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Thermodynamic cost of precise timekeeping in an electronic underdamped clock
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Clocks are inherently out-of-equilibrium because, due to friction, they constantly consume free energy to keep
track of time. The thermodynamic uncertainty relation (TUR) quantifies the trade-off between the precision of
any time-antisymmetric observable and entropy production. In the context of clocks, the TUR implies that a
minimum entropy production is needed in order to achieve a certain level of precision in timekeeping. But the
TUR has only been proven for overdamped systems. Recently, a toy model of a classical underdamped pendulum
clock was proposed that violated this relation [Phys. Rev. Lett. 128, 130606 (2022)], thus demonstrating that the
TUR does not hold for underdamped dynamics. We propose an electronic implementation of such a clock,
using a resistor-inductor-capacitor circuit and a biased CMOS inverter (NOT gate), which can work at different
scales. We find that in the nanoscopic single-electron regime of the circuit, we essentially recover the toy model
violating the TUR bound. However, in different macroscopic regimes of the circuit, we show that the TUR bound
is restored and analyze the thermodynamic efficiency of timekeeping.
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I. INTRODUCTION

Timekeeping has a long history, dating back to ancient
Mesopotamia around 2000 B.C., where the earliest forms of
clocks emerged through the use of sundials and astronomical
clocks [1,2]. The need for more practical timekeeping at finer
intervals, without the need for celestial tables, later led to the
invention of portable clocks, like sand glasses, water clocks,
candle clocks, etc. All of these clocks utilize the irreversible
relaxation dynamics of a system to provide a time reference.
However, the limited runtime and accuracy motivated better
designs for clocks. The greatest leap in timekeeping came
from the theoretical understanding of the oscillatory dynamics
in a pendulum, where the time period for small oscillations
is independent of its amplitude. In 1656, Christian Huygens
designed the first pendulum clock using a mechanical linkage
to move the clock’s loaded hand forward based on the periodic
motion of a pendulum [3]. This mechanical linkage, called
the escapement, is still a widely used mechanism for precise
timekeeping in modern mechanical watches. The quest for
increased precision of timekeeping has led us to the current
standard of time using atomic clocks. These clocks use the
resonant frequency of atoms, and can reach uncertainties of 1
second in 300 million years (i.e., relative uncertainty of
10−16) [4].

Since all realistic clocks undergo friction, precise time-
keeping requires an input power source such as a battery,
physical winding, chemical-potential difference, electromag-
netic driving, etc. Clocks, like thermal machines, are thus
inherently nonequilibrium systems. The fundamental connec-
tion between thermodynamics and the efficiency of clocks
has recently been explored using the tools of stochastic
thermodynamics [5–11]. Autonomous clocks, both classi-
cal [7,10] and quantum [8], have been used to derive a linear

relationship between the maximum precision in timekeeping
and the dissipation in the system. These results are consistent
with the trade-off relations observed in some nonequilibrium
systems, known as the thermodynamic uncertainty relations
(TURs) [6,7].

As originally formulated, the TUR establishes an upper
bound on the precision of an observable based on the entropy
production of the system [12–14]. For long times, the product
of the entropy production and the constant temperature T of
the environment corresponds to the dissipated heat. Hence,
in the context of clocks, the TUR implies that a minimum
dissipation is needed for a given precision in timekeeping.
These bounds have been proven for Markov jump and dif-
fusion processes, which are overdamped systems where the
momentum degrees of freedom have relaxed [15,16]. Most
of the clock dynamics previously explored, in this context,
are overdamped [6,8,12,17] and hence display a minimum
thermodynamic cost.

However, the original TUR has not yet been proven for
underdamped systems in which the inertial dynamics is re-
tained. Several modified versions of TUR, including kinetic
quantities, such as dynamical activity, have been proposed for
underdamped systems [18,19]. Similarly, finite-time versions,
involving only the entropy production, have been conjec-
tured which converge to the original TUR in the long-time
limit [20]. Underdamped systems in equilibrium can have
oscillatory relaxation dynamics that, if driven, can provide
sustained oscillations. The inherent thermal noise in these
systems can serve as the driving force to produce stochastic
oscillations, which incur no additional thermodynamic cost.
Hence, the thermodynamic cost of timekeeping using these
stochastic underdamped oscillations should ideally provide
an energy-efficient alternative compared with the overdamped
counterparts.
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Recently, a toy model clock exploiting the escapement
mechanism has been proposed, that violates the original TUR
bound [11]. This clock comprises two key components: a
stochastic oscillator, which is modeled as an underdamped
harmonic oscillator, and a discrete counter, modeled as a
Markov jump process. The counter has a thermodynamic bias,
that makes it to move preferably in a forward direction and
mimics the motion of the “hand” in a classical clock. The nov-
elty of this toy model is to couple the counter-jumps with the
dynamics of the stochastic oscillator. Specifically, the counter
advances only during each zero crossing of the oscillator’s po-
sition, which occurs periodically with a precision dependent
only on the damping and the temperature of the environment.
This coupling mechanism between an underdamped dynamics
and a discrete counter effectively emulates the concept of an
escapement, known for improving the precision of mechanical
clocks. Since equilibrium thermal noise is used to probe the
natural frequency of the underdamped oscillator, it provides a
natural timescale without any additional thermodynamic cost,
thus enabling the violation of the TUR bound. Fundamentally,
this also implies that precise clocks can be ideally built with
higher thermodynamic efficiency than the one established by
the TUR.

Motivated by these intriguing findings, we extend the idea
to the realm of electronic circuits, aiming to explore the po-
tential realization of TUR violations in a practical setting. We
propose a simple electronic implementation of the escapement
clock, using an equilibrium resistor-inductor-capacitor (RLC)
oscillator and a biased CMOS inverter. A crucial feature of our
model is that it works at different scales, which is related to
the size of the electronic components. In the deep nanoscopic
regime for both the oscillator and the counter, the counter
dynamics only involves states with a few electrons and the
transition rates can be considered to depend only on the sign
of the oscillator voltage. Thus, in that single-electron regime
of operation, our model reduces to the toy model mentioned
above, where the TUR is indeed violated. However, for all the
other operation regimes the TUR bound is restored, and we
highlight the key ingredients needed for it to be valid.

The paper is structured as follows: in Sec. II, we describe
the working principle and the stochastic modeling of our un-
derdamped clock circuit. In Sec. III, we define an uncertainty
product to quantify the thermodynamic efficiency of the clock.
We also describe the dynamical consequences of scaling down
the size of its components to achieve the single electron
regime of the circuit. In Sec. IV, we present the numerical
and/or analytical results of the uncertainty product of the clock
at different physical scales of its components and compare it
with the TUR bound. In Sec. V, we provide the derivation
for a general expression of the uncertainty product in regimes
when the voltage at the RLC can be coarse-grained.

II. MODEL

Our circuit implementation of the classical escapement
clock consists of an RLC circuit coupled to a biased CMOS
inverter [see Fig. 1(a)]. The CMOS inverter is the modern
implementation of the logical NOT gate [21]. It is made up of
a pMOS (top) and an nMOS (bottom) transistor with common
gate and drain terminals [at voltages Vin and v in Fig. 1(a)],

which act as input and output terminals in logical operations,
respectively. The inverter is powered by a fixed potential
difference between the source terminals of both transistors,
�V = 2Vdd. In our circuit, the output voltage is also biased by
a fixed voltage Vb through a capacitive coupling. Therefore,
the voltage at the input Vin and the output terminal v are the
two degrees of freedom of our circuit. We consider the opera-
tion of this circuit at a finite temperature T with an associated
thermal voltage VT ≡ kbT/qe, where qe is the positive electron
charge.

In this clock circuit, the RLC circuit plays the role of a
pendulum because it is the dynamical equivalent of an under-
damped oscillator. The RLC circuit is at thermal equilibrium
since it is not powered by any voltage source and since there is
also no current flow through the input terminal of the inverter
due to the insulating nature of the gate terminal. Nevertheless,
the white thermal noise due to the resistor will excite it and
produce stochastic oscillations with a coherence time that will
depend on the temperature and damping. These stochastic
voltage oscillations in the RLC will be the input signal for
the inverter, which will modulate the conductivity of the two
MOS transistors. This makes the integrated current have in-
crements at a pace regulated by the natural frequency of the
RLC. Thus, the biased CMOS inverter acts as the counter, and
the integrated current through it is the observable that tracks
the passage of time.

In Fig. 1(c), we plot a typical stochastic trajectory
for the input voltage Vin(t ) and the output voltage v(t ).
When Vin(t ) < 0, the conduction through the pMOS
transistor is enhanced, while it is reduced for the
nMOS transistor, and therefore the output voltage v

quickly relaxes to Vdd. Similarly, when the input voltage
Vin(t ) > 0, the situation is reversed and the output
voltage v relaxes quickly to −Vdd. As seen in Fig. 1(d),
for every positive zero crossing (Vin < 0 → Vin > 0),
there will be a net number of charges flowing through
the nMOS transistor [Nn(t ) = (1/qe)

∫ t
0 In(τ )dτ ] from the

output terminal to its source terminal to account for the
change in output voltage (+Vdd → −Vdd). Similarly, for every
negative zero crossing (Vin > 0 → Vin < 0), there will be a
net number of charges flowing through the pMOS transistor
[Np(t ) = (1/qe)

∫ t
0 Ip(τ )dτ ] from its source terminal to the

output terminal. Therefore, the periodic oscillations in the
input voltage create a periodic flow of current through the
pMOS and nMOS transistors. To account for every zero
crossing event in the pendulum, the counter observable is
defined as the sum of integrated currents Np(n)(t ) through both
transistors, i.e., y(t ) = Np(t ) + Nn(t ). Hence, the dynamics
of the integrated electric current mimics the motion of the
hand in a clock, with stochastic increments based on the
periodic zero-crossing of the oscillator. We describe below
the thermodynamically consistent modeling of this circuit to
later analyze the cost of precise timekeeping.

