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Enhancement and anisotropy of electron Landé factor due to spin-orbit interaction
in semiconductor nanowires
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We investigate the effective Landé factor in semiconductor nanowires with strong Rashba spin-orbit coupling.
Using the k · p theory and the envelope function approach we derive a conduction band Hamiltonian where g∗

is explicitly related to the spin-orbit coupling constants αR. Our model includes orbital effects from the Rashba
spin-orbit term, leading to a significant enhancement of the effective Landé factor which is naturally anisotropic.
For nanowires based on the low-gap, high spin-orbit coupled material InSb, we investigate the anisotropy of the
effective Landé factor with respect to the magnetic field direction, exposing a twofold symmetry for the bottom
gate architecture. The anisotropy results from the competition between the localization of the envelope function
and the spin polarization of the electronic state, both determined by the magnetic field direction.
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I. INTRODUCTION

Semiconductor nanowires (NWs) continue to attract sig-
nificant interest due to the abundance of physical phenomena
observed in such nanostructures, as well as the wealth of
potential applications, including optoelectronics [1–4], quan-
tum computing [5–7], or spintronics [8–11]. Applications in
spintronics are largely driven by the spin-orbit (SO) interac-
tion, which—in low energy gap semiconductors, such as InAs
or InSb—is sufficiently strong to enable electrical control of
the electron spin. In general, the SO interaction originates
from the lack of the inversion symmetry, which could be an
intrinsic feature of the crystallographic structure (Dresselhaus
SO coupling [12]) or induced by the asymmetry of the con-
finement potential (Rashba SO coupling [13]). The latter has
the essential advantage of being tunable by external fields,
e.g., using gates attached to the nanostructures, as predicted
theoretically [14–21] and demonstrated in recent experiments
[22–26].

The significant progress in heteroepitaxy, which has been
made over the last decade, enables the growth of a thin
superconducting layer on the surface of semiconductor
[27–30]. In this respect, hybrid NWs with a large SO inter-
action are recently intensively studied as the basic building
blocks for topological quantum computing based on Majorana
zero modes [31–35]. These exotic states are formed at the ends
of NWs when the system becomes spinless, which is achieved
in experiments by applying a magnetic field and the corre-
sponding spin Zeeman effect [31]. The induced topological
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gap strongly depends on the strength of the SO coupling and
the energy of the Zeeman splitting [36–38], usually expressed
in terms of a linear response to the magnetic field with a
proportionality constant g∗—the effective Landé factor. In
other words, g∗ determines the strength of the magnetic field
required to trigger the system into the topological phase. For
this reason, it is desirable to make it as large as possible,
as the magnetic field needed for the topological transition is
required to be lower than the critical magnetic field of the
superconducting shell [33].

In semiconducting materials g∗ is significantly different
from the free-electron Landé factor g0, due to coupling
between the valence and the conduction band. In the
second-order perturbation k · p theory it leads to the Roth-
Lax-Zwerdling (RLZ) formula [39], which for low gap
semiconductors gives g∗ � g0, e.g., g∗ ≈ −49 for InSb. In
particular, for semiconductor nanostructures the RLZ for-
mula predicts a reduction of the effective Landé factor with
respect to the bulk value [40–42], as the subband confinement
increases the energy gap, which is inversely proportional to
g∗ [39]. However, unexpectedly, recent experiments in NWs
based on InAs and InSb exhibit opposite behavior—the ex-
tracted g∗ is up to three times larger than the bulk value
[7,43,44]. Furthermore, in Ref. [44], a step like evolution of g∗
has been reported as a function of the gate voltage. It has been
recently proposed that this surprising behavior arises from the
L · S coupling, which for higher subbands (characterized by
the large orbital momentum) leads to the enhancement of g∗
by about one order of magnitude [45].

In this paper, we develop a full 8 × 8 k · p theory of the
effective Landé factor in semiconductor NWs which takes into
account the orbital effects in the SO coupling terms induced
by an external magnetic field of arbitrary direction. For a
nanowire based on the low-gap, strongly SO coupled material
InSb, we performed fully self-consistent calculations taking
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FIG. 1. Schematic illustration of a NW with a bottom gate to-
gether with a coordinate system with the magnetic field direction
determined by two angles θ and ϕ.

into account on equal footing orbital and Zeeman effects of
the applied magnetic field, SO coupling and the electrostatic
environment. We demonstrate that the orbital contribution
to g∗ ensuing from the SO interaction may overcome the
bulk contribution, leading to the enhancement of the effective
Landé factor by an order of magnitude, even for the lowest
subband, the one usually considered in Majorana experiments.
Finally, we also evaluate the anisotropy of the SO-induced
Landé factor with respect to the magnetic field rotated in
different planes. Our results qualitatively agree with recent
experiments [7,43,44] reproducing the enhancement of g∗ and
its anisotropy.

The paper is organized as follows. In Sec. II A, the Landé
factor is derived from the 8 × 8 k · p model within the enve-
lope function approximation. Details on the numerical method
are given in Sec. II B. Section III contains results of our
calculations for homogeneous InSb NWs and their discussion
with respect to recent experiments. Section IV summarizes
our results.

II. THEORETICAL MODEL

Below we shall derive a k · p formulation of the Landé
factor in semiconductor NWs. We shall specifically consider
a homogeneous InSb, with hexagonal cross section, grown in
the zincblede crystallographic structure along the [111] direc-
tion. This particular orientation preserves the crystal inversion
symmetry, resulting in the reduction of the Dresselhaus SO
coupling term [12,22].

The system is subjected to a uniform external magnetic
field with intensity B. The direction of the applied magnetic
field with respect to the NW axis is determined by the angles
θ , between the field and the NW axis (z), and ϕ, between
the x axis (oriented along the corner-corner direction) and the
projection of the field on the xy plane—see Fig. 1. Hence,

B = [Bx, By, Bz]
T

= B[sin(θ ) cos(ϕ), sin(θ ) sin(ϕ), cos(θ )]T . (1)

We adopt the symmetric vector potential

A(r) =
[
−yBz

2
,

xBz

2
, yBx − xBy

]T

(2)

and assume that the back gate is attached directly to the bot-
tom facet of NW, generating an electric field in the xy plane.

