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Polarization dynamics of trapped polariton condensates with PT symmetry
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We propose a grated microcavity setup to form trapped polariton condensates with parity-time (PT ) sym-
metry and study their polarization dynamics. The pseudoconservative dynamics of the Stokes vector in the
proposed configuration is preserved in the presence of a polariton-polariton interaction. In the case of weak
gain-dissipation imbalance, as compared to the linear polarization splitting, the polarization Stokes spheres
are deformed into ellipsoids. When linear polarization splitting becomes weak, i.e., when PT symmetry is
broken for a noninteracting system, the Stokes spheres are transformed into hyperboloids, but the dynamics is
still described by closed trajectories, allowing manipulation of the polarization of the polariton condensate by
changing the polarization splitting without losing its coherency.
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I. INTRODUCTION

The discovery of exciton-polariton condensation and lasing
[1,2] marked an important milestone in modern nonlinear
optics. Due to the excitonic component of a polariton quasi-
particle, the space configuration of the condensates can be
managed by pump and external fields, while the polarization
of the condensate provides evidence of spontaneous symmetry
breaking and monitors the dynamics of the order parameter
[3–5]. Even in the simplest case of a single trapped polariton
condensate, which is spatially disconnected from the reser-
voirs of incoherent exciton polaritons created by pumping
[6,7], the polarization state can be rather nontrivial. It can
exhibit the formation of a circular polarization degree with
random handedness, manifesting the spontaneous breaking of
parity [8]. Furthermore, the handedness can be manipulated
by an applied electric field, which controls the splitting ε

between X and Y linearly polarized states, which can be useful
for computation with low-energy consumption [9].

While the polariton condensate is a driven-dissipative sys-
tem, the symmetry breaking resulting in the spontaneous
formation of circular polarization could be understood by con-
sidering the condensate as a conservative Hamiltonian system.
In this approximation, the dynamics is mapped to that of the
Bose-Hubbard dimer [10–14], or, if one uses the Schwinger
realization of the angular momentum, to the dynamics of
the Lipkin-Meshkov-Glick model [15,16], where the parity
symmetry breaking is known as the formation of self-trapped
many-body states [17,18]. The behavior of these systems,
especially close to the long-period classical trajectories, has
attracted much attention recently to study scrambling [19,20],
quantum phase transitions [21], and possible applications for
classical and quantum informatics.

Based on these features of polariton dimers, recently there
is growing interest in the use of polariton condensates as
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possible elements for classical and quantum computing [22].
The main obstacle comes from the fact that polariton con-
densates are dissipative systems, and to produce and maintain
them it is necessary to apply external pumping, which eas-
ily destroys long-time coherence and related quantum effects
such as entanglement between the condensates in a network.
To apply polariton condensates for information and computa-
tion goals it is desirable to force the condensate to possess
conservative or pseudoconservative dynamics. The latter is
characterized by a continuum of closed orbits in the classical
phase space, or by the real energy spectrum in the quantum
limit. A promising method to achieve this is to form parity-
time (PT ) symmetric polariton condensates [23,24].

Since the pioneering work by Bender and Boettcher [25],
the non-Hermitian PT -symmetric systems have attracted
much attention both theoretically and experimentally (see
Ref. [26] for a review). These systems can possess a real-
valued energy spectrum if the PT symmetry is unbroken,
or pairs of complex-conjugate energy eigenvalues when the
symmetry is spontaneously broken. The latter case is usually
achieved for a big enough non-Hermitian part of the Hamil-
tonian. In a typical example of a two-state quantum system,
characterized by the coherent coupling ε and dissipative cou-
pling γ between the states, the PT symmetry becomes broken
for |γ | > |ε|, which is unwanted if one aims to manipulate
the system state by an adiabatic change of ε. The account
of a polariton-polariton interaction leads to nonlinear equa-
tions with even more complex behavior [27]. In particular, the
spontaneous parity breaking in the case of a Bose-Hubbard
dimer is accompanied by the suppression of time reversal [28].
This results in broken PT symmetry even for a small dissi-
pative coupling parameter, that is manifested by the blowup
dynamics [29] with disclosed classical trajectories.