A. RLC oscillator

We first describe the stochastic dynamics of the RLC cir-
cuit. The current and voltage in a RLC circuit oscillate as a
result of the energy exchange between the electric field in the
capacitor and the magnetic field in the inductor. In the absence
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FIG. 1. (a) Circuit diagram of the escapement clock. It consists of two parts: an RLC circuit playing the role of a pendulum producing
oscillations and described by the voltage Vin(t ), and a biased CMOS inverter (NOT gate), with instantaneous electric currents Ip(n)(τ ), playing
the role of a discrete counter of the passage of time and described by the counter observable y(t ). (b) Simplified modeling of an nMOS
transistor as a conduction channel between its drain (D) and source (S) terminals, with associated Poisson rates λ±

n . The gate-body (G-B)
interface is represented as a capacitor Cg, and another capacitor Co takes into account the output capacitance. (c) A sample stochastic trajectory
of the input voltage Vin(t ) (blue) and the output voltage v(t ) (red) in the escapement clock circuit [time in units of τ0 = (qe/I0) exp[Vth/(VT )] ].
(d) The corresponding stochastic dynamics of the integrated currents, Np(n)(t ) = (1/qe)

∫ t
0 Ip(n)(τ )dτ , flowing through p(n)MOS, marked in

yellow (green), and the counter-observable y(t ) = Np(t ) + Nn(t ) (brown) for the same input voltage trajectory Vin(t ) (blue). Parameters: ω ≡
1/

√
LCin = 0.1τ−1

0 , γ /ω ≡ R
√

Cin/L = 0.1, vin
e /VT = 2, vout

e /VT = 0.1, Vdd/VT = 1, and Vb/VT = 2

of noise, the resistance damps these oscillations and any initial
voltage will eventually relax to zero (the deterministic dynam-
ics of the RLC circuit is given in Appendix A). However, the
noise in the RLC circuit due to the thermal agitation of charge
carriers in the resistor will cause stochastic voltage oscilla-
tions around the steady-state value. The voltage fluctuations
in the resistor have the Johnson-Nyquist form, i.e., its vari-
ance is proportional to the temperature T [22,23]. Modeling
a noisy resistor is done by replacing it with an ideal resistor
and a random voltage source connected in series [24]. This
random voltage source has zero mean 〈ξ (t )〉 = 0 and has a
delta-correlated spectrum, i.e., 〈ξ (t )ξ (t ′)〉 = 2kBT Rδ(t − t ′).
Applying Kirchhoff’s voltage law, the stochastic evolution of
Vin(t ) in Fig. 1(a) is given by the following Langevin equation:

LCin V̈in(t ) + RCin V̇in(t ) + Vin(t ) = ξ (t ), (1)

where Cin = Ci + 2Cg is the effective capacitance at the input
node of the inverter and Cg is the gate-bulk capacitance of
the transistors [Fig. 1(b)]. From Eq. (1), the dynamics is
equivalent to that of a damped harmonic oscillator in a thermal
bath, with natural frequency ω = 1/

√
LCin and damping rate

γ = R/L [11,25]. The analogous position and velocity are
the input voltage Vin and the current through the RLC loop,
respectively. Note that the dynamics of the RLC oscillator is
not affected in any way by the state of the CMOS inverter.
Also, since there are no voltage or current sources powering
it, the RLC oscillator will attain a thermal equilibrium state.
This implies that the input voltage Vin follows the Gibbs dis-
tribution Peq(Vin ) ∝ e−CinV 2

in/2qeVT , where CinV 2
in/2 is the energy

associated with the effective capacitance Cin. The variance of
Vin is then given as σ 2

Vin
= vin

e VT , where vin
e ≡ qe/Cin is defined

as the elementary voltage change associated with adding or
removing an electron from the effective capacitance Cin.

B. CMOS inverter

We now turn to the modeling of the CMOS inverter. The
only degree of freedom in the CMOS inverter is the output
voltage v. We can alternatively work with the output charge
q, which is related to the output voltage as q = Coutv − CbVb,
where Cout = Cb + 2Co is the effective output capacitance (Co

is the drain-source capacitance of the transistors). The output
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voltage v will change in time due to conduction of charge
through the MOS transistors. At the deterministic level and
in the subthreshold mode of operation, the average electric
current through the pMOS transistor is given as [21]

Ip(v,Vin; Vdd) = I0e(Vdd−Vin−Vth )/(nVT )(1 − e−(Vdd−v)/VT ), (2)

where I0,Vth and n are the parameters that characterize the
transistor (specific current, threshold voltage, and slope factor,
respectively). For ease of calculations, we consider the case
when the slope factor is n = 1. For the symmetric powering
used in Fig. 1(a), the average current through the nMOS
transistor is In(v,Vin; Vdd) = Ip(−v,−Vin; Vdd).

However, conduction through the CMOS transistors is
noisy rather than deterministic. In the subthreshold mode
of operation, the thermal noise is of shot noise nature, i.e.,
its variance is proportional to the average current [26–28].
Recently, thermodynamically consistent models have been
developed to account for thermal shot noise in nonlinear
electronic circuits [29,30]. Here, we employ the formalism
developed in Ref. [29]. In this formalism, the transistors
are modeled as externally controlled conduction channels
with some associated capacitances, as shown in Fig. 1(b).
The conduction of excess charges through the channels is
modeled as a bi-Poissonian process. Hence, for each tran-
sistor ρ̂ ∈ {p, n}, we associate forward (+) and backward
(−) Poisson rates λ

p(n)
± (q) (they also depend implicitly on

Vin, Vdd, and Vb), which give the probability per unit time
for a jump q → q ± �ρqe to occur, and �ρ = ±1 indicates
the addition (+1) or removal (−1) of charges in the process
ρ ∈ {+p,−p,+n,−n}. In the case of the CMOS inverter, the
forward (+) direction for the pMOS (nMOS) transistor adds
(removes) excess charge from the output terminal, i.e., �±p =
±1 and �±n = ∓1. Since the evolution of the input voltage
Vin occurs independently of the inverter output v, explicit
time-dependent Poisson rates λ

p(n)
± (q, t ) ≡ λ

p(n)
± (q;Vin(t )) can

be obtained for a given trajectory {Vin(t )}. As explained in
Ref. [29], the functional form of the Poisson rates is deter-
mined by the deterministic I-V curve of the transistor [Eq. (2)]
and the requirement of local detailed balance (LDB). The
LDB condition imposes that the log ratio of forward and back-
ward rates associated with a given device must be related to
the entropy change in the environment during an elementary
jump. For example, the pMOS transistor at any time satisfies
the LDB condition:

log

(
λ

p
+(q, t )

λ
p
−(q + qe, t )

)
= −δQp

q→q+qe

kBT
, (3)

where δQp
q→q+qe

= φ(q + qe) − φ(q) − qeVdd is the associ-
ated dissipated heat in the pMOS and φ(q) = q2/(2Cout ) +
qCbVb/Cout + const is the internal energy of the circuit.
Hence, one obtains the following rates for the pMOS
transistor:

λ
p
+(q, t ) = (I0/qe) e(Vdd−Vin (t )−Vth )/VT ,

λ
p
−(q, t ) = λ

p
+(q, t ) e((q+CbVb )/Cout−vout

e /2)/VT e−Vdd/VT , (4)

and for the nMOS transistor:

λn
+(q, t ) = (I0/qe) e(Vin (t )+Vdd−Vth )/VT ,

λn
−(q, t ) = λn

+(q, t ) e−((q+CbVb )/Cout+vout
e /2)/VT e−Vdd/VT . (5)

In the previous equations, we have defined vout
e ≡ qe/Cout as

the elementary voltage change associated with the jump of a
charge qe. The factor e−ve/2VT takes into account the charging
effects and becomes relevant at small scales and/or at low
temperatures [31–33], as will be discussed in the follow-
ing section. Note that Eqs. (4) and (5) also define a natural
timescale for the inverter dynamics, τ0 = (qe/I0) eVth/VT . For
the rest of the article, we also consider that the jump dynamics
in the CMOS inverter is much faster than the slowest rele-
vant timescale in the RLC, i.e., τ0 � τRLC = min[π

√
LCin,

L/R].
The stochastic evolution of the charges in the output con-

ductor for a given input signal, i.e., {q(τ );Vin(τ )} in some
time interval τ ∈ [0, t], is modeled as a continuous-time
Markov jump process with the previous time-dependent rates.
Therefore, it is characterized by the sequence of jumps {ρk}
along with their time stamps {τk}, where the index k is
over all jumps. All this dynamical information is encoded
in the instantaneous trajectory current for a given process
ρ ∈ {+p,−p,+n,−n}, defined as follows:

jρ (q, t ) =
∑

k

δ[ρ, ρk]δ[q, qtk ]δ(t − tk ), (6)

where qt is the state immediately before the instant t and
δ[x, y] is the Kronecker δ function. Applying the charge con-
servation at the output node, we obtain

q(t ) = q(0) + qe[N+p(t ) − N−p(t ) − N+n(t ) + N−n(t )]

= q(0) + qe

∑
ρ

�ρ Nρ (t ), (7)

where Nρ (t ) = ∫ t
0 dτ

∑
q jρ (q, τ ) is the total number of

jumps of a particular process ρ up to time t . The time-
integrated current Nρ̂ (t ) through a transistor ρ̂ ∈ {n, p} can
then be obtained as follows:

Nρ̂ (t ) = (1/qe)
∫ t

0
Iρ̂ (τ )dτ = N+ρ̂ (t ) − N−ρ̂ (t ), (8)

where Iρ̂ (τ ) = qe
∑

q[ j+ρ̂ (q, τ ) − j−ρ̂ (q + qe�+ρ̂ , τ )] is the
instantaneous electric current through the transistor ρ̂. From
Eq. (7), note that the output charge q(t ) = q(0) + qe[Np(t ) −
Nn(t )] is related to the difference in integrated currents
through the pMOS and nMOS transistors.