Although in real experiments a dielectric layer separating the
NW from the gate is usually used, it plays a role of screening
for the electric field. Hence, the value of the Landé factor
obtained for a particular gate voltage Vg can be considered as
the maximum achievable value at that specific Vg.

A. k · p theory of the Landé factor

Our model is based on the 8 × 8 k · p approximation
described by

Ĥ8×8 =
[

Ĥc Ĥcv

Ĥ†
cv Ĥv

]
, (3)

where Ĥc is the Hamiltonian of the conduction band electrons
corresponding to the �6c band. In the presence of the magnetic
field Ĥc can be written as

Ĥc = H�6c I2×2 + 1
2μBg0σ · B, (4)

where the second term corresponds to the Zeeman spin effect,
μB is the Bohr magneton, g0 is the Landé factor of the free
electron and σ = (σx, σy, σz ) is the vector of Pauli matrices,
while

Ĥ�6c = P̂2

2m0
+ Ec + V (r), (5)

where P̂ = p̂ − eA, e is the electron charge, m0 is the free
electron mass and Ec is the conduction band minima. The
potential V (r) in (5) contains the interaction of electrons with
the electric field generated by the external gates Vg(r) and
the electron-electron interaction included in our model at the
mean-field level (Hartree potential) VH (r), V (r) = Vg(r) +
VH (r).

Below we shall use a folding procedure of Ĥ8×8 to the
conduction band sector, where in the Hamiltonian Ĥv , related
to valance bands �8v and �7v , all off-diagonal elements are
neglected. Then, Ĥv can be written as

Ĥv = H�8v
I4×4 ⊕ H�7v

I2×2, (6)

with

H�7v
= Ev′ = Ec + V (r) − E0 − �0,

H�8v
= Ev = Ec + V (r) − E0, (7)

where E0 is the energy gap and �0 is the energy of SO splitting
in the valence band. Note that Eq. (6) neglects the kinetic term
and Zeeman splitting in the valance band as the corresponding
energies are much smaller than E0 and �0.

The coupling between the conduction band and the valence
band is described by the off-diagonal matrix Ĥcv ,

Ĥcv = P0

h̄

⎡
⎢⎣

P̂+√
6

0 P̂−√
2

−
√

2P̂z√
3

− P̂z√
3

P̂+√
3

−
√

2P̂z√
3

− P̂+√
2

0 − P̂−√
6

P̂−√
3

P̂z√
3

⎤
⎥⎦,

(8)

where P̂± = P̂x ± iP̂y and the parameter P0 = −ih̄
m0

〈S| p̂x|X 〉
accounts for the coupling between conduction and valence
bands at the � point of the Brillouin zone.

Using the standard folding-down transformation, we can
reduce the 8 × 8 k · p model (3) into the effective 2 × 2
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Hamiltonian for conduction electrons

Ĥeff = Ĥc − Ĥcv (Ĥv − E )−1Ĥ†
cv = Ĥc + H̃c. (9)

In the above formula, H̃c can be written in terms of Pauli
matrices

H̃c = λ0I2×2 + λ · σ, (10)

where

λ0 = P2
0

3h̄2

[
P̂x

(
2

Ev − E
+ 1

Ev′ − E

)
P̂x

+ P̂y

(
2

Ev − E
+ 1

Ev′ − E

)
P̂y

]
, (11a)

λx = iP2
0

3h̄2

[
P̂z

(
1

Ev − E
− 1

Ev′ − E

)
P̂y

− P̂y

(
1

Ev − E
− 1

Ev′ − E

)
P̂z

]
, (11b)

λy = iP2
0

3h̄2

[
P̂x

(
1

Ev − E
− 1

Ev′ − E

)
P̂z

− P̂z

(
1

Ev − E
− 1

Ev′ − E

)
P̂x

]
, (11c)

λz = iP2
0

3h̄2

[
P̂y

(
1

Ev − E
− 1

Ev′ − E

)
P̂x

− P̂x

(
1

Ev − E
− 1

Ev′ − E

)
P̂y

]
. (11d)

The first term in Eq. (10) leads to the standard formula for
the effective mass

1

m∗ = 1

m0
+ 2P2

0

3h̄2

(
2

Ev

+ 1

Ev′

)
, (12)

while the second term corresponds to the Rashba SO coupling.
If we assume that E0 and �0 are the largest energies in the
system we can expand Ev(v′ ) in Eqs. (11b)–(11d) to the second
order in energy. Then, Eqs. (11b)–(11d) can be rewritten as

λx = −α
y
R

(
kz − e

h̄
Az

)
− eP2

0

3h̄

(
1

E0
− 1

E0 + �0

)
Bx, (13a)

λy = αx
R

(
kz − e

h̄
Az

)
− eP2

0

3h̄

(
1

E0
− 1

E0 + �0

)
By, (13b)

λz = α
y
R

(
k̂x − e

h̄
Ax

)
− αx

R

(
k̂y − e

h̄
Ay

)

− eP2
0

3h̄

(
1

E0
− 1

E0 + �0

)
Bz, (13c)

where

αR = (
αx

R, α
y
R, αz

R

)
= P2

0

3

(
1

E2
0

− 1

(E0 + �0)2

)
∇V (x, y) (14)

is the Rashba SO coupling constant and we assume p̂ =
h̄(k̂x, k̂y, kz ) = h̄(−i∂/∂x,−i∂/∂y, kz ). Note that in Eqs. (13a)
and (13b), we have already omitted αz

R terms since the mag-
netic field does not break translational invariance along the

wire axis, i.e.,


n,kz (x, y, z) = ψn,kz (x, y)eikzz

= [ψ↑
n,kz

(x, y), ψ↓
n,kz

(x, y)]T eikzz. (15)

From Ĥeff , we determine the spin-split energy subbands
En,kz (B), and from these the effective g∗ factor of the lowest
state as

g∗ = (E2,kz(B) − E2,kz(0)) − (E1,kz(B) − E1,kz(0))

μbh̄B
. (16)

