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Nanostructured pumped-corner state in a kagome lattice
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Bulk-boundary correspondence establishes the connection between the topological properties of the bulk and
the edge states when a boundary is present. However, the boundary can be tailored to tune the appearance of
the edge states. Using a higher-order topological Hamiltonian, we engineered the appearance of a one-corner
state that can be translated between corners with a periodic parameter. As a result, we established that this is a
pumping mechanism. The one-corner state is characterized using the inverse participation ratio, and we establish
that the state has a topological invariant associated. Consequently, the state is topologically protected. Finally,
we explore the robustness to random disorder.
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I. INTRODUCTION

Topological matter has emerged as a notable research area
in condensed matter physics. One consequence of the topol-
ogy is the appearance of edge states at the boundaries, known
as the bulk-boundary correspondence [1–7]. A possible clas-
sification of topological matter is using the dimension of the
topological edge states compared to the dimension of the
boundary; this classification leads to higher-order topological
matter [8–10]. Currently, phononic, photonic, and electrical
circuits have been utilized to achieve the experimental realiza-
tion of higher-order topological insulators (HOTIs) [11–14]
and higher-order topological semimetals (HOTSMs) [15–17].

The layout of the nanosystem’s boundaries will be intri-
cately linked to the symmetries of the entire crystal. The
theoretical rise of the corner and hinge states in terms of the
symmetries of the higher-order topological crystals has been
explained previously in terms of the filling anomaly, which
plays a crucial role in understanding the emergence of these
lower-dimensional topological boundary states [18,19]. Typi-
cally, the physical properties at the nanoscale strongly depend
on the boundary. However, there is a trade-off between the
topological and trivial edge states in the topological matter.
Especially, the extension of the edge states of a higher-order
topological matter (HOTM) can depend on the shape of the
boundary [20–22].

In this paper, we explore a three-dimensional (3D) second-
order topological Hamiltonian, a three-dimensional system
exhibiting topological edge states in 1D, commonly called
hinge states [23]. Analogously, a two-dimensional system
would be a 2D second-order topological material, which will
possess topological states in 0D, better known as corner
states. As in conventional topological materials, these corner
or hinge states will be robust against perturbations and im-
purities, which means that even in the presence of disorder,
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these states will persist. Such robustness makes higher-order
topological matter attractive for potential applications in elec-
tronics [24,25] and quantum computing [26]. We focus on
one of the most intriguing phenomena of HOTMs, known as
adiabatic pumping or Thouless pumping [27]. Topological
pumping in HOTMs is characterized by topological states
(pumping states) that traverse bulk states and transport states
from one corner of a structure to the opposite corner by pe-
riodically and adiabatically evolving their Hamiltonian over
time. Recent experiments have successfully demonstrated the
existence of pumping states in photonic crystals [28] using
a Hamiltonian with C6 symmetry. In contrast, we investigate
the pumping behavior of one corner state in a C3 symmetric
higher-order topological Hamiltonian using a tight-binding
model approach of the kagome lattice [29]. Our research
demonstrates that the edge states of this crystal can exhibit
pumping between two corner states only when the nanosys-
tem’s geometry takes on the specific form of a parallelogram.
This phenomenon is achieved by introducing a temporal
dependence into the three-dimensional equivalence of its
Hamiltonian. In the following, we present the tight-binding
Hamiltonian for the three-dimensional lattice and employ the
above-mentioned approaches to propose a time-dependent
Hamiltonian capable of pumping the corner states and also
analyze their robustness against perturbations.

II. MODEL

We introduce the tight-binding model for our tridi-
mensional system, comprising bidimensional stacked layers
composed of a kagome lattice with the lattice vectors of
the unit cell a1 = a(1, 0, 0), a2 = a(1/2,

√
3/2, 0), and a3 =

h(0, 0, 1). Within each layer, three sites, denoted as A, B, and
C per unit cell, are interconnected by intracell hoppings de-
noted as tintra. Furthermore, intercell hopping tinter establishes
connections between each unit cell, while diagonal hoppings
tz couple the bidimensional layers. The model’s geometry is
illustrated in Fig. 1, and the bulk spinless Hamiltonian of the
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FIG. 1. Schematic of the crystal structure. With intracell hopping
tintra, intercell hopping tinter , and interlayer hopping tz; a and h repre-
sent lattice constants in the x-y plane and z direction, respectively.

system is given by [23,30]