To overcome these difficulties, in this paper we propose
and analyze a special grated microcavity setup that introduces
a dissipation imbalance and polarization splitting between
different linearly polarized states. This allows building the
PT -symmetric polariton condensates, and we demonstrate
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FIG. 1. Schematic view of the microcavity with subwavelength
grating of one distributed Bragg mirror. The grating induces different
dissipation rates for polaritons with diagonal [100] and antidi-
agonal [010] linear polarizations, while there is energy splitting
between [110] (X direction) and [1̄10] (Y direction) linearly polar-
ized polaritons.

the persistence of pseudoconservative dynamics even at high
occupation levels, where the polariton-polariton interaction
and related nonlinearities are important.

II. MICROCAVITY STRUCTURE AND THE MODEL

The polaritons in semiconductor microcavities, grown
along the [001] direction, present a linear polarization
dichroism, characterized by the splitting ε between the X (hor-
izontal) and Y (vertical) linear polarizations, that are defined
by the crystallographic [110] and [1̄10] axes, as shown in
Fig. 1. This splitting appears mainly due to the mixture of the
light- and the heavy-hole exciton components of a polariton
wave function on the low-symmetry interfaces of the quantum
wells [30–32]. The splitting is typically about tens of μeV.

Apart from the Hermitian splitting between the linear po-
larization components, we propose to introduce polarization-
dependent dissipation. This can be achieved by weak sub-
wavelength grating (SWG) of the microcavity surface, which
makes reflectivity of the distributed Bragg mirror dependent
on the polariton polarization [33,34]. To obtain a suitable dis-
sipation imbalance one can use a microcavity grated along the
diagonal or antidiagonal direction, i.e., along either the [100]
or [010] direction. This introduces a difference in the lifetimes
of polaritons with diagonal and antidiagonal polarizations. In
this configuration, the single-polariton Hamiltonian describ-
ing the polarization state of a trapped polariton can be written
in a circular polarization basis as

Hs = −1

2

(
ig ε − iε′ + γ

ε + iε′ − γ ig

)
. (1)

Here, g = � − W , where W is the external nonresonant pump-
ing rate, � is the average dissipation rate, and γ defines the
dissipation imbalance (we set h̄ = 1). In general, weak SWG
induces an addition splitting, which we encoded in Eq. (1) by
the parameter ε′. It is important to note that the Hermitian
parts of the single-polariton Hamiltonian (1) can be tuned
by an applied electric field [9] and by the strain [35,36],
and in what follows, we assume that the additional splitting
is removed, ε′ = 0. The idea to introduce the coherent and
dissipative couplings in the X and Y directions, respectively,

is to maintain the closed trajectories even in the presence
of interactions. This happens because the spin orbits of the
Bose-Hubbard dimer remain symmetric under the inversion
y → − y.

As a result, when the external pump of the conden-
sate matches the average dissipation from the microcavity,
i.e., g = 0, the condensate is described by the PT -
symmetric Hamiltonian Hs0 = −(εσx + iγ σy)/2 with the
energies ±

√
ε2 − γ 2/2. The general description of the 2 × 2

PT -symmetric matrices can be found in Ref. [37]. In our
case, the parity operation is defined by the Pauli x matrix,
P = σx, while the time-reversal operation is T = Kσx, where
K is the complex conjugation, so that any real matrix is in
fact PT symmetric. Note that the time inversion, apart from
complex conjugation, also exchanges the circular polarization
components. It is worth noting also that the Hamiltonian (1)
describes as well the asymmetric hopping between two lo-
calized states, which for the case of a chain of such states is
known as the Hatano-Nelson model [38].