Note that the above definion of g∗ excludes the spin splitting
which is due to the SO coupling solely, and may be present
also at B = 0 (at which g∗ = 0). However, the total SO term
involves the magnetic field by the kinetic momentum, and it
also contributes to the effective Landé factor. To show that,
let us decompose the SO term into the part depending on the
canonical momentum k and the vector potential, A. Then,
the effective Hamiltonian for conduction electrons can be
written as

Ĥeff =
(

P̂2

2m∗ + Ec + V (r)

)
I2×2 + (

αx
Rσy − α

y
Rσx

)
kz

+ (
α

y
Rk̂x − αx

Rk̂y
)
σz + 1

2
μBBg∗σ (17)

where g∗ is a tensor given by

g∗ = gRLZI3×3 + gSO, (18)

and

gRLZ = g0 − 2Ep

3

(
1

E0
− 1

E0 + �0

)
, (19)

which corresponds to the well-know RLZ formula [39] (Ep =
2m0P2

0 /h̄2), while the tensor gSO results from the orbital ef-
fects of the magnetic field in the SO Hamiltonian,

gSO =

⎡
⎢⎣

gxx
SO gxy

SO 0

gyx
SO gyy

SO 0

0 0 gzz
SO

⎤
⎥⎦. (20)

Using the vector potential (2), the elements of this tensor
can be expressed as

gxx
SO = 2e

μBh̄
α

y
Ry, (21a)

gyy
SO = 2e

μBh̄
αx

Rx, (21b)

gzz
SO = e

μBh̄

(
α

y
Ry − αx

Rx
)
, (21c)

gxy
SO = − 2e

μBh̄
αx

Ry, (21d)

gyx
SO = − 2e

μBh̄
α

y
Rx, (21e)

which shows that g∗ depends linearly on the vector of Rashba
SO coupling constants αR.

Note that gSO is not an observable and it is gauge dependent
(while of course λx(y, z) in Eqs. (13a)–(13c), hence g∗, are
gauge invariant, as they involve the kinetic momentum P).
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However, since it explicitly demonstrates the contribution to
the effective Landé factor from the SO coupling, it is useful to
use gSO for analyzing g∗.

Since the Rashba coefficients and the SO induced Landé
factor are functions of space [see Eqs. (14) and (21)], we dis-
cuss the matrix elements of the Rashba SO coupling constants〈

α
x(y)
R (kz )

〉
n = 〈ψn,kz |αx(y)

R σy(x)|ψn,kz 〉 (22)

and the individual diagonal and off-diagonal matrix elements
of gSO, respectively defined as〈

gxx(yy,zz)
SO (kz )

〉
n = 〈ψn,kz |gxx(yy,zz)

SO σx(y,z)|ψn,kz 〉, (23a)〈
gxy(yx)

SO (kz )
〉
n = 〈ψn,kz |gxy(yx)

SO σy(x)|ψn,kz 〉, (23b)

where |ψn,kz 〉 is the in-plane part of the n-th envelope functions
of NW, to be calculated as described in the following section.

It is useful to compare our derivation with Lassnig’s for the
two dimensional gas, reported in Ref. [46]. There, g∗ has been
defined in such a way that its first derivative determines the SO
coupling constant, hence it contains information about the to-
tal spin splitting of the energy levels, ensuing both from the
linear Zeeman term and the SO coupling, whose dependence
on the magnetic field is more complex. Here, instead, we
define the effective Landé factor as the coefficient of pro-
portionality between the spin splitting of the energy levels
induced by the external magnetic field and the magnitude of
the field. This procedure allows to distinguish between two
effects among which the one which changes with B defines the
effective Landé factor. Note that such a definition is usually
used in experiments to determine g∗ [7,43,44].

B. Numerical calculations

To understand the physics behind the behavior of the Landé
factor in NWs with strong SO coupling, we use a numeri-
cal approach taking into account important key ingredients,
namely the orbital and Zeeman effect, SO coupling and elec-
trostatic environment. For this purpose, we employ a standard
Shrödinger-Poisson approach [17,18,47–51]. Assuming the
translational invariance along the growth axis z, the envelope
functions ψn,kz (x, y) = [ψ↑

n,kz
(x, y), ψ↓

n,kz
(x, y)] can be deter-

mined from the Schrödinger equation[(
P̂

2
2D

2m∗ + 1

2
m∗ω2

c

[
(y cos θ − x sin θ ) sin ϕ − kzl

2
B

]2 + Ec

+V (r)

)
I2×2 + (

αx
Rσy − α

y
Rσx

)
kz + (

α
y
Rk̂x − αx

Rk̂y
)
σz

+ 1

2
μBBg∗σ

]
ψn,kz (x, y) = En,kzψn,kz (x, y), (24)

where α
x(y)
R and g∗ are functions of the position (x, y), ωc =

eB/m∗ is the cyclotron frequency, lB = √
h̄/eB is the magnetic

length and

P̂
2
2D =

(
p̂x + eB

y cos ϕ

2

)2

+
(

p̂y − eB
x cos ϕ

2

)2

. (25)

Note that in the presence of magnetic field and SO cou-
pling the Hamiltonian (24) depends on the kz vector. The
calculations are carried out on a uniform grid in the range

[−kmax
z , kmax

z ] where kmax
z is chosen to be much larger than the

Fermi wave vector. The term (αy
Rk̂x − αx

Rk̂y)σz in Hamilonian
(24) needs an additional comment as it may suggest the viola-
tion of time reversal symmetry. As we checked, this is not the
case and [(αy

Rk̂x − αx
Rk̂y)σz, T ] = 0, where T = K(−yσy) and

K is the complex conjugate operator. As a result, at B = 0 the
Kramers degeneracy is preserved, resulting in the crossing of
states at kz = 0.

The self-consistent potential V (r) in Eq. (24) is determined
at the mean-field level by solving the Poisson equation

∇2
2DV (x, y) = −ne(x, y)

ε0ε
, (26)

where ε is a dielectric constant and the electron density ne can
be calculated based on the formula

ne(x, y) =
∑

n

∫ kmax
z

−kmax
z

1

2π
|ψn,kz (x, y)|2 f (En,kz − μ, T )dkz

(27)

where μ is the chemical potential, T is the temperature and
f (E , T ) is the Fermi-Dirac distribution.