III. CLOCK ANALYSIS

A. Counter dynamics

The dynamical quantity that will mimic the motion of the
hand of a clock is the sum of the integrated current through
both the pMOS and nMOS transistors, given as

y(t ) ≡ Np(t ) + Nn(t ). (9)

The conductivity of the MOS transistors is controlled by the
input voltage Vin(t ). Since Vin(t ) represents the position of the
pendulum, this control couples the motion of the hand with the
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dynamics of the pendulum, and hence mimics the escapement
mechanism in our circuit. Note that, from Eqs. (4) and (5),
the voltage Vin does not affect in any way the log-ratio of
the rates involved in the LDB condition, Eq. (3). Thus, the
voltage oscillations at the input only affect the kinetic part of
the rates. An essential difference between our circuit and the
toy model considered in Ref. [11] is that in our case the rates
depend on the oscillatory input in a continuous way, while in
the toy model the rates were only a function of the sign of the
input. Those coarse-grained rates used in the toy model can
be recovered in our circuit by considering the single-electron
regime of operation, which is discussed below.

B. Thermodynamic efficiency of the clock

For fixed power Vdd, the circuit relaxes to a nonequilibrium
steady state. The total steady-state rate of dissipation of the
circuit can be divided into the contributions from the RLC and
the CMOS inverter, T σ̇ = T σ̇RLC + T σ̇Inv. Since the RLC part
is at thermal equilibrium, its dynamics is free of any thermo-
dynamic cost, i.e., σ̇RLC = 0. Therefore, the dissipation of the
circuit is due only to that of the CMOS inverter, σ̇ = σ̇Inv. At
steady state, the total dissipation up to time t is equal to the
work done by the powering sources, given as

T σ̇ t = qe〈Np(t )〉�V

= qe〈y(t )〉(�V/2). (10)

In the last line, we used the equality of the average steady
currents through the transistors, 〈Np(t )〉 = 〈Nn(t )〉. This is the
result of charge conservation in the output node v(t ), which
can be seen by taking the average in Eq. (7).

As any clock, this circuit is a thermal machine that pro-
duces entropy to measure the passage of time. To quantify its
thermodynamic efficiency, we study the product between the
relative uncertainty in the counting process Var[y(t )]/〈y(t )〉2

and the associated entropy production σ̇ t . This uncertainty
product Q, is hence defined as

Q ≡ lim
t→∞

Var[y(t )]

〈y(t )〉2

σ̇ t

kb
. (11)

For overdamped systems, the above quantity is bounded from
below by the TUR Q � 2 [13]. This bound then imposes
a minimum thermodynamic cost in order to obtain precise
currents in a system. As in Ref. [11], we want to study the
behavior of Q for systems that have an underdamped compo-
nent, such as the RLC oscillator in our circuit.

C. Single-electron regime

Electronic circuits can be fabricated on different scales.
Typically, capacitances and inductances scale linearly with
the characteristic length of the components [34]. Thus,
the elementary voltage changes vin

e = qe/Cin and vout
e =

qe/Cout defined above will increase as the circuit is scaled
down. Modern-day CMOS transistors (sub-7 nm fabrica-
tion processes) have associated capacitances as low as C 
10aF [35,36], which implies that the elementary voltage
change is ve  16 mV. This is comparable to the thermal
voltage VT = 26 mV at room temperature. The circuit could
also be operated at low temperatures, and, for example,

values as high as ve/VT  50 can be achieved at T  4 K.
Such nanoscopic devices at low temperatures are the working
ground for single-electron devices, as the charging energy
to move an elementary charge scales as q2

e/2C = (1/2)Cv2
e .

Therefore, the energy levels associated with discrete numbers
of excess charges become well separated, which allows pre-
cise control over few charges or even single electrons or holes,
as in the case of a single-electron quantum dot [32,37,38]. In
the following, we analyze separately the limits vin

e /VT � 1
and vout

e /VT � 1 for our clock circuit.
First, in the limit vin

e /VT � 1 the dynamics of the
counter y(t ) converges to an auxiliary dynamics with coarse-
grained rates, which only depend on the sign of Vin. This
coarse-grained escapement coupling is equivalent to the one
discussed in the toy model [11]. To see this, we first note that
the transition rates satisfy λn

± ∝ eVin (t )/VT and λ
p
± ∝ e−Vin (t )/VT .

Thus, whenever |Vin(t )/VT | � 1, only one of the transistors
is effectively active, and we can disregard the presence of
the other. Second, we note that for vin

e /VT � 1 the previous
condition |Vin(t )/VT | � 1 is satisfied for almost the entire
period of the input signal, with the exception of brief intervals
of duration δτ around the zero crossings. This is due to the fact
that the amplitude of stochastic oscillations increases with vin

e
(note that the variance of Vin is given by σ 2

Vin
= vin

e VT ). Thus,
if δτ � τ0 � τRLC , where τ0 and τRLC are the timescales
associated with the counter and the RLC, respectively, the
counter rates will almost always be such that only one transis-
tor is effectively active, depending only on the sign of Vin(t ).
The condition δτ � τ0 can always be achieved by increasing
vin

e /VT (see Appendix B). Also, since τ0 � τRLC , the counter
dynamics will quickly reach equilibrium with the correspond-
ing voltage source during each half-period of oscillation. Once
equilibrium is reached, the forward and backward jumps of
the active transistor do not contribute to the net progress of
the counter variable y(t ), regardless of the magnitude of the
input voltage |Vin(t )/VT |. Thus, the dependence of the rates
on the input voltage can be simplified to λn

± ∝ (Vin/VT ) and
λ

p
± ∝ (−Vin/VT ), where (x) is a Heaviside function such

that (x) = 1 for x � 0 and 0 elsewhere. In such an auxiliary
dynamics, the counter y(t ) progresses only when the input
voltage changes its sign due to relaxation of the output voltage
from one equilibrium to the other.

Second, in the limit vout
e /VT � 1, the dynamics of the

output voltage v can be restricted to a few states. By ad-
ditionally controlling the biasing voltage Vb, the state space
of the charges in the output conductor (q) can even be re-
stricted to only two degenerate states. This can be clearly
seen from the equilibrium (Vdd = 0) distribution Peq(q) ∝
e−(vout

e /2q2
eVT )[q+CbVb]2

. For vout
e /VT � 1, the probability distri-

bution is sharply peaked around the states near the minimum
of the internal energy of the circuit, φ(q) ∝ vout

e [q + CbVb]2.
When the output bias is fixed such that CbVb = −( j − 1/2)qe,
where j is an integer, then the state space for q is restricted
to {( j − 1)qe, jqe}, and at equilibrium both are equiprobable.
The corresponding voltage values are v− ≡ −vout

e /2 and v+ ≡
vout

e /2. For any potential difference �V < vout
e , the state space

can still be restricted to two states due to the high charging
energy, but the steady-state distribution can be biased towards
q = ( j − 1)qe or q = jqe depending on the biasing voltage.
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FIG. 2. (a) An equivalent four-state representation of the circuit in the single-electron regime, to compare with the toy model [11]. In
this representation, {+,−} are the coarse-grained states of the input voltage when Vin (t ) � 0 and Vin (t ) < 0 respectively, and {v+, v−} are
the states of the output voltage v(t ). Here, k = (1/τ0 )eV th

in /VT is a kinetic constant defined on the basis of a threshold input voltage V th
in , and

A ≡ Vdd/VT is the thermodynamic affinity of the cycle. The counting variable y(t ) = N→(t |−) + N←(t |+), is obtained using the conditional
integrated current N→(t |−) and N←(t |+) through the lower (−) and upper (+) branches, respectively. (b) The uncertainty product Q of the
counter y(t ) in the single-electron regime. It is plotted as a function of the voltage difference �V/VT = 2Vdd/VT for different damping rates
of the RLC circuit. The markers are obtained from Gillespie circuit simulations, and solid curves are obtained using Eq. (15). Parameters:
ω ≡ 1/

√
LCin = 0.1τ−1

0 , V th
in /VT = 10, vout

e /VT = 10, and CbVb = −qe/2.

