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We investigate the mesoscopic transport through a twisted bilayer graphene (TBG) consisting of a clean
graphene nanoribbon on the bottom and a disordered graphene disk on the top. We show that, with strong
top-layer disorder, the transmission through such a device shows a sequence of resonant peaks with respect to the
rotation angle 6, where at the resonant angles 6, the disk region contains one giant hexagonal moiré supercell.
A further investigation shows that the value of 6, shows negligible dependence on the disorder strength, the
Fermi energy, and the shape distortion, indicating the resonance is a robust commensuration feature of the moiré
supercell. We explain this commensuration resonance based on the bound states formed inside TBG disk as a
result of the nonuniform interlayer coupling, with their average local density of states dominating at the AA
stacking region while minimizing at the AB/BA stacking regions. By increasing the interlayer distance, the
peak becomes less pronounced which further confirms the role of interlayer coupling. The results presented
here suggest a new mechanism to tune the quantum transport signal through the twist angle in disordered moiré

systems.

DOLI: 10.1103/PhysRevB.109.085412

I. INTRODUCTION

Twisted bilayer graphene (TBG), a graphene bilayer
stacked with a rotation angle 6, has received tremendous
research interest since the first experimental observations on
superconductor and Mott insulator phases [1,2] at the first
magic angle 6 ~ 1.1°. The interesting strong correlation phe-
nomenon existing in a simple carbon-based two-dimensional
(2D) structure, provides an exciting platform for investigat-
ing strong correlation physics [3,4], and new experimental
techniques in exploring the mechanism of high-7; supercon-
ductors [5-11]. A small twist angle generates a giant moiré
pattern with the moiré periodicity scaling inversely with 6,
and simultaneously a reduced mini-Brillouin zone. The Fermi
velocity at the Dirac point is renormalized by the twist an-
gle and approaches zero at the magic angles [12—14], which
induces flat bands [15] where strong electron-electron cor-
relation dominates and many other interesting macroscopic
quantum phases arise [3,4], such as ferromagnetism [16-19],
and quantum anomalous Hall insulator phases [20-22]. Up to
now, the twisted structure has been extended to twisted trilayer
[23-28] or twisted bilayer-bilayer graphene [29,30], and other
2D Van der Waals layered materials [31-33] where interesting
results have also been reported.

Till now, most recent investigations in TBG have been fo-
cusing on the strong correlation physics near the magic angle
where translationally invariant morié supercells are formed
in the TBG bulk. However, for applications of twisting tech-
niques to design novel nanodevices, the influence of the edge,
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the shape distortion as well as the disorder effect that in-
evitably exist during the fabrication should also be considered.
These factors not only break the translational symmetry but
also make the exact commensurate angles invalid in finite-
size samples. Existing works have investigated the quantum
transport behavior in mesoscopic TBG devices in view of its
unique electronic properties [34—42]. For example, the inter-
play between the zigzag edge and the TBG quantum dot (QD)
can strongly modify the zero-energy density of states (DOSs)
and the low-energy conductance [37-39]. Besides, it is found
that the twisting axis can significantly influence the oscillating
amplitude of conductance with respect to the twist angle, a
phenomenon that is appreciably evident only in small devices
while gradually disappears in large systems [40]. In addition
to pristine TBG, the role of disorder or dephasing in quantum
transport has also been examined, with a particular focus on
the commensurate angles in systems with moiré periodicity
[43-48].

For small twist angles, mesoscopic TBG samples host the
natural QD properties that are formed by the moiré pattern as a
result of the nonuniform interlayer coupling in which the wave
functions near the flat band are mostly localized at the AA
stacking region with their values minimizing at the AB/BA
stacking regions [14,49-55]. Besides, this nonuniform in-
terlayer coupling also generates a noncrystal system for an
arbitrary twist angle, where quantum interference induces
strong conductance fluctuation as a result of the noncrystal
structure. The conductance fluctuation also arises from the
finite-size effect when the system shrinks into a mesoscopic
scale. However, this fluctuation can be eliminated by disorder
or dephasing effect. So to investigate the quantum transport
behavior through a mesoscopic TBG system, especially in
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FIG. 1. Schematic diagram of a two-terminal TBG transport sys-
tem. Here the top-layer graphene is in a disk shape (shown within the
black circle) and is twisted with an angle 0 relative to the origin O
(set as the center of the bottom layer) anticlockwise. The transport
system can be divided into three parts: left (right) lead L (R) and the
central region (labeled by the green dashed rectangle). The width of
the bottom nanoribbon can be represented by the number of carbon
atoms N along any vertical line crossing with the atoms in the bottom
layer. In this diagram, N = 6 is shown.

searching for the universal behavior of the angle dependence
of conductance when both the atomic structure and the bound-
ary of TBG change, it is important to impose one of the two
effects.

In this paper, we consider a mesoscopic TBG system
(Fig. 1) where the bottom layer is a pristine graphene nanorib-
bon while the top one is a disordered graphene disk with
its center aligned with the bottom hexagon. The reason of
keeping the bottom layer clean is to avoid localization effect
when the applied disorder is strong, so that a high transmis-
sion through the TBG is guaranteed. We then rotate the top
layer disk by an angle 6, and investigate the transport prop-
erties through such a device. We find that, when the disorder
strength exceeds a critical value the average transmission T
through the TBG device shows a global increase with the
rotation angle 6 for 6 < 30°, and remarkably, exhibits a se-
quence of resonant peaks at several angles 6. By plotting the
moiré structure of the TBG at the resonant angles, we find
that the resonance happens when the top disk encompasses
one gaint hexagonal moiré supercell which can be further
decomposed into 3n> —3n+ 1 AA stacking spots (we will
call them the moiré unit cells below) for the nth peak. We then
consider the parameter dependence of the resonant peaks by
varying the disorder strength and range, the Fermi energy, the
armchair/zigzag edge, and the shape of the TBG region, and
find that the positions of the resonant angles are quite robust
against all these changes. We thus dub this phenomenon a
commensuration resonance. Finally, we investigate the scaling
behavior of the resonant angles 6, with respect to the radius
R of the top disk and find the relation: R o< 1/(sin6,/2), in
good agreement with the theoretically estimated size of the
giant moiré supercell. The results presented here provide a
new perspective into the role of disorder in TBG systems
and suggest the twisting angle as a tuning knob for quantum
transport in disordered moiré systems on a mesoscopic scale.

