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Intense anomalous high harmonics in graphene quantum dots caused by disorder or vacancies
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This article aims to study the linear and nonlinear optical response of inversion symmetric graphene quantum
dots (GQDs) in the presence of on-site disorder or vacancies. The presence of disorder or vacancy breaks
the special inversion symmetry, leading to the emergence of intense Hall-type anomalous harmonics. This
phenomenon is attributed to the intrinsic time-reversal symmetry breaking in quantum dots with a pseudo-
relativistic Hamiltonian, even in the absence of an external magnetic field. We demonstrate that the effects
induced by disorder or vacancy have a distinct impact on the optical response of GQDs. In the linear response we
observe significant Hall conductivity. In the presence of an intense laser field, we observe the radiation of strong
anomalous odd- and even-order harmonics already for relatively small levels of disorder or monovacancy. Both
the disorder and vacancy lift the degeneracy of states, thereby creating new channels for interband transitions
and enhancing the emission of near-cutoff high-harmonic signals.
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I. INTRODUCTION

Theoretical studies of two-dimensional (2D) systems with
unique electronic and topological properties can be traced
back about 80 years, encompassing areas such as sin-
gle graphite layers [1,2], zero-gap semiconductors [3], the
quantum Hall effect without a magnetic field [4], d-wave
superconductors [5], and neutrino billiards [6]. However, it
was only with the experimental realization of graphene in
2004 [7] that a new frontier in physics opened up: the field
of 2D materials featuring pseudo-relativistic charged carriers
and nontrivial spatial and band structure topology [8–12]. One
remarkable manifestation of the importance of topology is
the “mystery of a missing pie” [13] in the DC conductivity
of graphene σDC. Early experiments observed values of σDC

that were π times larger than the predicted value for pristine,
disorder-free graphene [14]. Subsequent studies revealed that
the value of σDC strongly depends on various factors, includ-
ing the boundary conditions of the graphene sheet [15,16],
the presence of disorder [17,18], and the interactions among
charged carriers [19–21]. This highlighted the intricate inter-
play between topology, disorder, and carrier interactions in
graphene’s electrical conductivity.

The optoelectronic properties of graphene undergo signifi-
cant changes when it is reduced to zero-dimensional structures
known as graphene quantum dots (GQDs) [22]. The behavior
of GQDs can vary from metallic to insulating, depending on
the type of edges they possess [23]. The optical properties of
GQDs depend on their size and shape [22,24–27].

Various synthesis methods exist for GQDs, including frag-
mentation of fullerene molecules [28] and nanoscale cutting
of graphite combined with exfoliation [29], decomposition of
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hydrocarbons [30]. The confinement of electronic states in
GQDs has been confirmed through scanning tunneling mi-
croscopy measurements [31]. Along with graphene, GQDs
have garnered significant attention due to their unique opto-
electronic properties and their potential applications in diverse
fields such as bioimaging [32,33], photovoltaics [34], quan-
tum computing [35], photodetectors [36], energy storage [37],
sensing [38], and metal ion detection [39].

The potential to engineer the energy spectrum and optical
transitions of GQDs has drawn significant attention also in the
field of strong-field physics [40]. This is due to the promising
prospects for GQDs in extreme nonlinear optics applications,
including high-order harmonic generation (HHG) [41]. The-
oretical studies have predicted strong HHG from fullerenes
[42–46], graphene nanoribbons [47–49], and GQDs [50–54].
These studies have also highlighted significant alterations in
the nonlinear optical properties by manipulating the size,
shape, and edges of these systems. It is worth noting that
the electron-electron interactions have been recognized as a
crucial factor that influence the optical phenomena in the
mentioned nanostructures [54].

In most previous theoretical studies, the interaction of
graphenelike systems with the laser fields has been primarily
focused on perfect crystal structures with periodic lattices.
However, as is known, disorder or point defects in graphene,
such as vacancies, can strongly affect the electronic properties
of the system, since those defects support quasilocalized elec-
tronic states [55–57]. There have been several studies making
intriguing predictions that any distortion in the graphene lat-
tice leads to the generation of strong gauge fields [58–60],
effectively acting as a pseudo-magnetic field and giving rise
to a pseudo-quantum-Hall effect. By applying strain, it is
possible to create nearly uniform pseudo-magnetic fields that
exceed 10 T [61]. Remarkably, graphene nanobubbles ex-
hibit Landau levels forming in the presence of strain-induced
pseudo-magnetic fields greater than 300 T [62].
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FIG. 1. The top row represents intrinsic GQD216, the middle
row depicts GQD216 with disorder, and the bottom row illustrates
GQD216 with a monovacancy. Within each row, the following visual-
izations are presented from left to right: electron probability density
corresponding to the highest energy level in the valence band and
eigenenergies near the Fermi level.