In the applied Shrödinger-Poisson approach, Eqs. (24)
and (26) are solved alternatively until the self-consistency is
reached, which we consider to occur when the relative varia-
tion of the charge density between two consecutive iterations
is lower than 0.001. In each iteration a spatial distribution
of α

x(y)
R and gab

SO, where a, b = {x, y, z}, are determined based
on Eqs. (14) and (21). Numerical calculations are carried on
the triangular grid, which preserves the hexagonal symmetry
of the Hamiltonian at zero field, avoiding artifacts such as
spurious level splittings which may appear when using rect-
angular grid symmetry [47]. We assume Dirichlet boundary
condition for all the facets with a specified condition for the
bottom one, defined by the voltage applied to the gate. Finally,
the energy spectrum En,kz , the self-consistent potential V (x, y)
and the corresponding wave functions ψn,kz (x, y) are used
to determine g∗, 〈αx,(y)

R 〉n as well as 〈gxx(yy,zz)
SO 〉n and 〈gxy(yx)

SO 〉n

tensor elements according to Eqs. (16), (22), and (23).
Calculations have been carried out for the material param-

eters corresponding to InSb: E0 = 0.235 eV, �0 = 0.81 eV,
m∗ = 0.014, EP = 2m0P

2 = 23.3 eV, T = 4.2 K, and for the
nanowire width W = 100 nm (corner-to-corner). We keep
the constant linear electron density at the low level ne =
8 × 107 cm−1, which guarantees that only the lowest subband
is occupied in the range of the considered magnetic field
B = [0, 4] T.

III. RESULTS

We shall now discuss the effective Landé factor as a func-
tion of the magnetic field intensity and direction. As gRLZ

evaluated from the RLZ formula (gRLZ = −49 for the present
material) does not depend on the magnetic field, we put par-
ticular emphasis on the role of the SO-induced component
gSO in terms of the tensor elements, Eqs. (21). As shown in
the previous section, corrections to the Landé factor coming
from the SO interaction are indirectly dependent on the wave
vector via ψn,kz , which results from the orbital effects of the
magnetic field. For this reason, we shall study both g∗ and
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FIG. 2. (a) Map of g∗ [Eq. (16)] as a function of wave vector kz

and magnetic field oriented along the x axis, Bx . (b) g∗(Bx ) calculated
at kz = 0 at selected Vg. (c) Map of 〈gxx

SO〉 as a function of wave vector
kz and magnetic field, Bx . (b) Dispersion relations without magnetic
field (blue) and at Bx = 0.5 T (red). The shift of the crossing point
on (d) corresponds to the sign change of 〈gxx

SO〉 in (c).

gSO as a function of both the wave vector and the magnetic
field. We limit our study to the lowest subband assuming the
electrical potential is applied to the bottom gate to induce SO
coupling. For simplicity, in the rest of the paper, we omit the
subband index in Eqs. (22) and (23), i.e., 〈. . . 〉n=1 = 〈. . . 〉.

A. Enhancement of the Landé factor due to SO coupling

First, we show that a magnetic field oriented along the x
axis, i.e., perpendicular to the NW axis and to the direction
of 〈αR〉, results in a substantial enhancement of the effective
Landé factor. For this purpose, we assume that Vg = 0.2 V
is applied to the bottom gate, generating an electric field that
mantains reflection symmetry with respect to the y axis; hence
〈αR〉 is directed along y by symmetry.

In Fig. 2(a), we show the effective Landé factor g∗ [see
Eq. (16)] vs kz and B. In this configuration |g∗| reaches values
up to 100, twice as large as predicted from the RLZ formula
(gRLZ = −49). The maximum of |g∗| is determined by the gate
voltage, as shown in Fig. 2(b) where we report the calculated
g∗(Bx ) at kz = 0 for selected values of Vg. Note that at Vg = 0,
when the SO coupling is absent, g∗ = gRLZ which strongly
suggests that the observed enhancement of the Landé factor
is related to the orbital effects in the SO term. In order to
show that, in Fig. 2(c), we present the map of the diagonal
element 〈gxx

SO〉(kz, Bx ). Note that with this field configuration
the off-diagonal elements vanish by symmetry. Indeed, the
reflection symmetry of the electric field with respect to the
y axis leads to 〈αx

R〉 = 0, hence 〈gxy
SO〉 = 0 [see Eq. (21d)].

Moreover, the even symmetry of the envelope function is
unaffected by the magnetic field directed along x, hence

FIG. 3. (a) Map of the SO Rashba coefficients αx
R, α

y
R.

(b) Squared envelope functions of the lowest subband with the mag-
netic field oriented along x, at selected magnetic field intensity Bx

and the wave vectors kz.

〈gyx
SO〉 = 0 [see Eqs. (21e)]. Figure 2(c) clearly demonstrates

that the correction to the effective Landé factor arising from
the orbital effects in the SO coupling term reaches a value
similar to that obtained from the RLZ formula. Under certain
conditions, this enhancement can lead to a significant increase
of g∗, almost doubling it, as observed in recent experiments
[7,43,44].

In Fig. 2(c), we distinguish three regions, with positive
(yellow), negative (purple) and vanishing (black) 〈gxx

SO〉. The
abrupt change of sign between positive and negative regions
is simply understood as the crossing of subbands of opposite
spin, since only the value for the lowest subband is shown
here. Indeed, as shown in Fig. 2(d), the subband of opposite
spin cross at kz = 0 at vanishing field. When the field is
switched on, both subband shift to negative kz and shift in
energy due to Zeeman term. Hence, the crossing shifts linearly
with the field to more negative wave vectors, as shown in
Fig. 2(c).