IV. RESULTS

In this section, we explore the behavior of the circuit in
different regimes of operation. First, we look at the complete
single-electron regime, vin

e /VT � 1 and vout
e /VT � 1, where

the dynamics of the counter y(t ) converges to that of the toy
model and the TUR can be violated. After that, we sequen-
tially relax the conditions vin

e /VT � 1 and vout
e /VT � 1.

A. Single-electron regime: Convergence with the toy model

As explained above, in the full single-electron regime, the
output voltage can be restricted to only two states v±. In
addition, transitions between these two states occur at rates
that depend only on the sign of the input voltage. Explicitly,
the rates read

kp
→ ≡ λ

p
+[(n − 1)qe] = k[−Vin(t )/VT ]eVdd/VT , (12)

kp
← ≡ λ

p
−(nqe) = k[−Vin(t )/VT ],

kn
← ≡ λn

+(nqe) = k[Vin(t )/VT ]eVdd/VT ,

kn
→ ≡ λn

−[(n − 1)qe] = k[Vin(t )/VT ], (13)

where k is a kinetic constant. In Fig. 2(a), we give a minimal
four-state representation of the dynamics of the circuit in the
single-electron regime. Since the rates are coarse-grained, the
input voltage Vin(τ ) can also be coarse-grained to only two
states x ≡ {+,−} based on Vin � 0 and Vin < 0, respectively.
In this representation, the vertical transitions (± → ∓) cor-
respond to changes in the coarse-grained state of the RLC,
and we interpret these zero-crossing transitions as ticks in
the pendulum. Similarly, the horizontal transitions (v± → v∓)
correspond to the transitions in the pMOS (−) and nMOS
(+) transistors, based on the state of the RLC. The counting
observable y(t ) can be equivalently computed by the sum of

the integrated currents through both horizontal branches as

y(t ) = N→(t |−) + N←(t |+), (14)

where we used the equality Np(t ) = N→(t |−) and Nn(t ) =
N←(t |+) due to the coarse-grained rates. For finite voltage
differences Vdd �= 0, the most probable trajectory will be
due to the following cycle (−, v−) → (−, v+) → (+, v+) →
(+, v−) → (−, v−). In this cycle, the counter y(t ) has unit
increments for each tick event (± → ∓). This is exactly the
counter dynamics of the toy model [11] which is also defined
in the same state space {v−, v+} and with the same coarse-
grained rates k(y± → y∓). The pendulum trajectories in the
toy model are also given independently by an underdamped
harmonic oscillator, as defined in Eq. (1). The powering volt-
age in the inverter plays the role of the thermodynamic affinity
in the toy model, i.e., A ≡ �V/2VT = Vdd/VT . Therefore, the
stochastic dynamics of the counter y(t ) in the circuit con-
verges to that of the toy model in the single-electron regime.

Using the timescale separation between the CMOS inverter
and the RLC, τ0 � 2π/ω, we can analytically derive the
uncertainty product Q with coarse-grained rates (see Sec. V),
for any arbitrary number of states in the output voltage. In the
two-state limit, we reobtain the same expression as the toy
model [11], given by

Q = 2Vdd

VT

[
1

sinh (Vdd/VT )
+ DN

〈Ṅ〉 tanh (Vdd/2VT )

]
, (15)

where DN/〈Ṅ〉 is the relative uncertainty of the number of
ticks N (t ) in the RLC up to time t . This quantity is an increas-
ing function of the damping γ in the RLC and can be obtained
analytically as shown in Ref. [11] (see Appendix C).

In Fig. 2, we plot the uncertainty product Q of the circuit
from the numerical simulations with the coarse-grained rates
for different damping rates γ . The numerical results show a
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violation of the TUR bound when the RLC has low damping,
in agreement with the expression above [Eq. (15)]. The critical
value of damping below which there can be violations of
the TUR is for DN/〈Ṅ〉 < 1/3, which corresponds to γ /ω <

0.981, as given in Ref. [11]. With a lower damping in the
RLC, the ticks are more coherent and, when combined with
a higher thermodynamic affinity (�V ), the counting process
also becomes more precise [Fig. 7(a)]. The global minima of
the uncertainty product of the clock vanishes, i.e., Qmin → 0,
only for DN/〈Ṅ〉 → 0 and Vdd → ∞. Both of these require-
ments are not practical, as they require a vanishing resistance
in the RLC and an infinite voltage supply in the inverter.

Both restrictions vin
e /VT � 1 and vout

e /VT � 1 play a
crucial role in the violation of the TUR. First, through
the coarse-grained coupling, the stochastic dynamics of the
counter state y(t ) becomes strongly dependent on the period-
icity of the pendulum and counts only the number of ticks in
the pendulum, N (t ). Second, in the two-state limit, the count-
ing process given a tick is also precise due to the restricted
state space of the output voltage v(t ). In the following sec-
tions, we consider the other regimes of operation by relaxing
these constraints and compare the uncertainty product with the
TUR bound.

B. Role of two-state limit

To study the role of the two-state dynamics we first relax
the constraint at the output node by considering vout

e /VT <

1 so that the output voltage is no longer restricted to two
states, but with vin

e /VT � 1 such that the coupling can still
be coarse-grained. This regime can be implemented by sim-
ply increasing the bias capacitance. Given a coarse-grained
state (±) at the input node and again assuming the timescale
separation, the output voltage v(t ) relaxes to an equilibrium
distribution peaked around the powering voltage ∓Vdd of the
conductive transistor (nMOS or pMOS). This implies that for
every tick event (± → ∓), the output voltage must change be-
tween these two distributions, and the counter y(t ) increments
by O(�V/vout

e ), where �V = 2Vdd is the applied voltage
difference.

Using the generalized expression for the uncertainty
product with coarse-grained rates (see Sec. V), we derive
Q for a macroscopic state space at the inverter output (i.e.,
vout

e /VT → 0) [34],

Q = 2

[
1 + DN

〈Ṅ〉
V 2

dd

vout
e VT

]
. (16)

As shown in Fig. 3, the TUR bound is restored for any
damping of the RLC. This is also obvious from Eq. (16)
because the relative uncertainty of the ticks is always positive,
DN/〈Ṅ〉 > 0. The restoration of the TUR can be qualitatively
understood because of the higher uncertainty in the counting
process with a larger state space. Compared with the unit
increments in the two-state regime, there is a larger number
of counter transitions (of the order of �V/vout

e ) for each tick
in the RLC. We note that Eq. (16) gives an accurate prediction
for the uncertainty product Q even for a limited counter state
space [Vdd/v

out
e ∼ O(10) in Fig. 3]. This implies that the

violation of the TUR is not possible for a mesoscopic counter.

FIG. 3. The uncertainty product Q of the counter y(t ) with
coarse-grained coupling and a macroscopic state space. It is plot-
ted as a function of the voltage difference �V/VT = 2Vdd/VT for
different damping rates. The markers are obtained from the Gille-
spie simulations of the circuit and the solid curves are obtained
using Eq. (16). Parameters: ω ≡ 1/

√
LCin = 0.1τ−1

0 , V th
in /VT = 10,

vout
e /VT = 0.05, and CbVb = −qe/2.

As discussed in more detail in Sec. V, it is possible to see
that in this case the entropy production rate increases with
the voltage difference as σ̇ ∝ �V 2/vout

e VT (see also Fig. 8).
In contrast, in the two-state limit one finds the linear growth
σ̇ ∝ �V/VT , for �V/VT � 1 (Fig. 7). Therefore, when
vout

e /VT � 1 (macroscopic state space), the counter produces
more entropy to achieve a similar precision, resulting in Q
being orders of magnitude larger compared with the two-state
limit.

C. Role of coarse-grained coupling

We now explore the role of coarse-grained coupling in the
violation of the TUR bound. We thus consider vin

e /VT < 1
at the input node but still with vout

e /VT � 1 so that the
counter-dynamics can be restricted to two states. Then, the
transition rates can no longer be coarse-grained. This corre-
sponds to a circuit with a macroscopic RLC oscillator, while
still keeping a nanoscale CMOS inverter. Since the input
voltage fluctuations scale with vin

e /VT , the counter dynamics
y(t ) will explicitly depend on the value of Vin(t ) for the small-
amplitude oscillations in this regime, and not only on its sign.
Therefore, the dynamics of the circuit around Vin(t )  0 will
play an important role, which is lacking in the toy model [11].

As seen in Fig. 4, the TUR bound is again restored if the
rates cannot be coarse-grained, even in the two-state limit.
This is due to the larger amount of entropy production in
the counter dynamics when Vin  0, where both devices are
equally conductive. Since the jump timescale τ0 is smaller
than or comparable to δt in this regime, the counter will
have increments near Vin = 0 in addition to the unit increment
with every tick. These undesirable increments correspond to
a current flow through both transistors near Vin = 0, which
can be neglected for the coarse-grained coupling. In Fig. 4,
we also find that an approximate Langevin dynamics for the
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FIG. 4. The uncertainty product Q of the counter y(t ) in the two-
state limit but without the coarse-grained coupling. It is plotted as
a function of the voltage difference �V for different damping rates.
The markers are obtained from the Gillespie simulations of the circuit
and the solid curves are obtained using the approximate dynam-
ics of Eq. (D1). Parameters: ω ≡ 1/

√
LCin = 0.1τ−1

0 , vin
e /VT = 0.1,

vout
e /VT = 10, and CbVb = −qe/2.

counter y(t ) (Appendix D) captures the uncertainty product Q
computed using exact stochastic simulations of the circuit.