The investigation of the intersection between strong-field
attosecond science and condensed matter has revealed that
HHG spectroscopy is a versatile tool for the all-optical explo-
ration of the structural, topological, and dynamical properties
of novel nanostructures [63,64]. This technique proves par-
ticularly effective in probing topological phase transitions
[65–68] and reconstructing Berry curvatures of bands through
the observation of anomalous harmonics [69,70]. Recent stud-
ies have demonstrated that an imperfect lattice can lead to
enhancement of HHG compared to a perfect lattice, partic-
ularly when considering doping-type impurities or disorder
[46,71–74]. Specific types of spatial defects, such as vacan-
cies and adatoms in graphene can turn monolayer graphene
into a topological material [75]. A single vacancy induces
a localized stable charge of order unity, inducing zero en-
ergy states at the Dirac point and connecting these modes
to vacuum fractional charge and a parity anomaly [76].
These findings prompt the question of how the disorder or
vacancies specifically affect the HHG spectra in GQDs. It
is worth noting that GQDs with sharp boundaries exhibit
time-reversal symmetry breaking even in the absence of a
magnetic field [6], suggesting the possibility of Hall-type
anomalous responses in both linear and nonlinear regimes
for imperfect GQDs. In this study we present a microscopic
theory that explores the linear and nonlinear interaction of
GQDs with strong coherent electromagnetic radiation in the
presence of on-site disorder or vacancy. Specifically, we
investigate hexagonal GQD with a moderate size, as illus-
trated in Fig. 1. By employing up to 10th-nearest-neighbor
hopping integrals within a dynamical Hartree-Fock (HF)

approximation, we reveal the polarization-resolved structure
of the HHG spectrum.

The paper is organized as follows. In Sec. II the model with
the basic equations are formulated. In Sec. III the linear opti-
cal response is considered. In Sec. IV we present the results
regarding nonlinear optical response. Finally, conclusions are
given in Sec. V.

II. THE MODEL

The basic GQD216, illustrated in Fig. 1, has symmetry de-
scribed by the non-Abelian point group C6v . We also consider
GQD216 with on-site disorder and GQD216 with a monova-
cancy. GQD is assumed to interact with a laser pulse that
excites electron coherent dynamics. We assume a neutral
GQD that will be described in the scope of the tight-binding
(TB) theory. Hence the total Hamiltonian reads

Ĥ = ĤTB + ĤC + Ĥint, (1)

where

ĤTB =
∑

iσ

εic
†
iσ ciσ −

∑
i, jσ

ti jc
†
iσ c jσ (2)

is the free GQD TB Hamiltonian. Here c†
iσ (ciσ ) creates (an-

nihilates) an electron with the spin polarization σ = {↑,↓} at
site i (σ is the opposite to σ spin polarization). In Eq. (2) εi is
the energy level at site i, and ti j is the hopping integral between
sites i and j.

The second term in the total Hamiltonian (1) describes the
electron-electron interaction (EEI):

ĤC = U

2

∑
iσ

c†
iσ ciσ c†

iσ ciσ + 1

2

∑
i, jσσ ′

Vi jc
†
iσ ciσ c†

jσ ′c jσ ′ , (3)

with the parameters U and Vi j representing the on-site and
long-range Coulomb interactions, respectively. The last term
in the total Hamiltonian (1) is the light-matter interaction part
that is described in the length gauge:

Ĥint = e
∑

iσ

ri · E(t )c†
iσ ciσ , (4)

with the elementary charge e, position vector ri, and the elec-
tric field strength E(t ).

In this work, EEI is treated in the HF mean-field approxi-
mation employing the correlation expansion

〈c†
1c†

2c3c4〉 = 〈c†
1c4〉〈c†

2c3〉 − 〈c†
1c3〉〈c†

2c4〉.