For sufficiently large kz > 0 and field intensity, 〈gxx
SO〉

almost vanishes, as shown in Fig. 2(c) - black region. This
can be explained by the analysis of the position-dependent
SO coupling constants α

x(y)
R [see Eq. (14)] presented in the

Fig. 3(a) at B = 0. Note that their spatial distribution is pri-
marily influenced by the electric field generated by the bottom
gate and do not undergo significant changes as the mag-
netic field increases. Since the value of gSO matrix elements
depends on the Rashba SO coupling constant, the SO-induced
modification of the Landé factor for a specific subband is
most significant when its envelope function is localized in the
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regions of strong Rashba SO coupling. With this respect, the
vanishing of 〈gxx

SO〉 in Fig. 2(c) is due to the change of the wave
function localization, determined by the orbital coupling to
the magnetic field.

In Fig. 3(b), we report the squared envelope functions of
the lowest subbands at kz = 0 and kz = 0.4 nm−1 at increasing
magnetic fields. At kz = 0 there is no kinetic coupling to the
magnetic field and the localization of the envelope function
is only determined by the electric field; hence, it concentrates
near the bottom gate, where the SO coupling is strong. For a
positive wave vectors kz, instead, the orbital effects shift the
wave function towards the opposite facet of the NW, where
the SO coupling is weak, leading to vanishing 〈gxx

SO〉, which
explains the black region in Fig. 2(c). As shown in Fig. 2(c),
the stronger the magnetic field, the lower kz is required to
push the wave function away from the region with large SO
coupling, near the bottom facet. Naively, one might expect
that the state kz = 0 would not be affected by this phenomenon
as there is no orbital coupling to the magnetic field for this
state. However, it should be noted that for high magnetic
fields, diamagnetic effects become dominant, causing the
wave functions to localize in the middle of NW along the field
direction, resembling dispersionless Landau levels, as shown
in Fig. 3(b). As the position of this wave function is associ-
ated with low SO coupling regions, 〈gxx

SO〉 gradually decreases
towards zero, even for kz = 0, as illustrated in Fig. 2(c). Thus,
regardless of the gate voltage, g∗ tends to approach gRLZ when
the magnetic field increases, see Fig. 2(b).

We next discuss the behavior of the effective Landé factor
with the magnetic field directed either parallel to αR (along
the y axis) or to the NW axis (along the z axis). When the
magnetic field is applied parallel to αR, 〈gyy(yx)

SO 〉 � 0, resulting
in the increase of g∗. This is shown in Figs. 4(a) and 4(b).
In this case, the deviation from gRLZ is not as large as for
the perpendicular orientation of B—compare with Fig. 2(a).
In this configuration the off-diagonal element 〈gyx

SO〉 is non-
negligible, in contrast to 〈gxy

SO〉 which is nearly zero, as the
average value of αx

R is vanishing due to the gate symmetry.
Again, the evolution of both 〈gyy

SO〉 and 〈gyx
SO〉 as a function of

the magnetic field, shown in Figs. 4(c) and 4(d), respectively,
is determined by the localization and symmetry of the wave
function, whereas we assume the rule that we display only
these tensor elements which contribute to the spin splitting
for a particular field direction.

In Fig. 4(e), one can observe that at zero magnetic field,
the wave function sets itself at the center-bottom of the NW.
In this region, αx

R is antisymmetric with respect to the x
axis, resulting in the 〈gyy

SO〉 = 〈gyx
SO〉 = 0. The symmetry of the

wave function is broken by the magnetic field, as depicted in
Fig. 4(e). For kz = 0.4 nm−1, for increasing magnetic fields,
the wave function is first localized at the bottom-left corner,
where the contribution from negative αx

R leads to nonzero
values of 〈gyy(yx)

SO 〉, and eventually in the left corner, where αx
R

is significantly lower, resulting in a decrease in 〈gyy(yx)
SO 〉. This

field-induced evolution leads to the maximum of 〈gyy(yx)
SO 〉 at a

certain kz value, as illustrated in Figs. 4(c) and 4(d).
We next consider a magnetic field applied in z direction,

i.e., along the NW axis. Decrease of |g∗|, shown in Fig. 5, has
a different nature, since the orbital effects of magnetic field are

FIG. 4. (a) Map of g∗ [Eq. (16)] as a function of wave vector kz

and magnetic field oriented along the y axis, By. (b) g∗(By ) calculated
at kz = 0. (c),(d) Diagonal 〈gyy

SO〉 and off-diagonal 〈gyx
SO〉 elements of

gSO with the field oriented along y, as a function of wave vector kz

and field intensity By. (e) Squared envelope functions of the lowest
energy state at selected different magnetic field intensity By and the
wave vectors kz.

FIG. 5. Effective Landé factor g∗ as a function of wave vector kz

and magnetic field magnitude oriented in the z direction, Bz.
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FIG. 6. (a) g∗ as a function of wave vector kz and bottom gate
voltage Vg and (b) g∗(Vg) at kz = 0. Results for magnetic field directed
along the x axis with Bx = 1 T.

highly reduced by the confinement. In this case the localiza-
tion of the wave function is not measurably changed with the
magnetic field, regardless of kz, and thus it does not determine
the evolution of g∗ with kz and Bz. In this configuration g∗ is
rather governed by the interplay between the Zeeman effect,
which favors in-wire z polarization, and the SO interaction,
which favors orthogonal polarization along y. Note that both
the tensor element 〈gzz

SO〉 [see Eqs. (23)] and the total g∗
factor, are defined by the energy splitting which depends on
σz and thus to the relative distribution of spin up and down
component in the spinor. Since the SO coupling depends on
the wave vector, for a small kz the ordinary Zeeman effect is
dominant, aligning the electron spin along the magnetic field
direction and—in the limit of kz = 0—makes the system spin
polarized along the z axis. The expectation value of σz in this
case is the largest in the sense of absolute value, resulting
in the large value of g∗. In other words, the value of g∗ for
small kz results from the finite Rashba couplings near the
bottom gate, where the wave function is localized and the
almost complete z-spin polarization of electrons induced by
the magnetic field. As a consequence, g∗ is independent of the
magnetic field magnitude at kz = 0 (not shown here).