This paper is organized as follows. In Sec. II, we intro-
duce the model and Hamiltonian of our setup. In Sec. III, we
show the transport results of the TBG system with a circular
boundary with and without the top-layer disorder. We also

give interpretations on the resonant transmission based on
the moiré patterns of the TBG. In Sec. IV, we change the
shape of the central TBG region and show the robustness
of the conductance peaks accompanied by the formation of
moiré patterns. In Sec. V, we discuss the scaling relation
between the size of the TBG region and the resonant angle
0. In Sec. VI, we discuss the disappearance of the resonant
phenomenon in the presence of both-layer disorder. Finally
in Sec. VII, we give some discussions and draw conclusions.
Some details and other supplementary calculations are given
in Appendices.

II. MODEL AND METHODS

The transport system we investigate is shown in Fig. 1.
Here the origin O is set as the center of the hexagon on the
bottom layer. The primitive vectors of the bottom monolayer
graphene are ) = a(‘/Tg, :t%, 0), with a the carbon-carbon
atomic distance. The width W of the bottom nanoribbon can
be denoted by the number of atoms N along any vertical line
crossing with them, and has the relation: W = (3N/2 — 1)a.
Here we consider the top layer confined within a disk geome-
try with a radius R = W/2, which can be obtained by physical
etching or chemical synthesis [56], and is rotated anticlock-
wise with an angle 6 with respect to O. A zigzag edge of the
bottom nanoribbon has been chosen. The interlayer distance is
denoted as d. At zero rotation angle 8 = 0, the top and bottom
layer is in an AA-stacking style where the carbon atoms on
the top layer are exactly aligned with the bottom ones. The
advantage of using a disk geometry is that the overlapping
area between the two layers is kept invariant upon rotation
[40,41].

We only consider the p, orbital of each carbon atom
which consists of two types of hopping: ppr and ppo. The
tight-binding Hamiltonian describing the TBG system can be
written as [49,50]

H=>"liye:lil + Y _ lity (. ey
i (i, )

where |i) is the p, orbital localized at atom i with position 7;,
&; is the on-site energy, and (i, j) denotes the two neighbor-
ing carbon atoms with positions r;, r; (i # j). The coupling
element #;; has the following position dependent relation [57]:

tij = X Vopo (1) + (1 = X W (7))]

- O(2V3a— [} — |y - &) )

Here x is the direction cosine of r;; =r; —r; along the z
direction, which can be expressed as x = r;—]e with r;; = |ryj]
the distance between two atoms and €, the unit vector along
z direction. The ppo and ppm types of coupling strength
in Eq. (2) are determined by the Slater-Koster relation [57]:
Vplm (rij) =y e(al_r[j)qn/al’ and Vpprr (rij) — _yoe(a_’[j)q:'r/a. In
the following calculations, we set the intralayer carbon-carbon
atomic distance a = 1.418 A, and the interlayer distance d =
a; with a; = 3.349 A. The interlayer distance will be fixed
unless otherwise stated. The coupling energies are set to yy =
2.7eV and y; = 0.48¢eV. The exponential decay coefficients

regarding the distance r;; are set to be the same for V,,,, and
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Vopo: qr/a = q5/a; = 2.218 A~!. These parameters are most
commonly used in the literature [49-51,58] and fit the DFT
calculations well. Since the hopping strength decays expo-
nentially with the distance and approaches the order of 1meV

after the in-plane distance /rizl. —|rij - &]* > 23a, we set

2+/3a as the hopping boundary in Eq. (2). As a result of this
long-range hopping, the Dirac point of monolayer graphene is
lifted approximately to Ep = 0.8 eV.

In designing the quantum transport device, we divide our
system into three parts in Fig. 1: lead L (R), which are
semi-infinitely long monolayer graphene nanoribbons, and
the central bilayer region as labeled by the green dashed
rectangle. The disorder can exist only on the top layer, or
on both layers within the overlapping region, and is incorpo-
rated into the tight-binding Hamiltonian by adding a random
electrostatic potential U; to the on-site term: & = gy + Uj,
where g is the uniform on-site energy which is set to zero
throughout the paper. In the main part of our paper, we show
the calculations with only-top layer disorder, which can be
experimentally realized by doping or adhering adatoms on
the top layer graphene taking advantage of the bilayer struc-
ture. The disorder potential has a uniform distribution within
[—V4/2,V,/2] with V; characterizing the top-layer disorder
strength. The calculations with both-layer disorder will be
only shown in Sec. VI.

In calculating the conductance through the TBG region
we resort to the nonequilibrium Green’s function method.
The surface Green’s functions g{; x (E) for the lead L(R)
with E the incident energy (defined relative to the Dirac
point Ep = 0.8eV) is firstly calculated using the recursive
method [59,60]. The self-energy of the lead L(R) is calculated
as X7 o (E) = He L8 1 gy (EYHL ) With He 1 gy the cou-
pling matrix between the central region and lead L(R). The
retarded Green’s function of the central region is then calcu-
lated to be GZ(E) = [(E + in)l —H¢e — X — Z}}]’l, where
n is an infinitesmall positive number [61]. The Green’s func-
tion G (E) can be numerically calculated iteratively (more
details can be found in Appendix A), and the final transmis-
sion coefficient 7'(E) through the TBG region is calculated to
be [62,63]

T(E) = Tr[T.G{TrGY], (3)

where T g)(E) = i[Z] ) — (Z]))"] is the linewidth func-
tion for lead L(R), and G¢(E) = [G{(E )T is the advanced
Green’s function of the central region. We consider the
transport happens at zero temperature, so the differential con-
ductance at Fermi energy Er is calculated to be: G(Er) =
%T(EF) (here the factor 2 accounts for spin).

III. TRANSPORT RESULTS FOR A TBG WITH
CIRCULAR BOUNDARY

The TBG system has a periodicity of 60° with respect to
the rotation angle 0 (see Appendix B), and as a result of the
mirror symmetry along the x axis, it suffices to only consider
the rotation range within [0, 30°]. In Fig. 2(a), we first plot
the band structure of the bottom graphene nanoribbon with
N = 50. Due to the finite width along the y direction, a few
subbands are formed. Two Dirac points can be seen at £ = 0
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FIG. 2. (a) Band structure of the bottom graphene nanoribbon
with N =50 with long-range hopping. The Fermi energy Er of
the transport system is shown with the dashed lines with values
(counted from bottom to top): Er = 0.05, 0.28, 0.42, and 0.56 eV
(defined relative to the Dirac point of graphene Ep = 0.8 eV), which
correspond to channel numbers 1, 3, 5, and 7, respectively. (b) The
angle dependence of the transmission coefficient 7 without disorder
at different Er. Here the interlayer distance d = ;. The black dashed
lines label the number of incident channels from the leads.