This factorization technique allows us to obtain a closed
set of equations for the single-particle density matrix ρ

(σ )
ji =

〈c†
iσ c jσ 〉. We will assume that in the static limit the EEI

Hamiltonian vanishes ĤHF
C � 0. That is, EEI in the HF limit

is included nonexplicitly in the empirical TB parameters ε̃i,
t̃i j , which is chosen to be close to experimental values. For
this propose in this paper we use up to 10th-nearest-neighbor
hopping t̃i j with values taken from density functional theory
by Wannierization [77] (see Table I). Hence, the Hamiltonian
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TABLE I. The first row represents nth-nearest-neighbor order. The second row is the set of tight-binding parameters, where tii = ε̃0. The
third row is the Coulomb interaction matrix elements. The first three elements, where U = Vii, are obtained from numerical calculations
by using Slater πz orbitals [22,78]. The longer range Coulomb interaction is taken to be εdVi j = 14.4/di j eV, where di j is the distance in
angstroms between the distant neighbors. Here εd is an effective dielectric constant which accounts for the substrate-induced screening in the
2D nanostructure.

Nearest neighbor 0 1 2 3 4 5 6 7 8 9 10

ti j [eV] 0.297 2.912 −0.223 0.289 −0.025 −0.055 0.022 0.013 0.022 −0.007 −0.004
εdVi j [eV] 16.5 8.6 5.3 14.4/di3 14.4/di4 14.4/di5 14.4/di6 14.4/di7 14.4/di8 14.4/di9 14.4/di10

ĤTB + ĤC is approximated by

ĤHF
0 =

∑
iσ

ε̃ic
†
iσ ciσ −

∑
i, jσ

t̃i jc
†
iσ c jσ + U

∑
i

(ni↑ − n0i↑)ni↓

+ U
∑

iσ

(ni↓ − n0i↓)ni↑ +
∑
〈i, j〉

Vi j (n j − n0 j )ni

−
∑
i, jσ

Vi jc
†
iσ c jσ (〈c†

iσ c jσ 〉 − 〈c†
iσ c jσ 〉0), (5)

where niσ = 〈c†
iσ ciσ 〉 = ρ

(σ )
ii . In this representation the ini-

tial density matrix ρ
(σ )
ji (0) = 〈c†

iσ c jσ 〉0 is calculated with

respect to the renormalized tight-binding Hamiltonian Ĥt
0 =

−∑
i, jσ t̃i jc

†
iσ c jσ . From the Heisenberg equation we obtain

evolutionary equations for the single-particle density matrix
ρ

(σ )
i j = 〈c†

jσ ciσ 〉:

ih̄
∂ρ

(σ )
i j

∂t
=

∑
k

(
τk jσ ρ

(σ )
ik − τikσ ρ

(σ )
k j

) + (Viσ − Vjσ )ρ (σ )
i j

+ eE(t )(ri − r j )ρ
(σ )
i j − ih̄γ

(
ρ

(σ )
i j − ρ

(σ )
0i j

)
, (6)

where

Viσ =
∑

jα

Vi j
(
ρ

(α)
j j − ρ

(α)
0 j j

) + U
(
ρ

(σ )
ii − ρ

(σ )
0ii

)
, (7)

and

τi jσ = −̃εiδi j + t̃i j + Vi j
(
ρ

(σ )
ji − ρ

(σ )
0 ji

)
. (8)

Electron-electron, electron-phonon scattering processes
have been introduced in Eq. (6) phenomenologically via the
damping term, assuming that the system relaxes at a rate γ to
the equilibrium ρ

(σ )
0i j distribution.

In the present paper, as a first approximation, monovacancy
is simulated by setting the hopping parameters to the empty
site to zero, and the on-site energy at the empty site equals a
large value outside the energy range of the density of states
[79]. There is also a scenario when the structure undergoes
a bond reconstruction in the vicinity of the vacancy [80].
In either case, a local distortion of the lattice takes place,
resulting in states that are strongly localized around defects
[81,82]. In the tight-binding Hamiltonian (5), the diagonal
disorder is described by the Anderson model introducing ran-
domly distributed site energies εri: ε̃i = ε̃0i + εri. We assume
for the random variable εri to have probability distributions
P(εri,Von), where

P(εri,Von) =
{

1
2Von

, −Von � εri � Von

0, otherwise
. (9)

Here the quantity Von is the distribution width describing the
strength of the disorder. The disorder strength for all calcula-
tions is taken to be Von=0.3 eV.