The many-body extension of our model accounts for the
interaction of polaritons with the same circular polarization,
which corresponds to the following equations,

i
dψ̂±1

dt
= −1

2
(ε ± γ )ψ̂∓1 + α

2
ψ̂

†
±1ψ̂

2
±1, (2)

for the dynamics of the annihilation operators of polaritons
with right (+1) and the left (−1) circular polarizations, where
α is the interaction constant. It is convenient to introduce the
spin operators as ŝk = 1

2 (�† · σk · �) for k = 0, x, y, z, where
the column vector � = (ψ̂+1, ψ̂−1)T, σx,y,z are the Pauli ma-
trices, and σ0 is the 2 × 2 identity matrix. The spin dynamics
is then governed by the equations

dŝ0

dt
= −γ ŝy,

dŝx

dt
= −α

2
{ŝz, ŝy}, (3a)

dŝy

dt
= −γ ŝ0 + εŝz + α

2
{ŝz, ŝx}, dŝz

dt
= −εŝy, (3b)

where {ŝk, ŝl} = ŝk ŝl + ŝl ŝk .
It is easy to see that the single-polariton energies are real

and the PT symmetry is unbroken for |ε| > |γ |, and it is
important to note that the presence of a polariton-polariton
interaction does not change this fact. The non-Hermitian
Bose-Hubbard Hamiltonian that corresponds to Eq. (2) is

Ĥ = − (ε + γ )

2
ψ̂

†
+1ψ̂−1 − (ε − γ )

2
ψ̂

†
−1ψ̂+1

+α

4

[
ψ̂

†2
+1ψ̂

2
+1 + ψ̂

†2
−1ψ̂

2
−1

]
, (4)

or, using the spin operators,

H = H0(ŝ) + iH1(ŝ), (5a)

H0(ŝ) = −εŝx + α

2

[
ŝ2

z + ŝ2
0 − ŝ0

]
, (5b)

H1(ŝ) = −γ ŝy. (5c)

This Hamiltonian can be transformed into an Hermitian oper-
ator by the Dyson transformation e−t ŝzHetŝz with tanh(t ) =
γ /ε, which eliminates the H1 part and renormalizes the
Josephson coupling parameter to ε̃ =

√
ε2 − γ 2.
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In the opposite case, |ε| < |γ |, the PT symmetry is broken
and the single-polariton energies becomes complex. Including
the polariton-polariton interaction actually improves the situa-
tion. As we show below in the mean-field approximation valid
for large occupation numbers, this model preserves pseudo-
conservative dynamics even for small splittings ε.

III. SEMICLASSICAL DYNAMICS

In the mean-field approximation, the spin operator ŝ =
{ŝx, ŝy, ŝz} is replaced by a three-dimensional (3D) vector

S with the length S =
√

S2
x + S2

y + S2
z . The length is not

conserved in our case and the spin satisfies the dynamical
equation

dS
dt

=
[

dH0

dS
× S

]
+ S

dH1

dS
, (6)

or, in the components,

Ṡx = −αSzSy, Ṡy = −γ S + εSz + αSzSx, (7a)

Ṡz = −εSy, Ṡ = −γ Sy. (7b)

In what follows, we will assume that the parameters α, γ ,
and ε have positive values. In the case of negative values, one
can reestablish Eqs. (7a) and 7(b) with positive parameters
by using appropriate transformations of the spin components.
For example, in the case of an attractive interaction, α < 0, we
apply Sx → −Sx. In the case of ε < 0 we apply Sz → −Sz

together with Sx → −Sx. Finally, in the case of γ < 0 we
invert Sz → −Sz and Sy → −Sy. By choosing ε−1 as the unit
of time we can always set ε = 1, and we also can rescale the
spin αS = s = {x, y, z} to obtain

ẋ = −zy, ẏ = −γ s + z + zx, (8a)

ż = −y, ṡ = −γ y. (8b)

The system of equations (8) has two integrals of motion,
the “energy” E and the parameter ρ, that defines the spin size:

E = −x + 1
2 z2, ρ = s − γ z. (9)

Applying these invariants we obtain the following equation for
the z component,

(
dz

dt

)2

= (ρ + γ z)2 −
(

z2

2
− E

)2

− z2

= −1

4
(z − z1)(z − z2)(z − z3)(z − z4), (10)

where instead of the parameters E , ρ, γ we also defined the
four roots z1,2,3,4 of the quartic polynomial in the right-hand
side. They are subject to z1 + z2 + z3 + z4 = 0.