D. Macroscopic regime of the full circuit

Finally, relaxing both constraints on the elementary volt-
ages such that vout

e /VT < 1 and vin
e /VT < 1, we consider the

macroscopic regime of the full circuit. In this regime, the
RLC will have stochastic oscillations of small amplitude that
will be coupled to a counter with large increments per tick
[O(Vdd/v

out
e )]. In Fig. 5, we plot the uncertainty product Q

of the clock for different damping rates of the RLC circuit.
As expected from the previous sections, the circuit does not
violate TUR for any damping. In this regime, there is a larger
production of entropy in the counter due to the current flow
around Vin � 0 and also due to the macroscopic state space of
the counter. Hence, we find that in the macroscopic limit of
the circuit, the TUR bound still provides a minimum thermo-
dynamic cost needed for precise currents. As seen in Fig. 5,
the approximate Langevin dynamics for the counter y(t ) (Ap-
pendix D) captures the behavior of the uncertainty product Q
and compares well with the exact stochastic simulations of the
circuit.

Finally, we note that, while the uncertainty product Q
decreases with decreasing damping factor for coarse-grained
rates [Figs. 2(b) and 3], it has the opposite behavior in the
other regimes (Figs. 4 and 5). As we show in Appendix F, the
dependence of Q on the damping factor γ /ω is due only to the
variance in the counting observable Var[y(t )]. The unexpected
behavior of Q in Figs. 4 and 5 (the fact that it decreases
with increasing damping) is related to an interesting feature
of the current fluctuations in the CMOS inverter first identi-
fied in Ref. [34]. There, it was shown that, above a certain
value of powering voltage, the variance of the steady-state

FIG. 5. The uncertainty product Q of the counter y(t ) in the
macroscopic operating regimes. It is plotted as a function of the
voltage difference �V for different damping rates of the RLC cir-
cuit. The markers are obtained from the Gillespie simulations with
the time-dependent rates of the circuit. The solid curve and the
highlighted band represent the interpolated curves and the stan-
dard error computed using the approximate dynamics of Eq. (D1).
Parameters: ω ≡ 1/

√
LCin = 0.1, vin

e /VT = 0.1, vout
e /VT = 0.1, and

CbVb = −qe/2.

current through the inverter has a local minimum at Vin = 0.
This variance enters as an input in the coupled Langevin
model of Appendix D used to reproduce the numerical results,
which explains why increasing the damping (and therefore the
amount of time the input signal spends in the neighborhood
of Vin = 0) decreases the variance of the current through the
inverter and therefore that of the counter variable y(t ).

V. UNCERTAINTY PRODUCT WITH COARSE-GRAINED
COUPLING

In this section, we generalize the derivation of the uncer-
tainty product Q done in the toy model [11] to this circuit
with coarse-grained rates (vin

e /VT � 1), but for any arbitrary
number of states in the output voltage. With coarse-grained
rates, the entire dynamics of the circuit depends only on
the coarse-grained states of the input voltage {+,−}. Since
we assume a timescale separation between the RLC and the
CMOS inverter, i.e., τ0/τRLC � 1, the output voltage v(t )
also relaxes quickly to the equilibrium distribution P+/−

eq (v)
corresponding to the source of the conductive transistor. When
the input state is + (−), the conductive transistor is the nMOS
(pMOS) transistor and the output voltage relaxes to −Vdd

(+Vdd). Hence, the equilibrium distributions corresponding to
the coarse-grained states + and − of the RLC are given as

P+
eq(v) ∝ e

− 1
(2vout

e VT ) [v+Vdd]2

, (17)

P−
eq(v) ∝ e

− 1
(2vout

e VT ) [v−Vdd]2

. (18)

The counter state y(t ) changes only when there is a tick
and the stationary distribution relaxes to the new equilibrium
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distribution. The counter state y(t ) can then be described as
the sum of independent increments �yi, given as

y(t ) = Np(t ) + Nn(t ) (19)

=
N (t )−1∑

i=0

�yi, (20)

where N (t ) = ∫ t
0 dτ |V̇in(τ )|δ[Vin(τ )] is the number of ticks

until time t and �yi is the change in y between the ith and
(i + 1)st ticks. Since only one of the transistors is conductive
between two ticks, all the changes in the output voltage are
due to that conductive transistor [Eq. (7)]. Hence, �yi can be
computed as follows:

�yi = s(i)
(vi − vi+1)

vout
e

, (21)

where vi is the output voltage before the ith tick and s(i) ≡
{+,−} is the coarse-grained state between the ith and the (i +
1)st tick.

Using the equilibrium distributions [Eqs. (17) and (18)],
we can compute the mean and dispersion of �y, given as

〈�y〉 = 〈v〉− − 〈v〉+
vout

e

, (22)

σ 2(�y) = σ 2
−(v) + σ 2

+(v)

vout
e

2 , (23)

where we also used the independence of the voltages be-
fore two consecutive ticks. For a given RLC trajectory up
to time t � 1/ω with N (t ) � 1 ticks, the probability of the
counter state P(y|N ) obeys the central limit theorem with
mean 〈y|N〉 = N〈�y〉 and variance σ 2(y|N ) = 2Nσ 2(�y).
The factor two in the variance is the result of the depen-
dence between any two consecutive increments �yi [39].
This characterization is possible since the RLC dynamics is
independent of changes in the CMOS inverter. Similarly, one
can also assume the central limit theorem for the statistics of
N (t ), such that P(N, t ) is also a Gaussian with mean 〈Ṅ〉t and
variance 2DNt . As the RLC dynamics is just that of the under-
damped harmonic oscillator, both the mean and the dispersion
of ticks can be obtained semi-analytically (Appendix C),

〈Ṅ〉 = ω/π

DN = 〈Ṅ〉
2

+
∫ ∞

0+
dτ [〈Ṅ (0)Ṅ (τ )〉 − 〈Ṅ〉2]. (24)

The mean rate of the ticks is just twice the frequency of the
oscillation, and its dispersion is dependent on the correlation
function 〈Ṅ (0)Ṅ (τ )〉. The latter describes the probability of
having a tick at time τ given a tick at t = 0.

Combining both distributions, the probability of finding the
counter state y at a given time t can be identified as

P(y, t ) =
∑

N

P(y|N )P(N, t ). (25)

The above distribution P(y, t ) is also a Gaussian with the
following mean and variance:

〈y(t )〉 = 〈Ṅ〉〈�y〉t,
Var[y(t )] = 2[σ 2(�y)〈Ṅ〉 + DN 〈�y〉2]t . (26)

In the above regime of operation, the entropy production due
to the biased CMOS inverter is given as

σ̇inv = kB〈Ṅ〉〈�y〉(�V/2VT ). (27)

Hence, the uncertainty product can be simplified as follows,

Q =
[

σ 2(�y)

〈�y〉 + DN〈
Ṅ

〉 〈�y〉
]

�V

VT
. (28)

A. Two-state regime

For the complete single-electron regime, we also required
the elementary voltage at the output to be vout

e /VT � 1 to
restrict the output voltage v(t ) to two states v±. In such
a regime, the equilibrium distributions corresponding to the
coarse-grained states (+,−) [Eqs. (17) and (18)] are peaked
around the two states. The normalization of the distribution
is effectively due to only two terms, i.e., N = ∑

vout
e

P+
eq(v) ≈

P+
eq(v−) + P+

eq(v+). Hence, the normalized equilibrium prob-
abilities for the coarse-grained states can be computed as
follows:

P+
eq(v−) = e−Vdd/2

[2 cosh Vdd/2]
, P+

eq(v+) = eVdd/2

[2 cosh Vdd/2]
,

P−
eq(v−) = eVdd/2

[2 cosh Vdd/2]
, P−

eq(v+) = e−Vdd/2

[2 cosh Vdd/2]
.

Using the above distributions, we can compute the mean in-
crement of the counter given a tick, given as

〈�y〉 = tanh (Vdd/2VT ) and σ 2(�y) = 1

2 cosh2 (Vdd/2VT)
.

(29)

An important observation in these statistics is that the mean
〈�y〉 increases to 1 and the variance σ 2(�y) decreases with
increasing voltage difference �V . Therefore, the counting
process becomes very precise by increasing the dissipation
in the clock counter. The uncertainty product Q therefore
simplifies to Eq. (15).

B. Macroscopic counter state

For the macroscopic limit in the output voltage of the
biased CMOS inverter (vout

e /VT → 0), the number of charges
for a finite voltage will also be macroscopic. Even in this
regime, the output voltage will relax to the same coarse-
grained equilibrium distributions. But now the summation in
the normalization can be approximated by an integral over
the macroscopic number of states, i.e., N = ∑

vout
e

P+
eq(v) ∫ ∞

−∞ P±
eq(v)dv = (2πvout

e VT )1/2. Hence, the corresponding
equilibrium probabilities are

P+
eq(v) = 1√

2πvout
e VT

e
− 1

(2vout
e VT ) [v+Vdd]2

, (30)

P−
eq(v) = 1√

2πvout
e VT

e
− 1

(2vout
e VT ) [v−Vdd]2

. (31)

The statistics of the increments given a tick are then given as,

〈�y〉 = (
2Vdd/v

out
e

)
andσ 2(�y) = 2VT /vout

e . (32)
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For strong biasing Vdd/VT > vout
e /VT , it takes 2Vdd/v

out
e

transitions to change v = ±Vdd → ∓Vdd. The variance in
increments is controlled by the width of the Gaussian dis-
tributions, which depends only on the thermal voltage VT .
Combining all of the above statistics, we can again obtain an
analytical expression for the uncertainty product of the clock,

Q = 2

[
1 +

(
DN

〈Ṅ〉
)

2V 2
dd

vout
e VT

]
. (33)

Although the precision of the counter 〈y〉2/σ 2(y) increases
with increasing applied voltage difference �V , the variance
σ 2(y) is still independent of �V . This is in contrast with
the toy model, where both the precision and the variance
of the increments decrease with a higher voltage difference
[Eq. (29)]. Therefore, there is an ineffective conversion of the
higher dissipation into the precision of the counting process at
the macroscopic limit.