III. LINEAR OPTICAL RESPONSE

The linear optical response of the considered system is
completely described by the initial equilibrium ρ

(σ )
0i j distribu-

tion function. For this propose we need the eigenfunctions
(ψσμ(i)) and eigenenergies (εσμ) of the TB Hamiltonian. We
numerically diagonalize the TB Hamiltonian with the param-
eters from Table I and construct the initial density matrix
ρ

(σ )
0i j via the filling of electron states in the valence band

according to the zero-temperature Fermi-Dirac distribution
ρ

(σ )
0i j = ∑N−1

μ=N/2 ψ∗
σμ( j)ψσμ(i). In Fig. 1 the electron proba-

bility density |ψσμ(i)|2 on the 2D color-mapped nanostructure
corresponding to the highest energy level in the valence band
and eigenenergies near the Fermi level are shown. In both
cases we see the emergence of states near the Fermi level.
As is also seen from this figure, the presence of on-site dis-
order or a monovacancy breaks the inversion symmetry. As
expected, in the case of a vacancy we have a state that is
strongly localized around the defect. To provide a quantitative
characterization of localization in the μth eigenstates, we also
calculate the inverse participation number

Pμ =
(

N−1∑
i=0

|ψμ(i)|4
)−1

, (10)

which provides a measure of the fraction of sites over which
the wave packet is spread [83]. The energy spectra for the
systems under consideration are illustrated in Fig. 2(a). The
color bar indicates normalized inverse participation numbers
Pμ/N for states. Figure 2(b) shows inverse participation num-
bers Pμ/N for states near the Fermi level. The energy spectra
depicted in Fig. 2(a) demonstrate that they are nearly identical
for the intrinsic, vacancy, and disorder-defected cases. Highly
excited states are delocalized Pμ/N ∼ 0.5, which means that
those states are more resistant to defects. However, notable
changes in the spectra and symmetries of states occur in
proximity to the Fermi level, Fig. 2(b). From this figure it
becomes evident that these states are localized, which as we
will see, strongly alters the optical response of the considered
nanostructures.

To study the linear response we first need to calculate the
susceptibility tensor χi j , which is more transparent to give in
the energetic representation. For this propose we perform a
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FIG. 2. The energy spectra for the systems under consideration
are depicted in (a). To enhance clarity, the state indexes for the
disorder and monovacancy cases are shifted. The color bar represents
the normalized inverse participation numbers Pμ/N for states. For a
closer examination, a zoomed-in view is presented in (b), illustrat-
ing the normalized inverse participation numbers for states near the
Fermi level.

basis transformation using the following formula:

ρ
(σ )
i j =

∑
μ′

∑
μ

ψ∗
σμ′ ( j)�σμμ′ψσμ(i), (11)

where �σμμ′ is the density matrix in the energetic representa-
tion. Taking into account the completeness of basis functions,
from Eq. (6) we get the following equation:

ih̄
∂�σmn

∂t
= (εσm − εσn)�σmn

+ E(t )
∑

μ

(�σμndσmμ − �σmμdσμn)

− ih̄γ
(
�σmn − �(0)

σmn

)
, (12)

where dσμ′μ = e
∑

i ψ
∗
σμ′ (i)riψσμ(i) is the transition dipole

moment. We will solve Eq. (12) in the scope of perturbation
theory by expanding the density matrix in orders of the inci-
dent electromagnetic field:

�σmn = �(0)
σmn + �(1)

σmn. (13)

Assuming Ej (t ) = ∑
ω Ej (ω)e−iωt , it is straightforward to

obtain

�(1)
σmn =

∑
jω

Ej (ω)e−iωt d j
σmn

(
�(0)

σnn − �(0)
σmm

)
εσm − εσn − h̄ω − ih̄γ

.

The polarization vector Pi(t ) = ∑
σmn �(1)

σmn(t )di
σnm now

can be expressed as

Pi(t ) =
∑
σmn

∑
jω

Ej (ω)e−iωt d j
σmn

(
�(0)

σnn − �(0)
σmm

)
εσm − εσn − h̄ω − ih̄γ

. (14)

Taking into account the definition Pi = ε0
∑

j χi jE j , where
ε0 is the electric permittivity of free space, from Eq. (14)

we get

χi j (ω) = 1

ε0

∑
σmn

�(0)
σmm

[
d j

σnmdi
σmn

εσn − εσm − h̄ω − ih̄γ

+ d j
σmndi

σnm

εσn − εσm + h̄ω + ih̄γ

]
. (15)