and there are two branches of topologically nontrivial bands
connecting the two Dirac points as a result of the zigzag
edge of the nanoribbon [64]. As a result of the long-range
hopping the particle-hole symmetry has been broken [12,53].
In Fig. 2(b), we show the transmission coefficient T through
the TBG region as a function of 6. At zero disorder, the
TBG in the central region of the transport device works as a
chaotic system where the phase interference occurs randomly
by slightly varying the rotation angle. As a result, for6 < 11°
a strong fluctuation in the transmission curve can be seen
in Fig. 2(b), consistent with Ref. [65] where incommensu-
rate twist angle plays the role of an effective disorder. The
strong fluctuation for 6 close to zero at Er = 0.05eV where
the mode can only be scattered from one valley to another,
indicates a strong intervalley scattering due to the sharp cir-
cular boundary. At 6 > 11°, the TBG system goes into the
decoupling regime [45], where the top layer has almost zero
influence on the electron transport through the bottom layer,
so the transmission plateau with its value equal to the number
of incident modes can be seen. The appearance of dips on the
plateau for higher Fermi level Ef = 0.56eV is reminiscent
of the antiresonance in a ballistic conductor by coupling with
a quantum dot [66]. For 6 = 30°, a quasicrystal structure is
formed in the TBG [67-69], where the interlayer coupling
is weak, and the double monolayer graphene are effectively
decoupled. This explains the perfect transmission for 6 around
30°.

In Fig. 3(a), we show the average transmission coefficients
T, in the presence of top-layer disorder. For weak disorder
case (V; < 2eV), the fluctuation in the transmission curve still
exists but becomes smaller as a result of the ensemble average.
However, for stronger disorder (V; > 3eV), the fluctuation
has been smeared out and all the transmission curves become
smooth. Besides, an overall increase of 7, can be seen as
increasing 6, indicating that the effective interlayer coupling
becomes weaker with increasing the rotating angle, consis-
tent with Refs. [70,71]. The transmission curves saturate in
the decoupling limit of 6 = 30° with the saturating values
decreasing with increasing the disorder strength, indicating
that the top-layer disordered graphene can still influence the
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FIG. 3. (a) Average transmission coefficient 7, as a function of
the rotation angle 6 for different top-layer disorder strength V. Here
the Fermi energy is Er = 0.42eV which crosses five conducting
channels in the leads. The red dashed line denotes the angle at
0 = 2°. The horizontal dashed lines denote the same scale range
of [1, 5]. (b) Normalized transmission coefficients 7, /T4 (1°) within
the range [1°, 6°] with denser plots. Here each line with increased
disorder strength has been lifted with a value of 0.2. The number on
each curve is the disorder strength (shown with the same color). Here
we choose the width of the bottom layer N = 50, the radius of the top
disk R = W/2, and the interlayer distance d = a,. The energy-unit is
in eV and has been omitted here. The disorder exists only on the top
layer and each disordered curve was averaged for 1000 times (a good
convergence can be seen in Appendix C).

quantum transport through the bottom one in the decoupling
regime.

At 6 = 2° [see the red dashed line in Fig. 3(a)], we notice a
remarkable transmission peak for all transmission curves with
Vi > 3eV, implying the existence of a resonant state in the
central TBG region. To make a detailed investigation on the
resonant peak, we zoom in the curves for 6 within [1°, 6°]
and consider a denser plotting in Fig. 3(b). A renormalization
has been made for each disordered curve by dividing its value
at & = 1°. We note that the resonant peaks become clearer
after V; > 5eV in Fig. 3(b). In this case, a calculation on
the localization length [72] at V; = 5eV, giving the value
Ar & 35.5 nm, means that the transport through the top layer
is close to the localization regime (the diameter of the top disk
is 10.5 nm).

In Fig. 4, we change the Fermi energy Er and show the
energy dependence of the resonant peaks. In Fig. 4(a), we con-
sider the width of the bottom nanoribbon N = 50 and choose
the Fermi energy ranging from 0.42 to 1.3 eV. The disorder
strength is fixed to V; = 5eV. We note that for each disor-
dered curve, a pronounced peak can be seen at 8 ~ 2°. The
position of the first resonant angle 6, has a slight rightward
shift when the energy increases due to the overall increase of
T4. The origin of the shift can be attributed to the background
Er dependence of the transmission that is related to system
details. For certain Er, we may expand the 6 dependence
of the disorder-averaged transmission around the resonance
angle 6. to the second order: T(0) = po(Er) + p1(Er)(6 —
0.) — p2(EF)(0 — 6,)?, where Po.1,2 > 0 are parameters that
depend on Er. The position of the peaks can be found by find-

ing the extreme points of 7(6): Opeax = 6. + prlz((EI:‘FF))’ which is
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FIG. 4. [(a) and (c)] The average transmission 7, [normalized by
T4(1°)] as a function of rotation angle 6 for N = 50 and N = 70, re-
spectively. Here the top-layer disorder strength is fixed to V; = 5eV.
The Fermi energy Er in each subfigure is tuned. [(b) and (d)] The
second derivative of the average conductance —d>7;/36” obtained
from the smooth polynomial fitting T for (a) and (c), respectively.
Other parameters are the same as Fig. 3.

expected to move rightward if p,(Er)/p2(EF) increases with
the increasing of Er and vice versa. We ascribe the observed
deviation of the resonant peaks to the Er dependence of the p
parameters. Besides, a second resonant peak can be observed.
The position of the second resonant peak also moves as vary-
ing Er and shows a leftward moving. To show the resonant
peaks more clearly, we use the polynomial curving fitting for
the average transmission T to get Ty, and plot the second

derivative — fTT{ in Fig. 4(b). We note that the resonant peaks
become more prominent in this case, and the first resonant
angle 6,; comes into an almost fixed value when Er reaches
1.3eV.

In Figs. 4(c) and 4(d), we also plot the similar transmission
curves for N = 70. Here the Fermi energy is tuned from 1.2
to 1.6 eV so that more incident modes from the leads are
included. Except for the first two resonant peaks, a third one
which is in the middle of the first two can be observed. After
performing the second derivative, we obtain three prominent
resonant peaks in each curve in Fig. 4(d). The positions of
these peaks are almost fixed as varying the Fermi energy Er
since the overall increase of T, with respect to 6 has been
eliminated by the second derivative.