VI. CONClUSIONS AND DISCUSSION

In this article, we have presented a thermodynamically
consistent analysis of an electronic circuit inspired by the
escapement mechanism used in mechanical clocks, based on
the toy model in Ref. [11]. In this circuit, the equilibrium
stochastic oscillations of an RLC circuit drive the input of a bi-
ased CMOS inverter, where the accumulated current through
the transistors acts as a discrete counter for timekeeping. In
the single-electron regimes of the circuit, we showed that
the dynamics of the counter converges to the toy model,
which violates the TUR. Practically, this can be achieved
only at ultralow temperatures (T ∼ 4 K) and with nanoscale
components. In this regime, the state space of the CMOS
inverter is confined to only two states, and the escapement
coupling depends only on the coarse-grained position of the
input oscillations. We also showed that those two constraints
play a crucial role in the violation of the TUR. In the other
regimes of operation, where either the coupling cannot be
coarse-grained or the state space is meso- or macroscopic, the
TUR is restored. Hence, using an electronic implementation
of an escapement clock, we show that the violation of the
original TUR in underdamped systems requires specific con-
ditions that can only be achieved in the single-electron regime
of operation. Our work also sheds new light on the design of
electronic circuits for timekeeping, utilizing thermal noise to
reduce the thermodynamic cost.

The single-electron regimes, where the circuit converges to
the toy model, require these solid-state devices and the RLC
to be operated at extremely low temperatures. In this regime,
the I-V characteristics used might also need to account for
other dominant effects, such as quantum tunneling, freezing
of the charge carriers, etc. [40,41], which might also play
an important role. These effects can significantly impact the
performance of the escapement clock. Obtaining the coarse-
grained coupling in these circuits is also a practical limitation
that requires careful consideration. We achieved this by scal-
ing the input voltage signal through reducing capacitances or
operating at lower temperatures, which incurs no additional
thermodynamic cost. Alternatively, the coarse-grained cou-
pling can be implemented through active amplification using

an op-amp or using zero-crossing detectors [42] connected be-
tween the RLC and the CMOS inverter. All of these modules
are dissipative and will contribute to the thermodynamic cost
of running the clock. In addition, it is important to note that by
scaling down the capacitances, the frequency of the pendulum
scales up, as ω = 1/

√
LCin. To maintain the clock at a finite

frequency, the inductance has to be scaled up, which is not
possible at the nanoscale.

Similar circuits that incorporate some feedback of the
counter dynamics back to the stochastic oscillations of the
pendulum can be considered as Brownian versions of macro-
scopic mechanical clocks [43]. Although the oscillations in
the pendulum can become more precise with feedback, it
also drives the pendulum out of equilibrium with nonzero
dissipation [44]. Thus, it is necessary to further explore the
TUR bound on realistic systems that incorporate feedback.
Since our circuit violates the TUR only at the single-electron
regime, it is still an open question whether the TUR bound can
be violated for macroscopic underdamped systems [9,10].
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APPENDIX A: DETERMINISTIC DYNAMICS

The dynamics of the RLC can be independently determined
from the dynamics in the CMOS inverter because there is
no current flow through the gate terminals of the transistors.
Applying Kirchhoff’s voltage law around the RLC loop, we
can obtain the following input voltage Vin(t ) dynamics:

LCin V̈in(t ) + RCin V̇in(t ) + Vin(t ) = 0, (A1)

where Cin = Ci + 2Cg is the effective capacitance at the input
node of the inverter and Cg is the gate-bulk capacitance of the
transistors [Fig. 1(c)]. As there is no voltage difference across
the RLC, the input voltage Vin(t ) will eventually relax to V ∗

in =
0 in the steady state, which is the fixed point of the above
dynamics.

Similarly, one can write the deterministic evolution of the
output voltage of the CMOS inverter by applying Kirchhoff’s
current law at the output node, given as

Cout
dv

dt
= Ip(v,Vin; Vdd) − In(v,Vin; Vdd), (A2)

where Cout = Cb + 2Co is the effective output capacitance at
the inverter output node and Co is the drain-source capacitance
of the transistors [Fig. 1(c)]. The associated charge in the
output node of the inverter is linearly related to the voltage
as q = Coutv − CbVb.

Since Vin(t ) evolves independently, the steady-state out-
put voltage v∗ can be obtained from Eq. (A2), given its
steady-state value V ∗

in = 0. The symmetry of the currents,
In(v,Vin; Vdd) = Ip(−v,−Vin; Vdd), implies the steady-state
output voltage v∗ = 0, for any Vdd. Therefore, the steady state
of the deterministic dynamics [Eqs. (A1) and (A2)] is just
(v∗,V ∗

in ) = (0, 0). To have sustained oscillations in the steady

085421-10



THERMODYNAMIC COST OF PRECISE TIMEKEEPING IN … PHYSICAL REVIEW B 109, 085421 (2024)

FIG. 6. (a) A sample stochastic trajectory of the input voltage Vin(t ) (blue), the coarse-grained input voltage trajectory (dark blue)
(V th

in /VT = 7) and the trajectory of the counter-observable y(t ) = Np(t ) + Nn(t ) (red). For a sample time interval between ticks τtick, the part
of the trajectory spent in the threshold range [−V th

in ,V th
in ] is highlighted in yellow, and δt is the corresponding time duration. Parameters:

ω ≡ 1/
√

LCin = 0.1τ−1
0 , σVin/VT = 50, vout

e /VT = 0.1, and CbVb = −qe/2. (b) The average δt/τtick for different values of damping γ /ω and
standard deviation of input voltage σVin/VT = (vin

e /VT )1/2. Parameter: ω ≡ 1/
√

LCin = 0.1τ−1
0 .

state of digital clocks (RLC or crystal oscillators), part of the
power injected into the inverter is also fed back to the damped
oscillator to drive the oscillations. Here, the thermal noise in
the resistors probes the natural frequency of the oscillator to
produce stochastic oscillations whose coherence time depends
on the damping factor.

APPENDIX B: COARSE-GRAINING THE JUMP RATES
OF THE TRANSISTORS

In this section, we argue that, for vin
e /VT � 1, the depen-

dence of the jump rates λρ (t ) on the input voltage Vin(t ) can be
coarse-grained so as to depend only on its sign. More specif-
ically, the counter dynamics y(t ) converges to an auxiliary
dynamics with the following escapement coupling: λ±

p (t ) ∝
(−Vin(t )/VT ) and λ±

n (t ) ∝ (Vin(t )/VT ), where (x) is a
Heaviside function such that (x) = 1 for x � 0 and 0 else-
where. With such coarse-grained rates, the transistors behave
exactly like switches, i.e., for Vin(t ) � 0, only the jumps in
nMOS (±n) are allowed, whereas the jumps in pMOS (±p)
are shut off, and vice versa for Vin(t ) < 0.

As explained in the main text, we first note that the jump
rates for transistors, obtained from the I-V characteristics,
have the following input voltage dependence: λn

± ∝ eVin (t )/VT

for the nMOS transistor and λ
p
± ∝ e−Vin (t )/VT for the pMOS

transistor. Therefore, the transistors will behave effectively
like switches for |Vin(t )/VT | � 1 with only one of the transis-
tors active. For vin

e /VT � 1, this condition is achieved during
most of the period of an oscillation, except for the time spent
around the zero crossing. For a quantitative analysis, we can
consider the time δt spent by the input signal Vin(t ) in a
range [−V th

in ,V th
in ], where V th

in is a threshold voltage which
is in principle arbitrary. This threshold voltage can be cho-
sen so that, when |Vin(t )| > V th

in , the timescale for jumps in
the inactive transistor is much larger than the time between
ticks, i.e., eV th

in /VT τ0 � 〈τtick〉. Both δτ and τtick are random

quantities. As shown in Fig. 6(b), the average of the fraction
δτ/τtick can be made arbitrarily small by considering larger
values of vin

e /VT [as σVin/VT = (vin
e /VT )1/2], for any damping

γ /ω. In the case of low damping γ � ω, one can show
that 〈δτ/τtick〉 ∝ (V th

in /VT )/(vin
e /VT )1/2, capturing the inverse

relationship to vin
e . This approximate relationship is obtained

by performing a linear interpolation assuming that the am-
plitude of the input voltage |V amp

in /VT | ∼ σVin/VT is reached at
t ∼ 〈τtick〉/2 = π/(2ω), given that Vin/VT = 0 at t = 0 (the
zero crossing). Thus, if δτ � τ0 � 〈τtick〉, where τ0 is the
natural timescale of the transistor defined in the main text, the
transistors will effectively never see the input voltage around
zero.