On the other hand, for a large value of kz and low magnetic
field, the SO coupling plays a major role, forcing the electron
spin to align along the effective Rashba field directed in the x
axis. In this scenario, the spin-up and spin-down components
of the spinor become almost equal, resulting in a decrease in
g∗. It is worth noting that even for a large kz and strong SO
coupling, an increasing magnetic field can deviate the electron
spin direction from the x towards the z axis, leading to an
overall increase in g∗ with the magnetic field, as depicted in
Fig. 5.

Finally, note that results presented in Fig. 5 for the mag-
netic field directed along the z axis at kz = 0 corresponds to
the physical situation considered theoretically in Ref. [45],
where the enhancement of the effective Landé factor has
been recently predicted in semiconductor NWs. The predicted
effect was however restricted to the higher subbands charac-
terized by the nonzero orbital momentum where the orbital
effects are relevant. Here, we show that the enhancement of g∗
for the lowest band is possible only when the magnetic field
is applied perpendicular to αR—in our setup along the x axis.

To summarize this section, in Fig. 6, we show the gate
voltage dependence of g∗, calculated for a magnetic field

FIG. 7. Maps of g∗ [Eq. (16)] as a function of wave vector kz and
magnetic field orientation when it is rotated [(a) and (b)] in the xz
plane; [(c) and (d)] in the xy plane; [(e) and (f)] in the yz plane. Right
polar plots present g∗ evaluated at kz = 0. Results for B = 1 T and
Vg = 0.2 V.

directed along the x axis with Bx = 1 T. It can be observed
that the inclusion of the SO effects may lead to a substantial
increase of the effective Landé factor g∗, reaching up to four
times the value obtained from the RLZ formula.

B. Spin-orbital induced Landé factor anisotropy

We next analyze the anisotropy of g∗ with respect to the
field direction. For this purpose we consider a magnetic field
with intensity B = 1 T rotated in (i) the xz plane (ϕ = 0), (ii)
the xy plane (θ = π/2), and (iii) the yz plane (ϕ = π/2). To
induce Rashba SO coupling, we apply a gate voltage Vg =
0.2 V.

Figure 7 shows maps of g∗ as a function of the wave vector
kz and the rotation angle for three considered rotation plane of
the magnetic field. The effective Landé factor g∗ determined
at kz = 0—see right polar plots in Fig. 7—exhibits the two
fold anisotropy when the magnetic field is rotated in the xz
and xy planes with the maximal value twice larger than gRLZ
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FIG. 8. Maps of tensor elements 〈gab
SO〉 (a, b = {x, y, z}) as a function of wave vector kz and magnetic field orientation when it is rotated

[(a) and (b)] in the xz plane and [(c)–(f)] in the xy plane. Results for B = 1 T and Vg = 0.2 V.

for the magnetic field aligned along the x axis. The rotation
in yz plane does not significantly change g∗ exhibiting nearly
isotropic behavior. Similarly, as in the previous section, the
observed anisotropy can be explained as a combination of two
phenomena: (i) the orbital effects coming from the SO term
and (ii) the polarization of the spin state being a resultant of
the Rashba SO coupling and the magnetic field.

To get into details of the orbital contribution coming from
SO coupling in Figs. 8(a) and 8(b), we show maps of 〈gxx

SO〉
and 〈gzz

SO〉 as a function of the wave vector kz and θ when the
magnetic field is rotated in the xz plane. The black region on
the right sides of both panels originates from the localization
of the wave function far away from the bottom gate, in the
region where the SO coupling is weak. This is apparent in

FIG. 9. Squared envelope functions of the lowest subband for
kz = 0.4 nm−1 as a function of θ at ϕ = 0—rotation in the xz plane.
Note that the change of the wave function localization from the
bottom to the top facet is quite abrupt and happens over an interval
of ≈4◦.

Fig. 9, which shows the squared wave function for kz =
0.4 nm−1 under different magnetic field orientations.

Interestingly, we observe unusual behavior in the region
where 〈gxx

SO〉 changes sign. As discussed earlier, when the
magnetic field is directed along the x axis, this sign change
is due to a subband crossing. However, here the finite z
component of the magnetic field, perpendicular to the effec-
tive Rashba field, causes anticrossing of the subbands. The
magnitude and position of the anticrossing in wave vector
space depend on the orientation of B. The behavior of 〈gxx

SO〉
damping to zero at the sign change region, accompanied by a
maximum in |〈gzz

SO〉|, can be explained by considering the evo-
lution of electron spin at the anticrossing. Figure 10 presents
the z-spin polarization of the lowest subbands, defined as
P = ∫

(|ψ↑
kz

(x, y)|2 − |ψ↓
kz

(x, y)|2)dxdy, as a function of kz for

FIG. 10. Spin polarization P as a function of wave vector kz for
the lowest subbands as a magnetic field B = 1 T is rotated in the xz
plane, at selected angles (see legend).
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FIG. 11. Averaged Landé tensor elements gab
SO and the Rasha SO

constant α
y
R for the magnetic field rotated in two rotation planes

[(a) and (c)] xz and [(b) and (d)] xy. Results for the bottom gate
potential Vg = 0.2 V and magnetic field B = 1 T.

different angles, θ . We observe that at the anticrossing, the
states become completely z-spin polarized, which maximizes
|〈gzz

SO〉|. Simultaneously, the average value of σx, which deter-
mines |〈gxx

SO〉| [see Eq. (23a)], becomes zero, which explains
its vanishing for a specific kz vector.

The evolution of the SO-induced Landé factor in the xy
rotation planes, the second for which we observe two fold
anisotropy and depicted in Figs. 8(c)–8(f), is in general a
result of the interplay between the wave-function localization,
which is determined by orbital effects, and the electron spin
direction, which is defined by both the SO interaction and the
external magnetic field. It is worth noting that when the mag-
netic field has a component along the y axis, the off-diagonal
elements of the gSO tensor may also contribute significantly
to the effective Landé factor—the magnitudes of 〈gxy(yx)

SO 〉 in
Figs. 8(d) and 8(e) are comparable to those of the diagonal
elements.