The resonant tunneling through the disordered TBG sys-
tem, which is very robust against the disorder strength V; and
Fermi energy Er, implies a pure commensuration resonance
phenomenon that has deep connections with the geometry of
the moiré pattern in TBG. To see this, we read out the resonant
angles 6,1 = 1.71°,60,, = 4.4° from the curve of Er = 1.2¢V,
Va=5eV, and N = 50 [73] in Fig. 4(b), and plot the moiré
pattern of the TBG in Figs. 5(a) and 5(b). We note that for the
first resonant angle 6.1, a whole moiré supercell is perfectly
encoded inside the central circle, with the boundary of the disk
crossing the AB/BA stacking regions. For the second resonant
angle 6.5, a denser moiré pattern can be seen in Fig. 5(b).
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FIG. 5. The moiré pattern of the TBG system at the first resonant angle 6., = 1.71° in (a) and the second resonant angle 6., = 4.4° in
(b). Here the width of the bottom nanoribbon is N = 50. The resonant angles 6, were read out from the second derivative of the conductance
curves at Er = 1.2eV in Fig. 4(b). The black circles denote the boundary of the top disk. The white dashed lines are guidelines for the moiré
unit cells. [(c) and (d)] The averaged local DOSs pg(r) of the bottom nanoribbon in the central region with the same rotation angles as (a) and
(b), respectively. Here we set d = a; and V; = 5eV. The averaged DOSs are summed within the energy window [0.9, 1.5] eV. The disorder is

averaged for 50 times.

In this case, the central disk also contains a giant hexagonal
moiré supercell which can be decomposed into seven moiré
unit cells (as can be seen by the white dashed lines) centered at
the AA stacking region. The boundary of the disk also crosses
exactly the AB/BA stacking regions which are just the outer
boundary of the giant hexagonal moiré supercell.

To explain the resonant tunneling, we plot the ensemble-
averaged local DOSs pp(r) = ( f EEI > pg(E, r)dE) in the bottom
layer, where pg(E, r) is the local DOSs at position r on the
bottom layer at energy E, [E, E,] is the energy integral win-
dow, and () is the ensemble average. In Figs. 5(c) and 5(d),
we plot the distribution of pg(r) at rotation angles 6, . As
expected, the local DOSs are mainly located at AA-stacking
regions, and minimizes at AB/BA-stacking regions, indicat-
ing the existence of the resonant states as a result of the
nonuniform interlayer coupling. As expected, the bright spots
in the local DOSs have a perfect agreement with the moiré
patterns in Figs. 5(a) and 5(b), working as a fingerprint of
the moiré structure for the TBG. The presence of high local
DOSs on the edges contributes to a global enhancement to
the transport in the background of the resonant tunneling. The
resonant states are consistent with previous analysis based on
the QD property of TBG [14,49-55], which mainly considers
this localization property in bulk TBG. Here in our work the
TBG region is geometrically more like an isolated QD, but the
distribution of the averaged local DOSs still agrees well with
the localization property in bulk TBG. The isolated QD struc-
ture is similar to Ref. [58] where a circular TBG QD defined
by an infinite-mass potential is investigated, and the distri-
bution of the local DOSs shows good consistency with each
other. The occurrence of the resonant peaks can be understood
by making an analogy with the cotunneling of a mesoscopic
QD: in normal QD systems, once the energy of the incident
electrons matches the bound level inside the quantum dot,
electrons can transmit through the QD with the probability
one. Here in our work, once the TBG disk encompasses a
whole giant hexagonal moiré supercell, the resonant tunneling
happens by exhibiting a peak in the averaged transmission
curves. The averaged local DOSs which are localized at AA
regions and show minimum values at AB/BA regions, play

the role of a channel mediating the resonant tunneling, in the
similar way as the bound states in a normal QD.

The effect of the interlayer coupling on the quantum
transport through the TBG region can be further validated
by varying the interlayer distance d. Equation (2) enables
us to increase(decrease) the strength of interlayer coupling
by slightly decreasing(increasing) the interlayer distance d
around its equilibrium point a;. Experimentally this can be
realized by using the hydrostatic pressure [74,75]. From
Fig. 6(a), we see that when the interlayer distance is far
(d = 1.2ay), the top layer graphene has little effect on the
bottom layer, and the resonant peaks can hardly be distin-
guished. As the interlayer distance is reduced, the resonant
peaks become more prominent as a result of the enhanced
interlayer coupling. Notably, the positions of the transmission
peaks are insensitive to the finite change in d. In Fig. 6(b), we
also plot the distribution of local DOSs pg(r) for the bottom
layer graphene with d = 0.9q; at the second resonant angle
0, = 4.4°. Compared with Fig. 5(d) with d = a;, we see

f‘;"..“m.‘"‘“-..m"’“w -
e )
~ o, o
T | e d =080y
= o-d=09a
\.{: —d=ay
I et et
—-d=1.l1ay

1”‘W

1 2 3 4 5 6 50 0 50
6 (deg) x(A)

FIG. 6. (a) The average transmission 7, [normalized by 7;(1°)]
through the TBG disk with different interlayer distance d. Each
curve with increasing d is shifted upward for clarity. The width of
the nanoribbon is N = 50, the Fermi energy is Er = 1.2eV, the
top-layer disorder strength V;, = 5eV and each curve is averaged for
1000 times. (b) The averaged local DOSs pg(r) on the bottom layer
with interlayer distance d = 0.9q;. The twist angle is chosen at the
second resonant angle 6., = 4.4°. Other parameters are the same as
Fig. 5(d).
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FIG. 7. (a) The average transmission 7 with different interlayer
distance d. Here the top-layer disorder strength V;, = 5eV. (b) The
average transmission 7y for d = 0.7a; as increasing the top-layer
disorder strength V,. Other parameters are the same as those of
Fig. 6(a).

that the contrast of DOSs between the AA-stacking region
and AB/BA-stacking regions becomes sharper, indicating the
resonant states formed inside the moiré pattern become more
localized, enhancing the resonant tunneling. However, when
further decreasing the interlayer distance to d = 0.8a; and
0.7a; [see Fig. 7(a)], we have found that the transmission
peaks disappear due to the over-strong interlayer coupling. For
d = 0.7a;, the nearest interlayer hopping Vs (d) is around
4.46 eV, much larger than the nearest intralayer hopping.
This strong interlayer coupling bends the band of the central
TBG and pushes the p.-orbital band away from the Fermi
energy, and suppresses the transmission, as can be seen from
the decreased transmission coefficient 7 in Fig. 7(a) in de-
creasing d. In Fig. 7(b), we try to weaken the dominance
of the overstrong interlayer coupling on the transmission
peaks by increasing the top-layer disorder strength. However,
the results show that it only smears out the 6 dependence
and simultaneously reduces the transmission. No such res-
onant peaks as d = 0.9q; arise. So to observe the resonant
phenomenon reported here one should keep the interlayer
distance 0.8a; < d < 1.2a;.