H (k) =

⎡
⎢⎢⎣

0 hAB hAC

h∗
AB 0 hBC

h∗
AC h∗

BC 0

⎤
⎥⎥⎦, (1)

where hAB = tintra + t ′
intere

−i(k·a2 ), hAC = tintra + t ′
intere

−i(k·a1 ),
and hBC = tintra + t ′

intere
i[k·(a2−a1 )], where t ′

inter = tinter +
2tz cos(kzh). Particularly, the breathing kagome lattice
has demonstrated performing as both a HOTI [31–34]
and a HOTSM [30]. In accordance with Ref. [30],

in the semimetal case tintra = t ′
inter and the degenerate

points correspond to K± = (4π/3a, 0,±kw/h), where
kw = arccos (tintra − tinter/2tz ). The bulk Hamiltonian can also
be written in the form

H (k) = tintraĥintra + [tinter + tz cos (kz/h)]ĥinter (kx, ky), (2)

where

ĥintra =

⎡
⎢⎢⎣

0 1 1

1 0 1

1 1 0

⎤
⎥⎥⎦,

ĥinter (kx, ky) =

⎡
⎢⎢⎣

0 e−ia2·k e−ia1·k

eia2·k 0 ei(a2−a1 )·k

eia1·k e−i(a2−a1 )·k 0

⎤
⎥⎥⎦. (3)

A. Parallelogram geometry

We aimed to model nanostructures capable of exhibiting
higher-order topological states. Previously, in the particular
case when the nanosystem takes on a triangular geometry,
it has been shown that the topological edge states can be
localized at the corner or bearded edge in the lattice [20,33].
Figure 2 illustrates three systems’ structures and energy bands
with parallelogram geometry in the x-y plane. While these
systems share the same global geometry, slight variations in

FIG. 2. Energy spectra of three types of parallelogram systems. The dispersion bands [(a)–(c)] correspond to the geometries [(d)–(f)],
respectively. The parameters for all cases were chosen as tintra = −1, tinter = −2.4, and tz = −1 in arbitrary units. The lattice constants a and h
are chosen as unity. To calculate the dispersion bands in [(a)–(c)], we considered L = 17 unit cells along the x-y edges of the parallelogram.
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FIG. 3. Zero-energy pumped state. (a) Probability density of
states for four representative kz values of the zero-energy state for
the geometry in Fig. 2(e). (b) Band structure colored by IPR for the
case shown in Fig. 2(b). The dotted lines indicate the areas where
the zero-energy flat band overlaps with the bulk bands. The lattice
parameters for all cases are the same as in Fig. 2. We considered
L = 17 unit cells along the x-y edges of the parallelogram.

the boundary geometry lead to distinct appearances of zero-
energy states.

In the first case [Fig. 2(a)], we observe two zero-energy
boundary states and two boundary states with energies E =
±1[tintra]. The second case [Fig. 2(b)] arises from the first case
by cutting the sites at their top and right boundaries, resulting
in one zero-energy state. In contrast, the third case emerges
from cutting the bottom of the second case, and in this ge-
ometry, we do not obtain states with zero energy [Fig. 2(c)].
These examples highlight the relevance of the system’s edge
geometry and the robustness of its energy bands to changes in
geometry.

We focus on the case illustrated in Fig. 2(b). To investigate
the emergence of corner states for this system, we present the
top view of the probability density for the zero-energy flat
band in Fig. 3(a), varying the parameter kz. At kz = ±π , the
flat band localizes at the upper right corner of the parallel-
ogram, while at kz = 0, the state localizes at the lower left
corner. The state delocalizes along the system for kz ∼ ±kw.
To visualize the degree of localization of the zero-energy
state, we plot the energy bands in Fig. 3(b) for this geometry
depending on the value of the inverse participation ratio (IPR)

FIG. 4. Schematic representation of Wannier centers in the trivial
and topological phases protected by C3 symmetry. (a) represents the
trivial topological phase. The red, green, and gray sites are the sites
of the kagome lattice, while the black dots represent the Wannier
centers. (b) and (c) represent the OAL topological phases where we
have a filling anomaly. The pink hexagons delimit the unit cells.

[35,36]. The most localized state corresponds to the flat band
with zero energy. This observation suggests the possibility of a
higher-order topological charge pumping from the upper right
corner to the lower left corner using the kz parameter.

B. Topological protection

Following Ref. [30], the second-order topological index
ensures the localization of corner or hinge states and their
quantization and protection by the crystalline symmetries of
the system. These symmetries also govern the positions of
Wannier centers, aligning them with the maximal Wyckoff
positions in the unit cell [9,28]. For the system proposed in
this study, the C3 symmetry protects the second-order topo-
logical index [37], resulting in Wannier centers at the corners
of the unit cells [23]. As we will show below, this leads to a
quantized charge at either the upper right or upper left corner
of the parallelogram system; this phenomenon is better known
as a filling anomaly [18,19]. In contrast, the trivial phase is
characterized by Wannier centers positioned at the centers
of the unit cells, without any filling anomaly [black dots in
Fig. 4(a)].

