where Mcv is the interband matrix element accounting for the
valley selectivity as Mcv = (σ + η)M0, where σ = ±1 is a
circularity of the external EM field pumping and η = ±1 is
a valley index; � is a TMD monolayer band gap, and ω is
frequency of the pumping EM field. For simplicity, we assume
M0 = M(k = 0) to be independent of the electron momentum
under interband pumping. The θ [x]-function factor is the oc-
cupation factor of the initial state in the valence band, and
|μ| is the absolute value of the Fermi energy level counted
from the band gap center, see Fig. 1. It plays an essential role
in p-doped case, when |μ| > �/2 and describes the Moss-
Burstein effect. If the Fermi level lies within the band gap,
|μ| < �/2. This case corresponds to the intrinsic regime at
zero temperature, and θ [...] = 1 in Eq. (19). (An intrinsic
TMD monolayer is considered in the next section.)

Combining together Eqs. (8), (17), (18), and (19), we find
the PGE current in the form (restoring h̄)

jx = 2e
τR

τi

ax

h̄p2
(h̄ω − �)Ne. (20)

Here, |pi| = p ∼ 2π/a0 is a reciprocal wavevector defining
the passive valleys K ′ positions (without strain), a0 is a lattice
constant, τ−1

i = mniV 2
p /h̄3 is an electron-impurity scattering

time, N = 1
2 |M0|2mτRθ [ω − 2|μ|] is a photoelectron density

(|μ| > �/2), and ax = −�(uyy − uxx ) is a pseudovector po-
tential describing the strain and possessing the dimension of
a wavevector. Comparing Eq. (20) with a phenomenological
expression Eq. (5), we find

λ = 2e
�

h̄p2

τR

τi
(h̄ω − �). (21)

This is the main result for the case of a p-type semiconducting
monolayer with weak intraband energy relaxation, when the
energy relaxation time τε � τR,W −1

kK .

D. Intrinsic semiconducting layer with nonlinear recombination

Contrary to the previous case, let us now assume that
τε 
 τR,W −1

kK . Thus, we consider an intrinsic monolayer (see
Fig. 3) with fast intraband energy relaxation.

The distribution functions of photoelectrons and pho-
toholes are set as quasiequilibrium Maxwell distribution
functions of the form ∝ Ae−εk/T , where A is a constant, that
will be expressed via stationary nonequilibrium particle densi-
ties. Thus, the stationary electron f ±

k and hole φ±
k distribution

functions can be written as

f ±
k = 2π h̄

mcT
N±e−εe

k/T , φ±
k = 2π h̄

mvT
P±e−εh

k/T , (22)

where N± and P± are the electron and hole densities in
active/passive valleys. Their values can be found from a
Boltzmann-type system of equations, describing the balance
of generation/recombination processes and intervalley relax-
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FIG. 3. The two-valley band structure of MoS2 monolayer and
the draft of electron transitions describing the valleys-selective
interband pumping, the interband recombination, and intervalley re-
laxation processes for intrinsic TMD monolayer.

ation: ∑
k1

W R
kk1

f +
k φ+

k1
= gk +

∑
K′

(W +−
kK′ f −

K′ − W −+
K′k f +

k ),

∑
K1

W R
KK1

f −
K φ−

K1
=

∑
k′

(W −+
Kk′ f +

k′ − W +−
k′K f −

K ). (23)

The left-hand sides describe the interband two-particle non-
linear recombination processes in a given valley, while the
other terms are analogs to Eq. (6). For an arbitrary relation
between the recombination lifetimes and the intervalley re-
laxation processes, the system of equations Eq. (23) can be
solved if we consider the strain-induced part of intervalley
relaxation probability, namely

δW +−
kK′ =W +−

kK′ − W 0
kK′ = 2πδ(εk − εk′ )

× [|V (k′ + pi − k + 2a)|2 − |V (k′ + pi − k)|2],
(24)

as a small perturbation. Excluding the strain-induced part of
intervalley relaxation, and taking the recombination probabil-
ity in the form W R

kk1
= W R = const, and then integrating over

k, K in Eq. (23), we find the balance equations

αN+P+ = G − N+ − N−

τv

,

αN−P− = −N− − N+

τv

, (25)

where

α = (2π h̄)2

mcmvT 2
W R

∑
kk1

e−εe
k/T e−εh

k1
/T

,

1

τv

= 2π h̄

mcT

∑
kK

W 0
kKe−εe

k/T . (26)

Equations (25) together with the particle-density conserva-
tion under optical pumping, N+ + N− = P+ + P− and N+ =
P+ determine the nonequilibrium particle densities N± and

P±, which enter the photoinduced distribution functions
[Eq. (22)].