The moiré pattern at the commensuration resonant angles
0. seems to exhibit the arithmetic sequence for the outer
shell of the moiré supercell which has 6(n — 1) moiré unit
cells for the n-th resonant peak, which in total contains §,, =
3n2 — 3n 4+ 1 moiré unit cells inside the disk. To see this,

—N =34 42
58 70

2 4
0 (deg)

FIG. 9. The transport results of changing the shape of the central
TBG region. (a) The average transmission 7, as a function of 6 for
different width of the bottom nanoribbon N by fixing the radius of
the top disk R = W and cutting off the unoverlapped area. (b) 7, as
a function of 6 by fixing the radius R of the top disk and changing
the width N (see the numbers with the same colors as the curves) of
the nanoribbon (also cutting off the unoverlapped area). Here we set
R = 62.5a (corresponding to N = 84 in the circular boundary case).
In (a) and (b) we use the Fermi energy Er = 1.2¢eV and the top-
layer disorder strength V; = 5eV. Other parameters are the same as
Fig. 3.

we also plot the moiré patterns of N = 70 at the resonant
angles 6,1 = 1.14°, 6., = 3.06°, and 6.3 = 4.93° in Fig. 8. As
expected, the first, second, and third resonant peaks yield 1, 7,
and 19 moiré unit cells inside the circle in total.

IV. COMMENSURATION RESONANCE
WITH SHAPE DISTORTION

To show that the resonant tunneling above is not a unique
phenomenon as a result of the circular boundary in the TBG
region, we here change the shape of the central overlapping
region. This can be realized by increasing the radius R of the
top disk or reducing the width N of the bottom nanoribbon,
and then cutting off the remaining part outside the nanorib-
bon region. For example, an approximate rectangular TBG
region can be obtained by setting a large R while fixing the
nanoribbon width. In Fig. 9(a), we first fix R = W and change
N to study the average transmission as a function of 8. Here
the Fermi energy is Ep = 1.2eV, and the top-layer disorder
strength V; = 5eV. We see that, even though the shape of
the central TBG is distorted, the sequence of resonant peaks

FIG. 8. The moiré pattern for the first resonant angle 6,; = 1.14° in (a), the second resonant angle 6., = 3.06° in (b), and the third resonant
angle 6.3 = 4.93° in (c). Here the width of the bottom nanoribbon is N = 70. The critical angles 8. were read out from the second derivative
of the conductance curves at Er = 1.2 eV in Fig. 4(d). The black circles denote the boundaries of the top disk.
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FIG. 10. [(a)-(d)] Moiré pattern for the TBG disk with R =
62.5a at the resonant angles: 6., = 1°, 6, = 2.55°, .3 = 4.2°, and
0.4 = 5.6°, respectively, corresponding to N = 42 in Fig. 9(b). Here
the transport device only exists in the central region between the
two black dashed lines. Other blurred areas are cut-off regions not
included in the transport device, and are plotted only to show the
whole moiré supercell for clarity. The white dashed hexagons are
guidelines for the moiré unit cells for the outer shell of the giant
hexagonal supercell.

can still be observed. Besides, the resonant angles at the
nth peak become smaller as increasing N. These behaviors
are similar to those in Fig. 4, indicating the same resonant
phenomenon arising from the formation of the moiré pattern.
In addition, higher resonant peaks like the fourth and fifth
can also be seen albeit less obvious than the first three ones.
To see other shapes of the TBG region, we fix the radius of
the top disk by setting R = 62.5a (corresponding to N = 84
in the circular boundary case) and decrease the width N
of the nanoribbon from 42 to 18, where for the last case
the TBG region becomes a quasi-one-dimensional nanochain.
The Fermi energy is also chosen to be Er = 1.2¢eV and the
average transmission coefficient 74 can be seen in Fig. 9(b).
We see that for small width of the nanoribbon (N = 18 and
22), the resonant peaks can hardly be distinguished as a result
of the incomplete moiré supercell within the TBG region.
However, for N > 26, four almost equally distributed reso-
nant peaks can be seen with their positions almost fixed as
varying N (especially for the first peak which is pinned at 6 =
1.1°). Besides, the resonant peaks become more pronounced
as N increases.

In Fig. 10, we show the moiré patterns at the resonant
angles: 6,; = 1°, 6, = 2.55°, 6,3 = 4.2°, and 6.4 = 5.6° for
the resonant peaks of N = 42 in Fig. 9(b). Here we emphasize
that the top layer graphene only exists in the overlapping
region between the disk and the bottom nanoribbon (shown
in the central region between the two black dashed lines in
Fig. 10). The extended blurred regions are only shown for

100f e 0
\\ :\\ ° 602
80 i \\\ \:\\ ° 603
I
%t \éo \.\i\ \\;\‘\
40 [ ‘.\ .\' e o
\.\\.. u~\‘.;“
20| e e,
1 2 3 4 5 6
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FIG. 11. Scaling relation of the radius of the top layer disk R
with respect to the resonant angles 6, for the first, second and third
resonant peaks. Here the Fermi energy is Er = 1.2¢eV, and the
disorder strength is V; = 5eV. Each dot was obtained by reading
from the second derivative of the polynomial fitted curves from the
average conductance curves. The dashed lines are the theoretically
estimated scaling relation between R, and 6.,. Here a modification
factor ¢ = 1.1 has been used to account for the overfilling of the
moiré pattern inside the top disk.

clarity. We find that these results are the same as those in
Figs. 5 and 8. We label the moiré unit cells at the outer shell
of the giant hexagonal moiré supercell with white dashed
lines. The total number of moiré unit cells also follows the
3n? — 3n + 1 rule for the n-th peak. We note that the resonant
angles 6, are almost fixed when changing the width of the
bottom nanoribbon as long as the radius of the top circle
is kept invariant. Thus we draw a conclusion here that as
long as the central TBG region contains one hexagonal moiré
supercell (not even a compact one compared to Fig. 5), the
resonant tunneling always happens regardless of the shape of
the TBG region.