Consequently, the proposed charge pumping adiabatically
connects the trivial and nontrivial phases [commonly known
as obstructed atomic limit (OAL) phases] through the param-
eter kz. An intuitive way to illustrate how the concentration
of a state at a corner occurs in these crystalline systems is
by visualizing them as extensions of the Su-Schrieffer-Heeger
(SSH) model. In Fig. 4(b), the OAL corresponding to tintra =
0 is illustrated where the black dots represent the Wannier
centers. In this limit, it becomes evident that the bottom-left
boundary is separated completely from the bulk, and that
corner corresponds to an isolated site of two dimerized chains
of the SSH model. It is crucial to emphasize that both chains
share a single isolated site, resulting in a zero-energy state.

The other OAL phase is illustrated in Fig. 4(c), where
tinter = 0. In this limit, the two dimerized chains of the SSH

085402-3



TAPIA-DE-LA-ROSA AND BARRIOS-VARGAS PHYSICAL REVIEW B 109, 085402 (2024)

TABLE I. Topological invariant indices for C3 symmetry gener-
ators. According to Ref. [18], h(3)

2c and h(3)
2b represent the primitive

generators of the rotation symmetry and their corresponding topo-
logical invariants.

Invariants

Symmetry Generator [K(3)
1 ] [K(3)

2 ]

C3 h(3)
2c 1 0

h(3)
2b 1 −1

model allow one isolated site at the top-right boundary of
the parallelogram. As a result, the system hosts a zero-energy
state. This state represents a topological state protected by the
system’s crystalline symmetries and the invariant associated
with its generator, h(3)

2c [18].
Moreover, we will delve into the topological invariants

arising from the crystal symmetries of our system, following
the approach proposed by Benalcazar et al. [18,28] which was
addressed before in Ref. [38] considering symmetry reps to
form invariants generally. Because our model includes two
OAL phases protected by C3 symmetry, their topological clas-
sification is determined by the following indices [18],

χ (3) = ([
K(3)

1

]
,
[
K(3)

2

])
, (4)

where [K(3)
1 ] and [K(3)

2 ] are the integer topological invariants
which can be calculated through the values established in
Table I [18].

The topological invariant χ (3) holds a direct connection
to primitive generators of the crystalline system denoted as
h(n)

mCenter where m denoted the filled bands with the Wannier
centers at the center position for a Cn rotation symmetry [18],
providing a physical understanding of the filling anomaly
emergence. These system generators may vary depending on
the positions of their Wannier centers, which are fixed based
on the maximal Wyckoff positions of the unit cell. When kz =
±π , our tight-binding Hamiltonian exhibits a corresponding
primitive generator known as h(3)

2c [18]. This generator local-
izes three Wannier centers: two at the upper corners and one
at the lower corner of the hexagonal unit cell [black dots in
Fig. 4(c)].

Upon analyzing the positions of the Wannier centers at
the boundaries in the parallelogram-shaped system shown in
Fig. 4(c) (black dots), a discrepancy between the number of
unit cells and the number of Wannier centers on the right and
upper boundaries becomes clear. This discrepancy leads to a
filling anomaly, resulting in a nonzero polarization and the
localization of a state in the upper-right corner, which corre-
lates with the probability density of the flat band illustrated in
Fig. 3(a). As a consequence, the topological index indicates a
nontrivial phase (OAL phase), and, based on Table I, it takes
the value χ (3) = (1, 0).

Similarly, at kz = 0, the corresponding primitive generator
is denoted as h(3)

2b , leading to a topological index value of
χ (3) = (1,−1). In this case, the Wannier centers are located at
one upper corner and two lower corners of the unit cells [black
dots in Fig. 4(b)]. Upon analyzing the figure, it becomes evi-
dent that there is a mismatch between the number of unit cells

FIG. 5. Multiband Berry phase. (a) Geometry of the system and
energy spectrum for the calculus of the multiband Berry phase in
(b) and (d) with L = 3 unit cells along the x-y edges, (b) multiband
Berry phase depending of the value of the hoppings tintra and tinter ,
(c) energy spectrum depending of the ratio tintra/t ′

inter using L = 20
unit cells along the x-y edges of the parallelogram, and (d) average
multiband phase vs Anderson-type disorder parameter W . The values
of the parameters tintra, tinter , and tz for this case are the same as in
Fig. 2.

and the number of the Wannier centers on the bottom and left
boundaries of the parallelogram. As a result, a filling anomaly
occurs again, leading to nonzero polarization and state local-
ization in the bottom-left corner [see Fig. 3(a)]. Notice that the
model is protected by C3 but the edge configuration clearly
breaks C3. However, the positions of the Wannier centers
remain unchanged for the corresponding hexagonal unit cells
on the edge, despite the breaking of C3. When kz = ±kw, the
topological index takes the trivial value of χ (3) = (0, 0). In
these cases, there is no filling anomaly as the Wannier centers
are positioned at the centers of the unit cells [black dots in
Fig. 4(a)], leading to a delocalization of the state along the
system.