Although the maps of the gSO tensor elements presented so
far provide valuable information and offer a precise represen-
tation of the physical phenomena underlying the anisotropy
of g∗, it becomes challenging to directly compare them with
results of recent experimental evidence. In experiments, the kz

vector is often not well-defined, and what is typically obtained
is an average value of g∗ over all electronic states involved in
the transport. For this reason, we define the mean value of gSO

tensor elements averaged over all occupied states

gab
SO =

∑
kz

|〈gab
SO(kz )〉| f (En=1,kz − μ, T )∑
kz

f (En=1,kz − μ, T )
, (28)

FIG. 12. g∗ [Eq. (16)], Landé tensor elements gab
SO and the Rasha

SO constant α
x(y)
R for the magnetic field rotated in three rotation

planes [(a), (d), and (g)] xz, [(b), (e), and (h)] xy, and [(c), (f), and
(i)] yz. Results for the gate configuration with the attached top and
left-top gate and Vg = 0.2 V and magnetic field B = 1 T.

where a, b = {x, y, z}. Such an approach has been recently
used for analyzing the SO coupling in NWs and good agree-
ment with experiments has been obtained [19].

In Fig. 11, we show the mean value of the tensor elements
gab

SO and the Rashba SO constant α
y
R (defined in the same

manner) for the rotation planes xz and xy characterizing by the
twofold anisotropy of g∗. We observe that irrespective of the
rotation plane, all elements gab

SO exhibit strong anisotropy with
a twofold symmetry, closely corresponding to the evolution
of the SO coupling, shown in Figs. 11(c) and 11(d) (with a
bottom gate αx

R = 0 due to the symmetry along the y axis and
it is not shown). A similar twofold symmetry with respect to
the magnetic field direction has been recently observed in the
Rashba SO coupling measured for suspended InAs NW [52].
In both cases, the symmetry arises from the bottom gate archi-
tecture, which induces a large SO coupling near the bottom
facet, while the rotating magnetic field alters localization of
the wave function, due to the orbital effects.

It is noteworthy that gxx
SO remains the most robust against

the rotation in the xy plane [see Fig. 11(b)], and it dominates
over other terms for the considered gate setup. This can be
attributed to the large coupling constant α

y
R induced by the

bottom gate voltage and the broken symmetry with respect
to the x axis—see Eq. (21a). Finally, it should be empha-
sized that the off-diagonal tensor components are one order
of magnitude smaller than the diagonal ones. This observation
holds true for the considered bottom gate configuration, which
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FIG. 13. Dispersion relations E (kz ) for ten lowest energy levels. Individual rows correspond to magnetic field directed along x [(a)–(c)], y
[(d)–(f)], and z [(g)–(i)] axes, respectively. Each column corresponds to the magnetic field magnitude: |B| = 0.5 [(a), (d), and (g)], 11 [(b), (e),
and (h)], and 2 T [(c), (f), and (i)].

preserves symmetry around the y axis, but it may differ for
more sophisticated gate configurations as presented in the next
section.

C. Different gate configuration

In order to analyze in detail the magnitude of the off-
diagonal elements of the gSO tensor let us now consider an
asymmetric gate configuration with two gates attached to the
top and left-top facet. In this case the voltage applied to the
gates generate both the x and y component of the Rashba
SO coupling—see Figs. 12(g)–12(i). In particular, the neg-
ative voltage generates the effective band bending near the
gates similar to that observed in the Majorana NWs at the
superconductor/semiconductor interface [44].

The g∗ factor at kz = 0 is presented in Figs. 12(a)–12(c).
We see an enhancement of g∗ with respect to gRLZ when the
magnetic field is rotated in the xz and xy plane, with strong
anisotropy determined by the gate configuration. As shown in

Fig. 12(d), in this configuration, the off-diagonal elements of
gSO are of the same order of magnitude as the diagonal ele-
ments. This additional contribution plays a role in enhancing
the overall effective Landé factor. While the general principle
that the largest SO-induced Landé factor occurs when the
magnetic field is perpendicular to αR is observed also for this
gate configuration. Consequently, we believe that our model,
when applied to higher gate voltages, can account for the
observed twofold enhancement of the effective Landé factor,
as recently observed in Majorana NWs [7,43,44].

IV. SUMMARY

Based on the k · p theory within the envelope function
approximation, we have analyzed the effective Landé factor
induced by the SO coupling in homogeneous semiconductor
NWs under different magnetic field and gate configurations.
By considering the orbital effects in the kinetic and SO
terms, we have obtained the gSO tensor which is treated as an
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FIG. 14. The energy difference between the first excited and ground state �E as a function of wave vector kz and the magnetic field applied
along (a) x, (b) y, and (c) z axes. Results for Vg = 0.2 V.

auxiliary quantity to analyze the magnetic field dependence of
g∗. In the paper, we have studied the Landé factor as well as
the matrix elements of g∗

SO with respect to the magnetic field
magnitude and orientation.

We show that individual elements of the effective Landé
tensor induced by SO interaction are proportional to the
Rashba coupling constant, which arises from the electric field
generated by the adjacent gates. Hence, we have found that g∗
is determined by two factors: (1) position and symmetry of the
electron’s wave function, which can be tuned by the orbital
effects, and (2) the spin polarization of the electronic state.
Specifically, when we apply the magnetic field perpendicular
to NW, the inversion symmetry of the envelope functions is
broken and the wave function is squeezed to the NW surface
by a kz-dependent effective potential. This effect results in
an enhancement of g∗ in a situation when the envelope func-
tion is squeezed to the facet near the gate where the electric
field and consequently the Rashba SO coupling is larger.
The opposite magnetic field (or kz) results in the squeezing
of wave function to the opposite facet where electric field
from the gate and the corresponding SO coupling is weak,
which results in nearly zero gSO and g∗ = gRLZ. On the other
hand, for B directed along the NW axis the orbital effects are
strongly reduced by the confinement and g∗ as well as gSO

depends on the z component of spin polarization, which is
a resultant of the magnetic and effective Rashba field. Our
results explains the recently demonstrated enhancement of
the effective Landé factor observed in semiconductor NWs as
well as its anisotropy [7,43,44].