V. SCALING RELATION BETWEEN THE RADIUS R
AND THE RESONANT ANGLE 6,

The period of the moiré pattern of the TBG is defined as the
distance between any two adjacent AA stacking regions, or the
moiré unit cells, and is calculated to be L = v/3a/(2sin6/2).
The radius of the circle emcompassing exactly one hexagonal
moiré supercell is calculated to be R, = +/S,a/(2sin6,,/2)
for the n-th resonant angle 6,.,. To guarantee the full encir-
clement of the whole hexagonal moiré supercell by the top
disk, the radius of the circle in real transport process should
be slightly larger than R, and thus we here consider a modi-
fication factor ¢: R, — ¢R,. In Fig. 11, we show the scaling
relation of the radius R, with the n-th resonant angle 6., in
dots read from the numerics. To make a comparison, we also
show the theoretically estimated scaling relation R, (6.,) with
dashed lines. The modification factor ¢ has been chosen to be
1.1. A good agreement can be seen between the two methods
in Fig. 11, further validating our explanation on the resonant
peaks based on the commensuration moiré pattern in TBG.
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FIG. 12. The calculations with both-layer disorder. [(a) and (b)]
The average transmission coefficient 74, and the conductance fluc-
tuation o¢ (in units of e?/h) as a function of the rotation angle
0 under different disorder strength V,.m. Here the Fermi energy
Er = 1.2¢V. (a) and (b) share the same legend. [(c) and (d)] The
average transmission coefficient 7, as a function of rotation angle 6
for Er = 0.56 and 1.2 eV, respectively. For (a)—(d), a disk shape is
used, and N = 50, d = a;, and R = W/2. The disorder is averaged
for 1000 times.

VI. DISAPPEARANCE OF COMMENSURATION
RESONANCE WITH BOTH-LAYER DISORDER

In this section, we discuss the influence of the bottom-layer
disorder on the commensuration resonance. Figure 12 shows
the transport calculations through the TBG device with both-
layer disorder. Here the central TBG region is still in a disk
shape. In Figs. 12(a) and 12(b), the Fermi energy is fixed to
Er = 1.2eV, and the average transmission coefficient 7, and
the conductance fluctuation o¢ as a function of the rotation
angle 0 under different disorder strength Vj pon are shown
(here the two layers have the same on-site disorder strength).
We see that, for weak disorder V; pom < 1€V, the transmission
gets an enhancement after & > 17° as a result of the decou-
pling regime of the TBG and shows dependence (fluctuation)
with the rotation angle. However, after the disorder strength
is increased, the angle dependence is smeared out and the
average transmission coefficient 7, almost reaches a constant
regardless of the rotation angle, consistent with the calculation
in Ref. [43]. The conductance fluctuation o¢ also shows no
dependence on the rotation angle. Besides, the transmission
gets decreased and approaches zero as Vj pon increases, which
indicates that strong both-layer disorder tends to localize the
electrons inside the TBG region, which is quite different
from the top-layer disorder case. For the intermediate disorder
strength 2 < Vj pom < 5V, the conductance fluctuation o¢ is
very close to the universal value 0.43¢?/h of the 2D meso-
scopic conductance fluctuation [76], while for strong disorder
oc gets decreased as the transport goes into the localization
regime. These behaviors all indicate that the transport through
a TBG system is quite similar to the normal 2D conductor
when both-layer disorder is considered.

1 2 3 4 5 6
0 (deg)
FIG. 13. Average transmission 7 as a function of the rotation
angle 6 by fixing the top-layer disorder strength V; = 5eV while
varying the bottom-layer disorder strength V.? (in units of eV). Here

the Fermi energy is Er = 1.2eV. Other parameters are the same as
Fig. 12.

To further validate that there is no such commensuration
resonance in the both-layer disorder case, in Figs. 12(c) and
12(d) we show the transport results within a small range of
rotation angle (6 € [0, 6°]) by scanning the disorder strength
Vi voth- We show that, disorder has only two effects on the
average transmission coefficient Ty: (1) smears out the fluc-
tuation with respect to the rotation angle and (2) suppresses
the transmission. No such resonant peaks are observed in
Figs. 12(c) and 12(d) around the two moiré resonant angles
6.1 and 6,,.

To indicate how the bottom-layer disorder destroys the
resonant phenomenon in detail, in Fig. 13, we adopt a
layer-dependent disorder configuration by fixing the top-
layer disorder V; = 5eV, and change merely the strength of
bottom-layer disorder VdB . As can be seen, for weak bottom-
layer disorder (Vf < 2eV), the resonant peaks can be well
kept but with values decreasing as increasing VdB . Further
increasing V5, the mobility of electrons in the bottom layer
is greatly suppressed and electrons tend to be localized (seen
from the decreased transmission 7T} ). The arise of localization
in the bottom layer thus totally destroys the resonant phe-
nomenon. The results presented here tell us that one should
keep the bottom layer graphene clean or with a high mobility
for observing the commensuration resonance reported here.

VII. DISCUSSION AND CONCLUSIONS

The top-layer disorder configuration used in our cal-
culations is crucial for generating the resonant tunneling
through the TBG, because the system we are confronting
is mesoscopic, where quantum fluctuation as a result of the
interference effect would mask the QD effect which exists nat-
urally in 2D moiré systems. Even when the transport system
is clean, the TBG region which inherently contains nonuni-
form interlayer coupling and irregular boundary works as a
chaotic system that transmits electrons with random proba-
bilities. Disorder, however, after enough ensemble averages,
smears out the fluctuation and finally, unravels the hidden
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commensuration effect by exhibiting a resonant tunneling.
Here we also want to emphasize that the resonant tunneling
due to disorder is newly reported and provides a new perspec-
tive into disordered systems.

The robustness of the resonant peak against the disorder
strength, the Fermi energy, and the shape distortion of the
TBG makes the experimental observation feasible with no re-
quirement for subtle control on those parameters. In addition,
in Appendix D, we change the zigzag edge of the graphene
nanoribbon into armchair. In Appendix E, we change the
on-site Anderson disorder into the long-range disorder. The
recurrent resonant peaks at the critical angles in both cases
indicate that our commensuration resonant phenomenon does
not depend on the graphene nanoribbon edge and the disorder
type, either. Our work can find its experimental realization
by imitating a similar device in Ref. [77], where a bilayer
structure of a rotated hexagonal boron nitride disk on top
of a graphene ribbon is demonstrated experimentally. There
are two points to be emphasized for experimental detection:
(1) one should keep the area of the TBG region invariant
upon rotation to avoid other disturbances on the transport and
(2) the disorder effect should asymmetrically exists mainly
on the top layer. If disorder exists on both layers, the sys-
tem becomes a trivial 2D disordered conductor which has no
such resonant phenomenon (actually a weak disorder is still
allowed for the bottom layer, as can be seen in Sec. VI). To
make ensemble average, one can change the disorder config-
uration, or merely fix one configuration by chemical doping
or adhering impurities, and then scan the Fermi energy or an
external magnetic field (the magnetic field should be small
enough to avoid localization or antilocalization effect).