With the help of susceptibility tensors in SI units, we also
calculate the conductivity tensors in cgs units by the formula

σi j (ω) = −iε0ωχi j (ω). (16)

The tensor σi j (ω) can be dissected into symmetric and
antisymmetric components. For 2D systems, there exists a
single independent component that characterizes the antisym-
metric conductivity: σxy(ω) = −σyx(ω). This component is
commonly known as the dissipationless or Hall conductivity,
denoted as σH (ω). Under spatial symmetry transformations,
the Hall component transforms as a pseudoscalar [84], given
by σH (ω) = det(O)σH (ω). Consequently, the Hall conductiv-
ity becomes zero in systems with mirror symmetry, where
det(O) = −1. Furthermore, it also vanishes in time-reversal
invariant systems. To observe a nonzero Hall component in the
considered GQD, it is imperative to break both time-reversal
and inversion symmetries. The time-reversal symmetry can be
disrupted, for example, through the application of a magnetic
field. Remarkably, in the context of GQDs characterized by
sharp boundaries, the time-reversal symmetry is inherently
broken even in the absence of an external magnetic field [6].
This intriguing property hints at the potential for Hall-type
anomalous responses in such imperfect GQDs. For the pur-
poses of our analysis, we neglect spin effects and assume a
zero-temperature Fermi-Dirac distribution for the initial den-
sity matrix �(0)

σmm. Under these conditions, the expressions for
the conduction tensor can be derived from Eqs. (15) and (16)
as follows:

σi j (ω) = −2iω
∑
m∈ν

∑
n∈c

d j
nmdi

mn

[
1

εn − εm − h̄ω − ih̄γ

+ 1

εn − εm + h̄ω + ih̄γ

]
. (17)

As evident from Eq. (17), the conduction tensor is primar-
ily defined by the joint density of states (JDS),

JDS =
∑
m∈ν

∑
n∈c

δ(εn − εm − h̄ω),

and the values of the product d j
nmdi

mn of the interband transi-
tion dipole matrix elements. In Fig. 3 we illustrate the JDS
and the absolute values of the product of the x and y compo-
nents of the interband transition dipole matrix elements. As is
seen from this figure, the influence of on-site disorder and a
monovacancy on GQD216 is nearly identical. While the JDS
is somewhat suppressed, both factors lift the degeneracy of
states and break the inversion symmetry, thereby opening up
new channels for interband transitions. The product dx

cvdy
cv has

several peaks near the particular interband transitions, which
means that near these peaks one can expect a strong Hall-type
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FIG. 3. The top panel represents intrinsic GQD216, the middle
panel depicts GQD216 with disorder, and the bottom panel illustrates
GQD216 with a monovacancy. The left column is the joint density
of states, and the right column is the absolute values of the product
of the x and y components of interband transition dipole matrix
elements. The color boxes indicate the energy ranges (in eV) of the
conduction bands.

anomalous response. To assess the consequences of the linear
response using σi j (ω), we will compute the linear absorption
coefficient and the Faraday-rotation angle. For both quantities
we will use formulas derived for graphene at normal incidence
of a laser beam. The linear absorption coefficient is defined
through the diagonal component of conductivity [85]:

αabs = 4π

c

Reσxx(ω)∣∣√
ε+1
2 + 2πσxx(ω)/c

∣∣2 , (18)

while the Faraday-rotation angle �F is related to the optical
Hall conductivity [86] through the formula

�F = 1

2
arg

[
1 + √

ε + 4π
c [σxx(ω) + iσxy(ω)]

1 + √
ε + 4π

c [σxx(ω) − iσxy(ω)]

]
. (19)

Here c represents the velocity of light, and ε denotes
the dielectric constant of the substrate. Strictly speaking, the
absorption coefficient and Faraday-rotation angle are mean-
ingful for a nanostructure layer with dimensions much larger
than the incident light wavelength. In other words, we should
have many copies of the GQDs uniformly distributed on
a 2D surface. We investigate these quantities to emphasize
the consequences of disorder or vacancies on the optical
response of GQDs. In Fig. 4 we present the linear optical
response of GQD216 in terms of the absorption coefficient
and Faraday-rotation angle. Notably, the absorption coeffi-
cient is minimally affected by disorder or vacancies. This
is due to the fact that the absorption coefficient primarily
depends on the energy spectra, which, with the exception of
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cient (a) and Faraday-rotation angle (b). The relaxation rate is set to
h̄γ = 0.1 eV. The dielectric constant of the substrate is taken to be
εd = 6.