Now we focus on the independence of the auxiliary dy-
namics on the magnitude of the input voltage |Vin(t )/VT |.
Under the above condition, the output voltage v(t ) quickly
equilibrates with the corresponding voltage source (at voltage
Vdd or −Vdd) of the conducting transistor, once zero-crossing
occurs. Thus, after that quick equilibration, the electric current
has a zero mean during most of the period between ticks. This
implies that the counter dynamics within a period does not
contribute to the progress of the counter state y(t ) irrespective
of the magnitude of Vin(t ) [Fig. 6(a)]. Therefore, there are
advances in the counter observable y(t ) only at the moments
of zero crossing or tick events due to the relaxation of the
output voltage to the new equilibrium associated with the
newly activated transistor.

APPENDIX C: PRECISION OF THE NUMBER OF ZERO
CROSSINGS IN THE RLC

In this section, we obtain the expression for the precision
of the number of zero crossings of the input voltage in the
RLC. Since the stochastic dynamics of the RLC is that of an
underdamped harmonic oscillator, we can cast Eq. (1) into an
adimensional form in the phase space of [x ≡ √

Cin/kBTVin,
v ≡ (LC2

in/kBT )1/2V̇in]. After rescaling time to dimensionless
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time as t → t/
√

LCin, we get the following equations of mo-
tion:

∂t x = v, (C1)

∂tv = −x − γ̃ v + ξ̃ (t ), (C2)

where ξ̃ (t ) is Gaussian white noise with correlations,
ξ̃ (t )ξ̃ (t ′) = 2γ̃ δ(t − t ′) and effective damming coefficient
γ̃ = γ /mω. It should be noted that the above dynamics is
only dependent on this damping factor γ̃ , while all other
parameters scale the trajectory. The equilibrium distribution
of the above dynamics correspond to

Peq(x, v) = 1

2π
e−(x2+v2 )/2. (C3)

Note that (x2 + v2)/2 ≡ (LC2
inV̇ 2

in + CinV 2
in )/(2kBT ) is the

rescaled energy stored in the RLC, thus obtaining the correct
Gibbs state.

We are interested in computing the dispersion of the ob-
servable N (t ) = ∫ t

0 |v|δ(x), which counts the number of zero
crossings (ticks) up to time t . Below, we sketch the derivation
done in Ref. [11] and also correct for a typo in the final
expression. For long times t � 1, the distribution of N (t ) can
be assumed to be Gaussian with mean 〈Ṅ〉t and dispersion
2DNt using the central limit theorem. We can compute both at
equilibrium using the result from Ref. [45] as

〈Ṅ〉 =
∫

dxdv Peq(x, v)|v|δ(x) = 1/π, (C4)

DN = 〈Ṅ〉
2

+
∫ ∞

0+
dτ [〈Ṅ (0)Ṅ (τ )〉 − 〈Ṅ〉2]. (C5)

The dispersion DN ≡ limt→∞ 1/(2t )
∫ t

0 dt1
∫ t

0 dt2〈[Ṅ (t1) −
〈Ṅ〉][Ṅ (t2) − 〈Ṅ〉]〉 captures the correlations in the under-
damped dynamics of the RLC, and the first term is the
result of self-correlations in the ticks. Since the under-
damped harmonic oscillator is a linear system, the propagator
P(x, v, t |x0, v0, 0) is also Gaussian. Using the Gaussian
propagator, the correlation function 〈Ṅ (0)Ṅ (τ )〉 can be ex-
actly computed, as shown in the Supplemental Material of
Ref. [11], giving us

〈Ṅ (0)Ṅ (τ )〉 = 1

π2
√

det σ det σ

[
1 + |σ12|√

det σ
arctan

|σ12|√
det σ

]
.

In the above expression, the matrix σ is given as

σ ≡
(

1 0

0 0

)
+ BT σ−1B, (C6)

with

B ≡
(

e−γ̃ t/2

ω̃
sin (ω̃t ) 0

e−γ̃ t/2

ω̃
[ω̃ cos (ω̃t ) − (γ̃ /2) sin (ω̃t )] 1

)
,

σ (t ) ≡
(

1 0
0 1

)
+ e−γ̃ t/2

2ω̃2

[(−2 γ̃

γ̃ −2

)
+

(
γ̃ /2 −1
−1 γ̃ /2

)

× γ̃ cos (2ω̃t ) +
(−1 0

0 0

)
γ̃ ω̃ sin (2ω̃t )

]
, (C7)

where ω̃ = (1 − γ̃ 2/4)1/2 is the shifted frequency of the os-
cillator due to the damping. Since the above expressions are

lengthy and cannot be further simplified, the integral in DN is
computed numerically to obtain the precision DN/〈Ṅ〉 of the
ticks.

APPENDIX D: AUXILIARY DYNAMICS
FOR CONTINUOUS COUPLING

The operation of circuit with the RLC having macroscopic
capacitance implies that the thermal oscillations in the RLC
have small amplitudes, since vin

e /VT < 1. Therefore, the dy-
namics of the counter y(t ) will now explicitly depend on the
values of the input voltage Vin(t ). To capture the qualitative
behavior in this regime, we consider an approximate counter
dynamics y(t ) assuming a timescale separation between the
RLC and the CMOS inverter. Here, we construct a Langevin
dynamics for the counter with a drift μ(Vin(t )) and a diffusion
σ̃ (Vin(t )) coefficient. Coupled with the underdamped dynam-
ics for the input voltage Vin(t ), we get an effective Langevin
dynamics for the counter y(t ) in an extended space (y,Vin(t )),
given as

LCinV̈in(t ) + RCin V̇in(t ) + Vin(t ) = ξ (t ),

ẏ(t ) = μ(Vin(t )) + σ̃ (Vin(t ))ηt , (D1)

where η(t ) is a Gaussian white noise with zero mean and
unit variance. The drift and diffusion coefficients are as-
sumed to be equal to the long-time limit of the counter
statistics in the CMOS inverter for a fixed Vin. Specifi-
cally, the drift coefficient can then be computed as μ(Vin) =
limτ→∞(〈y(τ )〉Vin/τ ) and the diffusion coefficient is computed
as σ̃ (Vin ) = limτ→∞

√
Var[y(τ )]Vin/τ . This approximate dy-

namics provides a faithful and numerically inexpensive
alternative to the time-dependent Gillespie simulations of the
circuit when there is timescale separation between the RLC
and the CMOS inverter. It is also important to note that the
above dynamics do not capture the regime with coarse-grained
rates, as it still assumes timescale separation near Vin = 0,
which is no longer true in that case (see Appendix B). Below,
we compute the drift and diffusion coefficient in the two-state
and macroscopic state space regimes.

1. Two-state limit

As shown in the main text, if we consider the limit
vout

e /VT � 1, the state space of the output voltage/charge
can be restricted. By tuning the biasing circuit such that
CbVb = −(n − 1/2)qe, it will be restricted to two states v− ≡
(n − 1)qe and v+ ≡ nqe. The Poisson transition rates between
these states due to the transistors in the inverter (assuming the
slope factor n = 1) are given as

λ+
p (v− → v+) = (1/τ0)e(Vdd−Vin )/VT ,

λ+
n (v+ → v−) = (1/τ0)e(Vdd+Vin )/VT , (D2)

λ−
p (v+ → v−) = (1/τ0)e−Vin/VT ,

λ−
n (v− → v+) = (1/τ0)eVin/VT . (D3)

Using the methods of full counting statistics [46,47], one can
exactly compute all the cumulants of the counter observable
y(t ) in this two-state system. The tilted generator correspond-
ing to the counter observable y(t ) ≡ Np(t ) + Nn(t ) for any
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fixed input voltage Vin/VT is given as,

L̂ξ =
[

−(λ+
p + λ−

n ) (λ−
p e−ξ + λ+

n eξ )

(λ+
p eξ + λ−

n e−ξ ) −(λ−
p + λ+

n )

]
. (D4)

The scaled cumulant generating function (SCGF) S(ξ ) =
limt→∞(1/t ) log〈eξy(t )〉 is the eigenvalue with the largest

absolute value of the titled generator L̂ξ . Similar calculations
for the current statistics of a single current in a two-level
system can be found in the Appendix F of Ref. [34]. From
the SCGF, the drift μ(Vin) and the diffusion σ̃ (Vin ) coefficient
for the two-state limit can be obtained from the following
expressions:

μ(Vin) = ∂S(ξ )

∂ξ

∣∣∣∣
ξ=0

= 1

τ0

2eVin/VT (1 − e−Vdd/VT )

(1 + e2Vin/VT )
, (D5)

σ̃ (Vin ) =
√

∂2Sp(ξ )

∂ξ 2

∣∣∣∣
ξ=0

= 1√
τ0

[
8e−2Vdd/VT +Vin/VT [2e2Vin/VT + (1 + e4Vin/VT ) cosh (Vdd/VT )]

(1 + eVdd/VT )(1 + e2Vin/VT )3

]1/2

. (D6)

2. Macroscopic limit

For the macroscopic limit in the output state space, we
will be using the framework used in Ref. [34] to obtain the
drift and diffusion coefficients. Taking the macroscopic limit
vout

e /VT → 0 also corresponds to the low-noise limit in these
electronic circuits because the fluctuations scale as vout

e /VT .
In this limit, the probability of individual trajectories for such
Markov jump processes can be obtained using the Martin-
Siggia-Rose (MSR) path integral construction [48–50] and
identifying the dominant trajectory. The generating function
for counter statistics Z (ξ, t ) = 〈eξy(t )〉 in this representation
to the dominant order in v−1

e , has the following form:

Z (ξ, t ) =
∫

DvDp e(1/vout
e )

∫ t
0 dτ [−p(τ )v̇(τ )+Hξ (v(τ ),p(τ ))]

× P0(v(0)), (D7)

where p(t ) is the auxiliary field. This field plays the role of
a conjugated momentum and is obtained when the Fourier
transform of Poisson noise is taken. P0(v(0)) is an initial prob-
ability distribution, and Hξ (v, p) is the biased Hamiltonian

Hξ (v, p) =
∑

ρ

(e�ρ p+s(ρ)ξ − 1)ωρ (v). (D8)

In the above biased Hamiltonian, ωρ (v) ≡
limve→0 veλρ (v, ve) are the rescaled Poisson rates and s(ρ) is
the sign function which outputs ±1 corresponding to the ±
jumps in the devices. Taking the long-time limit, the SCGF
S(ξ ) can then be computed as

S(ξ ) = 1

vout
e

max
v∗

ξ ,p∗
ξ

{Hξ (v∗
ξ , p∗

ξ )}, (D9)

where the maximization is done over the fixed points {v∗
ξ , p∗

ξ }
of the Hamiltonian dynamics v̇ξ = ∂pHξ (v, p) and ṗξ =
−∂vHξ (v, p). As the output voltage v is related to the output
charge q, by v = (q + CbVb)/ = Cout, the rates in the voltage
space are independent of the biasing [see Eqs. (4) and (5)] and
the rescaled rates ωρ (v) are also the same as with the unbiased
CMOS inverter. Therefore, the drift μ(Vin) = [∂S(ξ )/∂ξ ]|ξ=0

and the diffusion σ̃ (Vin ) = [∂2Sp(ξ )/∂ξ 2]1/2|ξ=0 coefficient
can be semi-analytically computed using the results obtained
for the unbiased inverter in Ref. [34].

APPENDIX E: STOCHASTIC SIMULATION METHOD

Since the dynamics of the RLC occurs independently of the
transitions in the CMOS inverter, we can hence independently
solve the underdamped dynamics in the RLC numerically
using traditional Runge-Kutta (RK) approaches [51]. Here, we
obtained the stochastic trajectories of the RLC using Heun’s
method, which corresponds to a second-order RK approach.
These trajectories provide the explicit time dependence for
the Poisson rates in the CMOS inverter [Eq. (5)]. Now,
the stochastic trajectories of changes in the output voltage
v(t ) of the biased CMOS inverter are numerically obtained
using the time-dependent variant of the Gillespie algo-
rithm [52,53]. The algorithm is implemented for our circuit as
follows:

(1) Initialize the output voltage at some initial voltage
v(tc = 0) = v0.

(2) To compute the next jump time, solve the following
nonlinear integral equation:∫ tc+�

tc

dτ
∑

ρ

λρ (v(tc), τ ) = ln (1/r1), (E1)

where r1 ∼ Uniform[0, 1] is a uniform random variable.
(3) Generate another uniform random number r2 ∼

Uniform[0, 1].
(4) Choose the Poisson process ρ ′ associated with that

jump, which satisfies the following condition:

ρ ′−1∑
ρ=1

λρ (v(tc), tc + �) � r2

M∑
ρ=1

λρ (v(tc), tc + �)

�
M∑

ρ=ρ ′
λρ (v(tc), tc + �), (E2)

where the different Poisson processes ρ are given a dictionary
ordering from 1 to M. In the case of the above circuit, the total
number of processes is M = 4.

(5) Update the output voltage v(tc + �) = v(tc) + �ρ ′vout
e

according to the process ρ ′, and the current time tc = tc + �.
(6) Repeat from step 2.
The advantage of the above Gillespie algorithm compared

with the first-reaction method [53] is that it requires only
the generation of two random numbers for every jump. This
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(a) (b)

FIG. 7. (a) The uncertainty Var[y(t )]t/〈y(t )〉2 and (b) the entropy production rate σ̇ of the counter y(t ) in the two-state regime with
coarse-grained coupling. It is plotted as a function of the voltage difference �V for different damping rates of the RLC circuit. Markers are
obtained from Gillespie circuit simulations and solid curves are obtained by applying Eq. (29) in Eq. (26). Parameters: ω ≡ 1/

√
LCin = 0.1τ−1

0 ,
V th

in /VT = 10, vout
e /VT = 10, and CbVb = −qe/2.

method also is faster than the modified next-reaction methods,
which require only one random number per jump for our non-
linear rates. The most numerically expensive step in the above
algorithm with nonlinear rates is finding �, which needs to
be computed for each reaction in the modified next-reaction
approach.

APPENDIX F: COUNTER UNCERTAINTY AND ENTROPY
PRODUCTION FOR DIFFERENT REGIMES

As discussed in the main text, the focus of this article is to
quantify the uncertainty product Q and its connection with the
thermodynamic uncertainty relation (TUR) for the different
regimes of operation of the clock circuit. The uncertainty
product Q is defined as the long time limit of the product

(a) (b)

FIG. 8. (a) The uncertainty Var[y(t )]t/〈y(t )〉2 and (b) the entropy production rate σ̇ of the counter y(t ) in the macroscopic state space with
coarse-grained coupling. It is plotted as a function of the voltage difference �V for different damping rates of the RLC circuit. The markers
are obtained from the Gillespie simulations of the circuit and the solid curves are obtained by applying Eq. (32) in Eq. (26). Parameters:
ω ≡ 1/

√
LCin = 0.1τ−1

0 , V th
in /VT = 10, vout

e /VT = 0.05, and CbVb = −qe/2.
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(a) (b)

FIG. 9. (a) The uncertainty Var[y(t )]t/〈y(t )〉2 and (b) the entropy production rate σ̇ of the counter y(t ) in the two-state limit and regime
where the rates cannot be coarse-grained. It is plotted as a function of the voltage difference �V for different damping rates of the RLC circuit.
The markers are obtained from the Gillespie simulations with the time-dependent rates of the circuit. The dashed curves are computed using
the approximate dynamics of Eq. (D1). Parameters: ω ≡ 1/

√
LCin = 0.1, vin

e /VT = 0.1, vout
e /VT = 10, and CbVb = −qe/2.

of the uncertainty of the counter observable Var[y(t )]/〈y(t )〉2

and the total entropy production σ̇ t/kb,

Q ≡ lim
t→∞

Var[y(t )]

〈y(t )〉2

σ̇ t

kb
. (F1)

In the long-time limit, the counter-observable statistics are
such that asymptotically its mean and variance grow lin-
early with time, i.e., 〈y(t )〉 ∝ t and Var[y(t )] ∝ t [34]. We
define the scaled uncertainty for the counter observable as
Var[y(t )]t/〈y(t )〉2, which is independent of time. Hence, the
uncertainty product Q can be expressed as the product of

the scaled uncertainty and the entropy production rate σ̇ /kb.
This splitting allows us to understand the time-independent
dependence of the uncertainty and the thermodynamic cost on
the system parameters (�V, γ /m, vin/out

e ).
Below we plot the scaled uncertainty Var[y(t )]t/〈y(t )〉2

and the entropy production rate σ̇ /kb separately, as a function
of applied voltage �V for different damping factors γ /m.
We do the same for the different regimes of operation of
the circuit, as discussed in the main text: (1) two-state limit
(vout

e /VT � 1) and coarse-grained rates (vin
e /VT � 1) (Fig. 7);

(2) macroscopic state space (vout
e /VT < 1) with coarse-grained

(a) (b)

FIG. 10. (a) The uncertainty Var[y(t )]t/〈y(t )〉2 and (b) the entropy production rate σ̇ of the counter y(t ) in the macroscopic operating
regimes, i.e., macroscopic state space and jump rates which cannot be coarse-grained. It is plotted as a function of the voltage difference
�V for different damping rates of the RLC circuit. The markers are obtained from the Gillespie simulations with the time-dependent rates
of the circuit. The dashed curves are computed using the approximate dynamics of Eq. (D1). Parameters: ω ≡ 1/

√
LCin = 0.1, vin

e /VT = 0.1,
vout

e /VT = 0.1, and CbVb = −qe/2.
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rates (Fig. 8); (3) two-state limit but without coarse-grained
rates (vin

e /VT < 1) (Fig. 9), and, finally; (4) macroscopic
regime of the entire circuit (vin

e /VT < 1 and vout
e /VT < 1)

(Fig. 10).
As seen in the figures, the entropy production rate σ̇ /kb =

〈y(t )/t〉(�V/VT ) is independent of the damping factor γ /ω.
At equilibrium, the mean counter observable 〈y(t )〉 is com-
puted using the Gibbs probability density of the oscillator,
which is independent of the damping γ . But, as seen with

coarse-grained rates, the scaled variance Var[y(t )]t/〈y(t )〉2 is
proportional to dispersion in the ticks (Appendix C), which
decreases with decreasing damping factor γ /ω. But when
the rates cannot be coarse-grained, the scaled uncertainty
has the opposite behavior (increases with decreasing damp-
ing factor γ /ω) (see Figs. 9 and 10). As explained in the
main text, this can be linked to the minimum of the dif-
fusion coefficient σ̃ (Vin ) (Appendix D) at Vin = 0 seen in
Ref. [34].
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