Furthermore, the strain-induced anisotropic corrections
δ f ±

k and δφ±
k satisfy the equations

δ f +
k W R

∑
k1

φ+
k1

+ f +
k W R

∑
k1

δφ+
k1

=
∑
K′

(δW +−
kK′ f −

K′ − δW −+
K′k f +

k ),

δ f −
K W R

∑
K1

φ−
K1

+ f −
K W R

∑
K1

δφ−
K1

=
∑

k′
(δW −+

Kk′ f +
k′ − δW +−

k′K f −
K ). (27)

The second terms in the left-hand sides of these equations are
zero due to the anisotropy of the corrections δφ±

k1
. Thus, we

come up with simplified equations

δ f +
k = τ+

R

∑
K′

(δW +−
kK′ f −

K′ − δW −+
K′k f +

k ),

δ f −
K = τ−

R

∑
k′

(δW −+
Kk′ f +

k′ − δW +−
k′K f −

K ), (28)

where (τ±
R )−1 = W R

∑
k1

φ±
k1

are the intravalley recombina-
tion times, which are determined by the light intensity via the
nonequilibrium hole densities [found from Eq. (22)]. Com-
bining together Eqs. (22), (28), and the current densities in
the pumped valley j+ = e

∑
k v+

k δ f +
k , and the passive valley

j− = e
∑

K v−
Kδ f −

K , we arrive at the total current density in the
form

j = − e

3

2π h̄

mcT

∑
k,K

(τ+
R v+

k − τR
−v−

K )

× (N+δW −+
Kk − N−δW +−

kK )e−εk/T . (29)

Furthermore, taking into account that δW −+
Kk = δW +−

kK [as it
follows from Eq. (24)], yields

j = − e

3

2π h̄�N

mcT

∑
k,K

(τ+
R v+

k − τ−
R v−

K )δW −+
Kk e−εk/T , (30)

where �N = N+ − N−. Using the linear-in-strain correction
to δW −+

Kk , given by Eqs. (17) and (18), we find

λ = 2e
�

h̄p2

(
τ+

R + τ−
R

2τi

)
(2T ), (31)

which describes the PGE effect in intrinsic TMD monolayers.

IV. DISCUSSION

Let us discuss the main results of this paper: Eqs. (21)
and (31), describing p-doped and intrinsic semiconductors,
respectively. In both the cases, the PGE effect is directly
proportional to a large factor τR/τi � 1. The difference is that
in the case of a p-type TMD monolayer, the recombination
time is determined by the equilibrium hole density τ−1

R ∼ P0,
and can be controlled by the gate voltage. Contrary, in the
case of an intrinsic TMD monolayer, the recombination times
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τ+
R and τ−

R are determined by the nonequilibrium photoin-
duced hole densities in the valleys and directly depend on the
intensity of the light-generating charge photocarriers.

The second characteristic of expressions Eqs. (21) and
(31) is their dependence on the mean of electron energy. In
the p-doped case, we assumed that the intravalley-intraband
energy relaxation is weak, and the corresponding expression
Eqs. (21) is directly proportional to the kinetic energy of
photoelectrons, given by the factor (h̄ω − �)/2. In the case
of fast-energy relaxation, the PGE current is determined by
the mean value of equilibrium electron energy, given by the
temperature T .

It should be noted that the developed theory is based on
the two-band model, Eq. (9). The band structure of a TMD
monolayer is more complex than two bands. The hole and
electron bands are strongly split by the spin-orbit coupling,
they have strong warping, etc. The account of these effects
in the consideration of the intervalley relaxation processes
may require a more complex study (the account for the spe-
cific spin-related intervalley scattering mechanisms for the
PGE effect). Then, the PGE may demonstrate more complex
dependencies on the TMD monolayer parameters, however,
we believe that the key behavior has been captured in this
manuscript. Nevertheless, the present theory can be directly
applicable when the external EM field frequency exceeds the
spin-orbit splitting of the bands.

In the present consideration we also ignored the excitonic
effects. If the light frequency is less than the material band
gap ω < �, the bound excitons are formed and, being neutral
particles, they do not provide the PGE current. If ω > �, the

electron-hole pairs are excited and the Coulomb interaction
between electron and hole modifies their wavefunctions. It,
in turn, modifies the intervalley impurity-induced scattering
matrix elements, and we believe that the only difference that
appears is the Sommerfeld factor [24]. Nevertheless, we as-
sume that this factor does not essentially affect the condition
of existence or absence of the PGE effect we considered.

V. CONCLUSION

We developed the theory of the photogalvanic effect driven
not by an external vector field but by the scalar generalized
force determined by the valley electron population difference
that may occur in TMD monolayers. We showed that the effect
arises under the action of a uniform strain field applied to
the monolayer. We considered two different cases: (i) a p-
doped and (ii) intrinsic monolayer (n-type can be considered
in full analogy with the p-type). In the (i) case, we used the
linear theory of recombination processes, while for (ii) the
nonlinear recombination theory was applied. Furthermore, we
scrutinized the intervalley electron relaxation due to electron
scattering off Coulomb impurity potential as a microscopic
mechanism of the effect under study.
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