the spectra near the Fermi level, are practically the same in
the cases under consideration Fig. 2(a), and any distinctive
variations in the spectra are diminished for the selected relax-
ation rate. In comparison to graphene, where αabs ≈ π/137,
we observe a significantly higher absorption (αabs ∼ 0.1). In
terms of Hall-type anomalous response, we observe a sub-
stantial Faraday-rotation angle for monovacancy and a less
pronounced effect for disorder. As expected, intrinsic GQD
displays a Faraday-rotation angle of zero. It is worth noting
that the maximal angle induced by a monovacancy, �F ∼ 3

◦
,

is comparable to the Faraday-rotation angle of graphene in
the strong magnetic field with strengths ∼3 T [87]. In this
paper when referring to Hall-type anomalous response, we
are drawing an analogy to the quantum anomalous Hall effect
[88], which manifests in the absence of external magnetic
fields due to the spontaneous breaking of time-reversal sym-
metry. Namely, in our system we have spontaneous breaking
of time-reversal symmetry.

IV. NONLINEAR OPTICAL RESPONSE

After considering the linear response, we begin by exam-
ining the nonlinear optical response of GQD216 in the strong
infrared laser field described by the electric field strength
E(t ) = f (t )E0ê cos ωt , with the frequency ω, polarization ê
unit vector, and amplitude E0. The wave envelope is described
by the Gaussian function f (t ) = exp[−2 ln 2(t − tm)2/T 2],
where T characterizes the pulse duration full width at half
maximum, and tm defines the position of the pulse maximum.
Note that for the Gaussian envelope the number of oscillations
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Ns of the field is approximated as T /T � 0.307Ns, where
T = 2π/ω is the wave period ( 4.135 fs for 1 eV).

To compute the harmonic signal, we use the Fourier trans-
form

a(�) =
∫ ∞

−∞
a(t )ei�tW (t )dt, (20)

where

a(t ) = e
∑

iσ

ri
d2

dt2
ρ

(σ )
ii (t ) (21)

is the dipole acceleration and W (t ) is a window function that
suppresses small fluctuations and reduces the overall back-
ground noise of the harmonic signal [89]. We choose the
pulse envelope f (t ) as the window function. For all further
calculations we assume a polarization unit vector ê = {1, 0},
and the pulse duration T is set to T /T � 3, correspond-
ing to approximately ten oscillations (Ns � 10). To ensure
a smooth turn-on of the interaction, we position the pulse
center at tm = 10T . For convenience, we normalize the dipole
acceleration by the factor a0 = eω2d, where ω = 1 eV/h̄ and
d = 1 Å. The power radiated at a given frequency is propor-
tional to S(�) = |a(�)|2/a2

0. We perform the time integration
of Eq. (6) using the eighth-order Runge-Kutta algorithm. For
the Coulomb interaction matrix elements we take values from
Table I and the dielectric constant of the substrate is taken to
be εd = 6.

To begin with, we examine the effect of the monovacancy
and disorder on the HHG spectra. The HHG spectra are com-
pared for three different scenarios in Fig. 5: when we have
the intrinsic GQD216, when the GQD216 has a monovacancy,
and when it is subject to on-site disorder. The inclusion of a
monovacancy or disorder leads to two noteworthy characteris-
tics in the HHG spectra: (a) the most prominent feature is the
emergence of even harmonics comparable to odd harmonics,
and (b) substantial increase in the HHG signal in the vicinity
of the cutoff regime. The first phenomenon is attributed to
the special inversion symmetry breaking in the presence of
disorder and vacancy. The second phenomenon is connected
with the fact that the disorder and vacancy lift the degeneracy
of states, opening up new channels for interband transitions.