C. Robustness to disorder

In Fig. 5(a) we present the special case of the parallelogram
geometry with L = 3 unit cells along the x-y edges and their
energy bands where the zero-energy flat band is isolated from
the other bands. Therefore, the bands for this system size do
not present degeneracy, and we can calculate the multiband
Berry phase without considering degeneracy [39]. For this
system, Fig. 5(b) displays the multiband Berry phase of the
bands less than and equal to zero as a function of the values of
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the couplings tintra and tinter. In this graph, we can identify the
case portrayed in Fig. 3, where tintra = −1.0 and tinter = −2.4
exhibiting a multiband phase equal to π , and a range of values
where the multiband phase is equal to π . This means the
presence of a pumping state. Inducing a phase in this type of
pumping arises from the shift in the positions of the Wannier
centers. The transition region without a multiband phase (and
hence the loss of pumping state) in Fig. 5(b) is consistent with
the energy bands of L = 20 unit cells along the x-y edges of
the parallelogram plotted in Fig. 5(c). In Fig. 5(c), the region
outside the vertical dashed lines is recognized where the flat
band with energy E = 0 does not have contact with the bulk
bands, consequently leading to the absence of pumping.

We also examined the robustness of the topological states
in the presence of Anderson-type disorder, which involves
varying the on-site energies within a range of uniform random
values between −W and W , where W is a disorder parameter.
Previous studies have demonstrated that disorder can induce
a transition of the topological Thouless pumping to a trivial
phase. However, it has also been found that the topological
pumping will persist under weak disorder [40]. In Fig. 5(d),
we present the average multiband phase value as a function of
the disorder strength W . It is evident that as W increases, the
average multiband phase deviates from its π value and starts
to decrease. The region where the average multiband phase
remains relatively constant [depicted as the light red zone in
Fig. 5(d)] allows us to identify the range of robustness of the
topological pumping against Anderson-type disorder.

III. EXPERIMENTAL REALIZATION

According to Fig. 3, the transport from one corner to an-
other is possible through the eigenstate corresponding to the
flat band in Fig. 3(b) if we take the parameter kz and change it
to a temporal parameter. The time-dependent Hamiltonian for
the kagome crystalline system, in this case, changes to H(t ) =
tintraĥintra + tinterĥinter + H (t ), where H (t ) = 2tz cos(t/T )ĥinter.
The terms ĥinter and ĥintra correspond to (3). In the published
work by Benalcazar et al. [28], they present a novel realization

of a higher-order pumping state using photonic waveguides.
The essence of this pumping technique revolves around ex-
tending a 3D crystalline system into a 2D system with an
additional temporal coordinate. The pumping process is ac-
complished through the adiabatic modulation of a specific
parameter in the Hamiltonian. Consequently, the system pro-
posed in this study suggests the possibility of its realization
in a similar manner. Another proposed experimental alterna-
tive is through acoustic crystals, where zero-energy corner
topological states have previously been observed in Ref. [41].
Yet another alternative could be topoelectrical circuits, which
have also demonstrated the experimental realization of corner
modes [42]. A 2D acoustic crystal with a parallelogram geo-
metric shape has previously been experimentally realized in
Ref. [33], where a corner state was observed. Recently, corner
state transfer mapping has been experimentally carried out
using acoustic crystals [43].

IV. CONCLUSION

Ultimately, the findings of this study demonstrate that al-
though the geometry of the nanosystem does not maintain the
identical symmetry of the crystalline unit cell from which it
emerges, a bulk-boundary correspondence persists. We pro-
vide an intuitive approach to anticipate the emergence of
corner states within a nanosystem at E = 0, and we identify
the need for the zero-energy state mix with the bulk states
to have a corner-to-corner pumping mechanism. Conversely,
we introduce a time-dependent Hamiltonian with the potential
to control these states and facilitate charge pumping from
one corner to another. Such a phenomenon holds promise
for practical implementation within photonic crystals through
experimentation.
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