In conclusion, we investigate the quantum transport
through a TBG system in a mesoscopic scale, where the TBG
system consists of a disordered top layer graphene disk and a
clean bottom graphene nanoribboon. We find that with strong
disorder, the average transmission through the TBG system
shows a sequence of resonant peaks with respect to the rota-
tion angle, with the resonant angles 6. being robust against
the disorder strength, the Fermi energy, and the shape distor-
tion of the central TBG region. We plot the moiré patterns
inside the TBG region at the resonant angles and find that
the resonance happens when the TBG boundary encompasses
one giant hexagonal moiré supercell, and thus has a purely
geometric origin. We dub this phenomenon a commensuration
resonance and explain it in terms of the QD property of TBG
by resembling the resonant tunneling in a conventional meso-
scopic QD. Finally the scaling relation of the size of the TBG
with respect to the resonant angles 6, is also given, which
shows agreement with the theoretical analysis. The results
reported here provide a new way to control the conductance
in twisted moiré systems by the rotation angle and should be
experimentally observable in a two-terminal mesoscopic sys-
tem where a nonsymmetric distribution of defects is possible
due to adatoms, admolecules, substrate effect or vacancies,
etc. [43,78].
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APPENDIX A: ALGORITHM IN CALCULATING THE
TRANSMISSION COEFFICIENTS THROUGH
THE TBG SYSTEM

To get the retarded Green’s function Gy of the central
region numerically as can be seen in Sec. II, we have used
an iterative Green’s function method. The detailed algorithm
can be seen here. (1) Get all the coordinates of all bottom layer
within the circle (overlapping region). (2) Rotate the coordi-
nates of all bottom sites within the circle to get the coordinates
of all top sites. (3) Sort all the top coordinates of the top layer
by ascending x coordinate. (4) Divide the central region into
several blocks with length 2+/3a (see Fig. 14), so that only the
nearest blocks have overlapped hopping integrals. (5) Write
down the Hamiltonian H; of the ith block by calculating the
on-site terms and the hopping terms between any two carbon
atoms. (6) Write down the hopping matrix T; between two
adjacent blocks i and i + 1, and the hopping matrices T, ¢
and Tcr between the central region and two leads. (7) Use
the iterative Green’s function method for the one-dimensional
prototype [60] to get the Green’s function G(..

APPENDIX B: PERIODICITY OF THE TRANSMISSION
COEFFICIENT T (E) THROUGH THE TBG REGION

The periodicity of the transmission 7" or T, through the
TBG region without (with) disorder is shown in Fig. 15.
The transmission shows a periodicity of 60° as a result of
the circular shape of the central TBG region. The transmis-
sion also shows a mirror symmetry about 6 = +30° [see
the black dashed lines in Figs. 15(a) and 15(b)] due to the

Lead L Lead R

FIG. 14. Schematic diagram of the two-terminal TBG transport
system, showing the algorithm of calculating the Green’s function
G¢. of the central region (see the green dashed regions). Here the
central region is divided uniformly into several blocks with length
24/3a. Since we have already set the hopping boundary to be 2+/3a
in the tight-binding model, only the adjacent blocks contribute to
nonzero hopping matrices T;. The matrix for the ith block can be
obtained by numerating the coordinates of each carbon atoms within
it. The matrices T;¢ and Tcg denote the hopping between the central
region and the leads L(R).
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FIG. 15. (a) Transmission coefficient 7' through the two-terminal
TBG system as a function of the rotation angle 6 without disorder.
The two dashed lines denote the positions of 6§ = £30°. (b) Aver-
age transmission coefficient 7, and conductance fluctuation o¢ as a
function of the rotation angle 6. Here the top-layer disorder strength
V; = 8eV. For (a) and (b), the width of the nanoribbon is N = 50,
the interlayer distance is d = a;, the Fermi energy is Er = 0.05¢eV,
and the radius of the top disk is R = W/2.

mirror symmetry. In addition to the oscillation of the average
transmission coefficient 74 in Fig. 15(b), the conductance fluc-
tuation o¢ also has a dependence on 6 which has a minimum
value at & &~ 30° and shows a peak at 6 ~ 9°.

APPENDIX C: CONVERGENCE OF THE TRANSMISSION
COEFFICIENTS AND CONDUCTANCE FLUCTUATION

To test the convergence of the average transmission 7 and
the conductance fluctuation o, calculated from a fixed number
of ensemble averages, we first plot the T, curves with respect
to the rotation angle 6 for the disorder average times S; = 1,
10, 50, 100, 500, 1000 as can be seen in Fig. 16(a). Here we
have chosen the TBG region in a disk shape with R = W/2.
We find that, for one disorder figuration, the resonant peaks
can hardly be distinguished due to the strong fluctuation of
the transmission as varying 6. After making 10 ensemble
averages, the first resonant peak can be distinguished. With
increasing the average times, the transmission curves become
smoother, and higher resonant peaks can be clearly distin-
guished. In Fig. 16(b), we choose the rotation angle 6 = 6°,

500 1000
0 (deg) S,

-
N
w
N
o
[
o

FIG. 16. (a) The average transmission coefficient 7 as a function
of the rotation angle 6 for different ensemble average times S,.
(b) Convergence of the average transmission coefficient 7, and the
conductance fluctuation o, at angle § = 6° as varying the ensemble
average times S,;. Here to show them in the same scale, we have
divided T by 20. For (a) and (b), we choose N = 70, Er = 1.2 eV,
Vs =5¢eV,d = a;, and R = W/2. The disorder exists only on the top
layer.
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FIG. 17. The calculations with armchair graphene edge.
(a) Schematic diagram of TBG device consisting of a bottom
graphene nanoribbon with armchair edge and a top graphene disk.
Here the rotation center is still chosen at the origin O. The green
dashed rectangle labels the unit-block we divided the central region
with to calculate the conductance with iterative Green’s function
method. The width of the bottom nanoribbon is characterized by M
which is the number of hexagons along the vertical line crossing
O. Here M =5 is shown. (b) Normalized average transmission
Ty/T4(1°) as a function of twist angle 6 with different top-layer
disorder strength V; (shown with colored numbers), and with
different Fermi energy Er in (c). (d) The second derivative of the
average transmission 7 obtained from the smooth polynomial fitting
T; for (c). For (b)—~(d), we used M = 49, the radius of the top disk
R = W/2, and the interlayer distance d = a;. The energy is in units
of eV and has been omitted here. The disorder exists only on the top
layer and each curve is averaged for 1000 times.

and give the S; dependence of the average transmission 74 and
conductance fluctuation o,. Here to show both of them in the
same window, we have divided T, by a factor 20. We see that,
the average transmission 7 converges quickly after making
100 ensemble averages. However, the conductance fluctua-
tion converges well only after making around 1000 times of
averages. To guarantee the ergodicity of the ensemble, we
choose S; = 1000 in all disorder calculations concerning the
quantum transport. However, to get the (or to measure) the
resonant peaks in the transmission curves, tens of ensemble
averages should be enough, which makes the experimental
verification of our results quite feasible.