To reveal the inherent effects of broken time-reversal
symmetry on the nonlinear response, we conducted an in-
vestigation into polarization-resolved HHG spectra. In Fig. 6
we present the polarization-resolved HHG spectra for GQD216
with disorder and for GQD216 featuring a monovacancy. This
figure highlights a significant finding, especially in the case
of a monovacancy where even-order harmonics shown in
Fig. 5 manifest as Hall-type anomalous harmonics polarized
perpendicular to the direction of applied laser electric field.
Importantly, due to the simultaneous breaking of time and
inversion symmetry in Fig. 6, there is a concurrent observation
of even harmonics aligned with the polarization direction of
the pump laser, although with suppression, and odd Hall-
type anomalous harmonics in the perpendicular direction. In
this context, to avoid confusion it is necessary to clarify
that in extended systems, anomalous harmonics specifically
refer to harmonics originating from a nonzero Berry curva-
ture of bands [70]. In cases where time-reversal symmetry is
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FIG. 5. The total HHG spectra in logarithmic scale (in arbitrary
units) for GQD216 with a disorder (a) and for GQD216 with monova-
cancy (b) along with the HHG spectra of intrinsic GQD. The dashed
vertical line demarcates the cut-off segment of harmonics from the
plateau harmonics. The wave amplitude is taken to be E0 = 0.3 V/Å.
The relaxation rate is set to h̄γ = 0.1 eV. The excitation is performed
assuming a laser with a wavelength of 2.48 µm, an excitation fre-
quency of ω = 0.5 eV/h̄.

maintained, resulting in a Chern number of zero for the entire
Brillouin zone, only even anomalous harmonics are allowed.
Conversely, when inversion symmetry is preserved but time-
reversal symmetry is broken, only odd anomalous harmonics
are permitted [90]. Given that our investigation centers on
a GQD, relying on Berry curvature physics, which is more
applicable to extended systems with clearly defined Bloch
bands, is not appropriate. Consequently, we term the observed
perpendicular harmonics as “Hall-type anomalous” to under-
score their absence in the intrinsic case and their emergence
as a consequence of the simultaneous breaking of time and
inversion symmetry.

Of specific interest is the plateau region within the har-
monics spectra. In Fig. 7 we present the plateau portion of
the anomalous HHG spectrum of GQD216 with a monova-
cancy for various wave field amplitudes. In this representation,
none of the harmonics conform to the perturbation scaling
S1/2(nω) ∼ En

0 . This observation underscores the strictly mul-
tiphoton and nonlinear nature of the HHG process.

Now, let us consider the effect of the pump wave fre-
quency on the Hall-type anomalous HHG process. This
analysis is presented in Fig. 8 where we demonstrate the
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FIG. 6. The polarization-resolved HHG spectra in logarithmic
scale for GQD216 with a disorder (a) and for GQD216 with a monova-
cancy (b). The laser parameters correspond to Fig. 5.

polarization-resolved HHG spectra for higher-frequency laser
fields. Notably, we observe that the rate of anomalous har-
monics is suppressed for higher-frequency pump waves.
This phenomenon can be attributed to the fact that with
higher-frequency pump waves, excitation and recombination
channels predominantly involve highly excited states that are
delocalized [see Fig. 2(a)] and in average retain inversion
symmetry.

To gain deeper insights into the underlying causes of the
anomalous harmonics, we employ a wavelet transform [91] of
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FIG. 7. The plateau part of the anomalous HHG spectrum of
GQD216 with a monovacancy is presented in the linear scale for
various wave field amplitudes. The excitation frequency is taken to
be ω = 0.5 eV/h̄.
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FIG. 8. The polarization-resolved HHG spectra in logarithmic
scale for GQD216 with a monovacancy for ω = 1.0 eV/h̄ (a) and
ω = 1.5 eV/h̄ (b). The wave amplitude is taken to be E0 = 0.3 V/Å.
The relaxation rate is set to h̄γ = 0.1 eV.

the dipole acceleration to perform a time-frequency analysis.
We utilize the Morlet transform (σ = 10) of the dipole accel-
eration, given by

a(t,�) =
√

�

σ

∫ τ

0
dt ′a(t )ei�(t ′−t )e− �2

2σ2 (t ′−t )2

. (22)

Figure 9 illustrates the time-frequency analysis for normal
harmonics (a) and anomalous harmonics (b). It also displays
the time evolution of the population of the highest energy
level in the valence band. Time profiles for the low harmon-
ics exhibit a sufficiently smooth variation over time and are
not plotted. Two distinct patterns are observed in this figure.
Specifically, for normal harmonics, bursts are produced with
a period of 0.5T , consistent with HHG in atomic systems and
solid-state harmonics. Meanwhile, for anomalous harmonics,
bursts are predominantly produced around integer multiples
of the optical period. This difference in the time-frequency
spectra can be explained by considering the populations of
the occupied states near the Fermi level. At the turn-on of
the interaction, mainly these states are depopulated into the
excited states, and HHG occurs when the transition from
the excited states back to the depopulated states takes place.
Hence, emission times of harmonics should coincide with the
local maximums in the population time profile of the depop-
ulated states. These local maximums coincide with the zeros
of the electric field, while local minimums coincide with the
peaks of the electric field. As seen from Fig. 9(a) for normal
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FIG. 9. The spectrogram of the HHG process via the wavelet
transform of the dipole acceleration ax (t,�) for intrinsic GQD216