Equation (10) can be solved analytically using a Möbius
(homographic) transformation

w(t ) = az(t ) + b

cz(t ) + d
, (11)

and adjusting the constants a, b, c, d to obtain the equation for
the Jacobi elliptic cosine function w(t ) = ±cn(ωt, m),(

dw

dt

)2

= −mω2(w2 − w2
0 )(w2 − 1), w2

0 = m − 1

m
,

(12)

similar to discussion in Ref. [39]. In our case, special care
should be taken concerning the number of real roots, since
one can have either all four real roots z1,2,3,4 or only two real
roots and a pair of complex ones.

Consider the case of four real roots z1 < z2 < z3 < z4. The
coefficients of the Möbius transformation can be found from
the mapping of the fixed points of Eqs. (10) and (12) as
zi ↔ wi, i = 1, 2, 3, 4, with

w1 = −1, w2 = −w0, w3 = w0, w4 = 1. (13)

Note that it is necessary to have a real w0 that corresponds to
m > 1. The parameters m and ω are then obtained from the
condition of conservation of the cross ratio for the Möbius
transformation:

(z1 − z4)(z2 − z3)

(z1 − z3)(z2 − z4)
= (w1 − w4)(w2 − w3)

(w1 − w3)(w2 − w4)
= 4w0

(1 + w0)2
.

(14)

As a result, the solution to (10) can be written as

z(t ) = ω1z4[1 ± cn(ωt, m)] + ω4z1[1 ∓ cn(ωt, m)]

ω1[1 ± cn(ωt, m)] + ω4[1 ∓ cn(ωt, m)]
, (15)

where

ω1 =
√

(z1 − z2)(z1 − z3), ω4 =
√

(z3 − z4)(z2 − z4),

(16a)

ω = 1

2

√
ω1ω4, m = [ω1ω4 + (z1 − z2)(z3 − z4)]2

4ω1ω4(z1 − z2)(z3 − z4)
.(16b)

The above expressions remain valid for the case when
there are only two real roots, if they are chosen as z1 < z4,
while z2 = z∗

3. The modulus of the elliptic cosine function
m < 1 in this case, cn(ωt, m) oscillates between ±1, and the
upper and lower signs in (15) describe the same solution,
which oscillates between z1 and z4. On the other hand, in the
case of four real roots, the modulus m > 1 and cn(ωt, m) =
dn(

√
m ωt, 1/m) oscillates between 1 and w0 = √

m − 1/m,
so that the upper sign in (15) describes oscillations between
z3 and z4, while the lower sign corresponds to oscillations
between z1 and z2. Finally, knowing z(t ) one can calculate
x(t ) = (1/2)z(t )2 − E , and using y = −ż obtain

y(t ) = ± 8ω3(z4 − z1)dn(ωt, m)sn(ωt, m)

(ω1[1 ± cn(ωt, m)] + ω4[1 ∓ cn(ωt, m)])2 . (17)

The system under consideration possesses the closed, pseu-
doconservative trajectories only. This is in sharp contrast to
the other possible PT -symmetric configurations. For exam-
ple, another way to add a non-Hermitian PT -symmetric part
to the Hamiltonian is to introduce the pump-dissipation im-
balance between the circular components, which corresponds
to H1(ŝ) = −γ ŝz. The resulting semiclassical dynamics of the
dimer is characterized by disclosed blowup trajectories and,
therefore, by broken PT symmetry [29]. While the dynamics
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FIG. 2. Different topologies of the manifolds of spin trajectories.
Showing weak dissipative coupling cases with γ /ε = 0.7 that leads
to ρc = 3.741, with (a) ρ = 3.6 and (b) ρ = 4.3, corresponding to
the spin moving on ellipsoids, and strong dissipative coupling cases
with γ /ε = 1.6 that gives ρc = 8.729, with (c) ρ = 8.5 and (d) ρ =
10.7, corresponding to the motion on hyperboloids. The fixed points
of the focus type are shown in blue, while the saddle points and the
saddle trajectories are plotted in red.

is pseudoconservative in our case, there is a qualitative change
in the topology of the manifold of trajectories with increasing
dissipation imbalance γ . As shown in Fig. 2, the trajectories
reside on the spindle-shaped ellipsoids (prolate spheroids) for
γ < ε, and on the upper sheets of the two-sheet hyperboloids
for γ > ε. Note that the lower sheets of these hyperboloids
are fictitious, so they do not represent valid manifolds of spin
trajectories.