APPENDIX D: COMMENSURATION RESONANCE IN
DISORDERED TBG WITH ARMCHAIR EDGE

In the main text, we showed the transport results for the
TBG device with zigzag edge along x direction. The zigzag
edge features low-energy boundary states as shown in the
band structure in Fig. 2(a). However, this kind of boundary
states can be eliminated by choosing an armchair edge. In
this Appendix, we show the results with an armchair edge.
To do this we first consider the transport device shown in
Fig. 17(a), which has similar structure as Fig. 1. The rotational
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FIG. 18. The moiré pattern plotted for the first resonant angle
6., = 1.42° in (a), and the second resonant angle 6., = 3.84° in
(b) for the TBG device with armchair edge. Here the width of the
bottom nanoribbon is M = 49. The critical angles 6, were read out
from the second derivative of the conductance curve at E = 1.2eV
in Fig. 17(d).

center is still chosen at the origin O which is the center of the
bottom hexagon. The radius of the top disk is R = W/2 with
the width of the bottom nanoribbon W = M+/3a, where M is
the number of hexagons along the vertical line crossing O. In
Fig. 17(a), an M =5 is shown. In the following descriptions,
we will use M to characterize the width of the bottom nanorib-
bon. In calculating the two-terminal conductance using the
iterative Green’s function method, we have divided the central
region uniformly into several blocks [shown within the green
dashed rectangle in Fig. 17(a)] with length 3a. So we have set
the hopping range to be 3a in the tight-binding calculations
for numerical feasibility. In Fig. 17(b), we show the average
transmission coefficient 74 [normalized by T4(1°)] varying
with the rotation angle 6 with different top-layer disorder
strength V,;. As shown clearly, for weak disorder strength, the
average transmission curve shows strong fluctuation as vary-
ing 6. With increasing the disorder strength, the fluctuations
are smeared out, and two universal conductance peaks can be
resolved. Figure 17(c) shows the Fermi energy Er dependence
of the average transmission coefficient 7 by fixing the top-
layer disorder strength V; = 5eV. For small Fermi energy,
which is quite close to the Dirac point, there is only one
incident mode transmitting through the central TBG region
due to the finite-size effect, and the resonant peaks can not
be observed. However, as the Fermi energy is lifted and the
incident number of modes increases, the n = 1 resonant peak
first arises. With further increasing Er, the position of the first
resonant peak is almost fixed and the second resonant peak
arises. Figure 17(d) indicates the second derivative of the reso-
nant curves for high Fermi energies and gives the first resonant
angle 6, = 1.42° and the second resonant angle 6., = 3.84°
(read from Er = 1.2eV). In Figs. 18(a) and 18(b), we plot
the moiré pattern for 8 = 6,; and 6,,, respectively. The disk
enclosing one whole hexagonal moiré supercell, which can be
fractionalized into one and seven moiré unit cells, with the
boundary of the disk crossing the AB/BA stacking regions,
indicates the same commensuration resonant phenomenon for
TBG with armchair edge.
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FIG. 19. (a) Landscape of long-range disorder potential V;,,(r)
generated by 100 impurities randomly distributed on the top
graphene disk. The correlation length of the impurity & = 24, and
the top-layer disorder strength is chosen V; = 5eV. The width of
the bottom nanoribbon with zigzag edge is N = 50, and the twist
angle & = 0. Only one disorder configuration is shown here. (b) Nor-
malized average transmission 7, /7T;(1°) as a function of the twist
angle 6 with different number of impurities N;,,, shown with colored
diamond (embraced by the dashed line). From blue to green the
number of impurities is: 50, 100, 150, 200, and 250. For comparison,
the result of applying the on-site disorder is also shown here (see
the black dotted curve). For both on-site and long-range disorder the
disorder strength V; is chosen at 5 eV.

APPENDIX E: COMMENSURATION RESONANCE WITH
LONG-RANGE DISORDER ON THE TOP LAYER

In the main text and the appendices before, we used the
on-site Anderson-type disorder which is short-ranged in the
atomic scale. To show that the commensuration resonance
is universal regardless of the disorder type, we replace the
Anderson disorder with a long-range disorder potential by
changing ¢; into & = gy + Vi, (r?). Still the disorder poten-
tial exists only on the top layer, and can be generated by
N, impurities centered at r’,, randomly distributed among
the top layer atomic sites {r:}. The impurity potential takes
the form: V;,,,(r}) = ZmN:ml Uy exp [—|r! — 1!, |?/(2E%)], where
& denotes the correlation length of the impurity, and U,
characterizing the strength of the m-th impurity is uniformly
distributed within [—V;/2,V,;/2]. In the following calcula-
tions we use & = 2a and the disorder strength V; = 5eV.
This set of parameters can well simulate a realistic disordered
graphene with long-range impurities, and has been widely
used in Refs. [79-82].

In Fig. 19(a), we show the landscape of one configuration
of the long-range disorder potential. Here a zigzag graphene
edge is used. The number of impurities is set to N, = 100,
and considering the top-layer atom number N, = 3306, the
density of impurities n; = N /Nop = 3%. In Fig. 19(b), we
show the transport results in the presence of long-range im-
purities. For comparison, the result with on-site disorder is
also shown (see black dotted curve). The disorder strength V;
is chosen at 5 eV. As can be seen, for low impurity density
(Nim = 50), the first commensuration resonant peak is absent
due to the strong fluctuation of 7, as varying 6 while the
second peak can be observed. Further increasing the impurity
density, both peaks can be seen very clearly. Besides, the
first resonant peak is almost pinned at the same position as
the on-site case. The shift of the second peak is due to the
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change of the global slope of the curve around the second
resonant angle, in the same origin as the peak shift in Fig. 4(a).

The results presented here indicate the same commensuration
resonant phenomenon in the long-range disorder case.
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