(a) and ay(t,�) for GQD216 with a monovacancy (b). The time
interval where the wave’s amplitude is considerable is shown. The
laser parameters align with those in Fig. 5. The color bar is presented
in the linear scale in arbitrary units. White solid lines overlaid on the
density plot depict the time evolution of the population of the highest
energy level in the valence band, rescaled for visual clarity.

harmonics, this tendency is mainly preserved. For anomalous
harmonics, due to the inversion symmetry breaking, the states
near the Fermi level acquire a huge permanent dipole moment
dmean, giving rise to linear dynamic Stark shifts of energy
levels ∼dmeanE (t ) that maximize or minimize the transition to
excited states depending on the sign which changes after half
of the period. Hence, in Fig. 9(b) we observe that one of the
local peaks in the population time profile during the full period
dominates. Note that for intrinsic GQD216, dmean = 0 for all
states, while for the state under consideration, dmean/e � 2Å,
and the Stark shift amplitude is comparable to the pump wave
photon energy. A similar behavior in the time evolution of
population dynamics is observed for a maximally localized
state near the Fermi level in GQD216 with disorder.

V. CONCLUSION

We have studied the character and specifics of linear and
nonlinear optical response of hexagonal GQDs in the pres-
ence of on-site disorder or vacancies. Our primary focus

was on medium-sized GQDs composed of 216 carbon atoms,
which in their defectless state possess inversion symmetry. To
model a disorder, we employed the Anderson model, while for
monovacancies we utilized a simplified model by setting the
hopping parameters to the empty site to zero and assigning
a large value to the on-site energy at the empty site. In our
TB model, we considered up to the 10th-nearest-neighbor
hopping elements. Electron-electron interactions were treated
within the HF approximation, incorporating the long-range
Coulomb interactions. Through the solution of the evolu-
tionary equations for the single-particle density matrix, we
revealed anomalous optical responses in defective GQDs
across both linear and nonlinear interaction regimes. In lin-
ear response, in the absence of an external magnetic field
we observed a significant Hall conductivity, resulting in a
substantial Faraday-rotation angle. This phenomenon is at-
tributed to the intrinsic time-reversal symmetry breaking in
graphene quantum dots, coupled with the simultaneous break-
ing of spatial inversion symmetry in the presence of disorder
or monovacancies. The combined disruption of time-reversal
and inversion symmetries leads to the emergence of intense
Hall-type anomalous HHG. Notably, these anomalous high
harmonics are more pronounced in low-frequency laser fields.
In such scenarios, excitation and recombination channels pre-
dominantly involve states near the Fermi level that are more
susceptible to inversion symmetry breaking.

Our study highlights the sensitivity of Hall-type anomalous
high harmonics to even minor levels of disorder or the pres-
ence of a monovacancy, providing an appropriate means for
optical characterization of defects in 2D nanostructures. The
investigation specifically becomes significant when extending
the analysis to multiple vacancies where diverse phenom-
ena are anticipated. In the context of an infinite graphene
sheet composed of two sublattices, A and B, and in the
presence of NA + NB vacancies (NA, NB are the number of
vacancies corresponding to sublattices A and B, respectively),
the tight-binding Hamiltonian reveals |NA − NB| zero-energy
eigenvalues with vanishing wave functions on the minority
sublattice [55,92]. This effect persists regardless of the relative
position of the vacancies and has a long-term impact of a
topological nature, connecting zero modes to vacuum frac-
tional charge and a parity anomaly [93]. Parity symmetry is
restored when there is an equal number of A and B vacancies
[76]. Therefore, to magnify the observed effects, especially
the strengths of anomalous harmonics, it becomes actual to
consider multiple vacancies from the same sublattice. In our
study, we concentrated on a relatively small GQD that permits
the consideration of these phenomena via HHG spectroscopy.
The obtained results demonstrate the efficiency of HHG spec-
troscopy as a powerful tool in this topic.
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