Note that although our simulations have been limited to the
regime where only the lowest subband is occupied, from our
previous papers we expect that the electron-electron interac-
tion, here introduced at the mean-field level, could be essential
in estimating Landé factor, via charge localization. At the high
concentration regime total energy is minimized by reducing
repulsive Coulomb energy, moving electrons outwards, and
charge localizes at the six quasi-1D channels at the edges. As
we discussed in Ref. [18], this strong localization is almost in-
sensitive to the gate potential and the magnetic field direction.

Finally, we would like to underline that our model does
not include the hole bands coupling expressed in the k · p
model by the Lüttinger parameters [48]. Note however, that

as recently shown in Ref. [19] the applied conduction band
approximation underestimates the SO coupling constant for
the considered zinc-blende crystal structure. As the consid-
ered SO induced Landé factor depends on the Rashba SO
constants, we expect that the renormalization of the effective
g∗ observed in the experiments should be even greater than
predicted by our results.
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APPENDIX A: DISPERSION RELATIONS

In the paper, we have presented mainly g∗, defined as
the proportionality factor of the linear response of electronic
states to the magnetic field. For completeness, the full disper-
sion relations E (kz ) of the nanowire, including the interaction
with magnetic field as well as the Rashba SO coupling, are
presented in Fig. 13, for chosen magnetic field magnitudes
and directions. The corresponding maps presenting the energy
difference between the first excited and ground state �E are
presented in Fig. 14.

FIG. 15. (a) g∗ [Eq. (16)] and (b) averaged gxx
SO as a function of

the NW width. Calculations for the magnetic field applied along x
direction, Bx = 0.1 T and Vg = 0.2 V.
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APPENDIX B: SIZE DEPENDENCE

Calculations presented in the paper have been carried out
for the NW width W = 100 nm for two reasons. First, it
is a typical diameter of NWs fabricated by the commonly
used fabrication methods and second, for this range of NW
width, orbital effects considered here become significant. For

completeness, in Fig. 15, we present g∗(kz = 0) and gxx
SO cal-

culated with a magnetic field along the x directions for which
we observe the enhancement of the effective Landé factor.
As expected, for a small diameter, when the orbital effect
are highly reduced, the SO induced Landé factor approaches
zero, which shows that the predicted enhancement of g∗ is
observable only for NWs of moderate or large width.
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Rev. B 101, 155307 (2020).

[10] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo,
S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P.
Kouwenhoven, Phys. Rev. Lett. 108, 166801 (2012).

[11] P. Wójcik, J. Adamowski, B. J. Spisak, and M. Wołoszyn,
J. Appl. Phys. 115, 104310 (2014).

[12] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[13] Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
[14] T. Campos, P. E. Faria Junior, M. Gmitra, G. M. Sipahi, and J.

Fabian, Phys. Rev. B 97, 245402 (2018).
[15] I. A. Kokurin, Physica E 74, 264 (2015).
[16] I. A. Kokurin, Solid State. Commun. 195, 49 (2014).
[17] P. Wójcik, A. Bertoni, and G. Goldoni, Phys. Rev. B 97, 165401

(2018).
[18] P. Wójcik, A. Bertoni, and G. Goldoni, Phys. Rev. B 103,

085434 (2021).
[19] S. D. Escribano, A. L. Yeyati, and E. Prada, Phys. Rev. Res. 2,

033264 (2020).
[20] P. Wójcik, A. Bertoni, and G. Goldoni, Appl. Phys. Lett. 114,

073102 (2019).
[21] S. Furthmeier, F. Dirnberger, M. Gmitra, A. Bayer, M. Forsch,

J. Hubmann, C. Schüller, E. Reiger, J. Fabian, T. Korn, and D.
Bougeard, Nat. Commun. 7, 12413 (2016).

[22] I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R.
Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, and M.
Wimmer, Phys. Rev. B 91, 201413(R) (2015).

[23] J. Kammhuber, M. C. Cassidy, F. Pei, M. P. Nowak, A.
Vuik, Ö. Gül, D. Car, S. R. Plissard, E. P. A. M. Bakkers,

M. Wimmer, and L. P. Kouwenhoven, Nat. Commun. 8, 478
(2017).

[24] S. Dhara, H. S. Solanki, V. Singh, A. Narayanan, P. Chaudhari,
M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev.
B 79, 121311(R) (2009).

[25] Z. Scherübl, G. Fülöp, M. H. Madsen, J. Nygård, and S. Csonka,
Phys. Rev. B 94, 035444 (2016).

[26] D. Liang and X. P. A. Gao, Nano Lett. 12, 3263 (2012).
[27] S. Gazibegovic, D. Car, H. Zhang, S. C. Balk, J. A. Logan,

M. W. A. de Moor, M. C. Cassidy, R. Schmits, D. Xu, G.
Wang, P. Krogstrup, R. L. M. Op het Veld, K. Zuo, Y. Vos,
J. Shen, D. Bouman, B. Shojaei, D. Pennachio, J. S. Lee, P. J.
van Veldhoven et al., Nature (London) 548, 434 (2017).

[28] P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H.
Madsen, E. Johnson, J. Nygård, C. M. Marcus, and T. S.
Jespersen, Nat. Mater. 14, 400 (2015).

[29] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P.
Krogstrup, J. Nygård, and C. M. Marcus, Nat. Nanotechnol. 10,
232 (2015).

[30] M. Kjaergaard, F. Nichele, H. J. Suominen, M. P. Nowak, M.
Wimmer, A. R. Akhmerov, J. A. Folk, K. Flensberg, J. Shabani,
C. J. Palmstrøm, and C. M. Marcus, Nat. Commun. 7, 12841
(2016).

[31] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).

[32] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Nano Lett. 12, 6414 (2012).

[33] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

[34] H. Zhang, C.-X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G.
Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D.
Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling,
M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei,
J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers et al., Nature
(London) 556, 74 (2018).

[35] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Phys. Rev. Lett. 110, 126406 (2013).

[36] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,
177002 (2010).

[37] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.
Rev. Lett. 104, 040502 (2010).

[38] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.
105, 077001 (2010).

[39] L. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
[40] G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. B 32,

6965(R) (1985).
[41] A. A. Kiselev, E. L. Ivchenko, and U. Rössler, Phys. Rev. B 58,

16353 (1998).
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