Another important feature is the change in the number
of fixed points with increasing size of the ellipsoids or the
hyperboloids. The size is controlled by the integral ρ. One
can find the fixed points by setting the time derivatives to zero
in Eqs. (8), which gives

y = 0, z = γ ρ

1 − γ 2 + x
, (18a)

(1 − γ 2 + x)2x2 − ρ2[(1 + x)2 − γ 2] = 0. (18b)

A standard analysis of the discriminant of Eq. (18b) reveals
that this equation has two real roots for ρ < ρc, and four real
roots for ρ > ρc. The critical size ρc is

ρc = [1 + γ 2/3 + γ 4/3]3/2. (19)

This is exactly what happens in the case of weak dissipation
imbalance (γ < 1). There are two fixed points of the focus
type for 0 < ρ < ρc, as shown in Fig. 2(a). Two more fixed
points appear due to the saddle-node bifurcation at ρ = ρc.

The new focus and the saddle point initially appear at the same
spin value, and they separate from each other with increasing
ρ [see Fig. 2(b)]. A similar bifurcation takes place in the
hyperbolic case (γ > 1). We note that ρ can be negative in
the hyperbolic case and one real root of Eq. (18b) is fictitious,
so that there is only one focus below ρc and three fixed points
above it [see Figs. 2(c) and 2(d)]. Exactly at γ = 1, the spin
trajectories reside on paraboloids, with one and three fixed
points below and above ρc = √

27, respectively.
We note that there are two saddle trajectories related to

the presence of a saddle point [see Figs. 2(b) and 2(d)].
The time to go around the saddle trajectory is infinite. The
periods of the spin orbits nearby are logarithmically large.
Saddle trajectories correspond to the degeneracy of two roots
of the quartic polynomial on the right-hand side of Eq. (10):
z2 = z3 = zs with z1 < zs < z4. In this case the modulus m =
1, ω1 = zs − z1, ω4 = z4 − zs, and cn(ωt, 1) = 1/ cosh(ωt ).
Equation (15) then gives two solutions that start from the
saddle point zs at t→ − ∞, pass through either z1 of z4 at
t = 0, and return to the saddle point at t→ + ∞.

IV. DISCUSSION AND CONCLUSIONS

Generally speaking, nonresonantly excited polariton con-
densates are open systems obeying nonlinear dissipative
dynamics. Apart from typical wave phenomena, which are
sometimes interpreted using quantum language, their behavior
is within the classical concepts. Truly quantum features, such
as entanglement, are not yet evidenced experimentally. To
obtain the polariton dynamics that resembles that of the closed
conservative systems, with possible quantum effects, it is nec-
essary to detach the polariton condensates from the excitation
spots of incoherent polariton reservoirs and decrease the shot
noise produced by the harvest of polaritons by the condensate.
This can be achieved close to the condensation threshold, and
it is preferential to have a distribution of dissipation rates in
the system, so that one obtains a threshold range, where the
external pump can be adjusted.

The distribution of dissipation rates depending on polar-
ization of a trapped polariton condensate can be achieved by
using weakly grated microcavities (Fig. 1). We proposed to
use a special configuration, where the Hermitian Josephson
splitting ε and the non-Hermitian splitting in dissipation rates
γ are introduced between different linear polarization pairs:
horizontal-vertical and diagonal-antidiagonal, respectively.
This way one can produce a trapped polariton condensate
subject to a PT -symmetric Hamiltonian. Moreover, we have
shown that, at least in a semiclassical approximation, the PT
symmetry remains unbroken in the presence of a polariton-
polariton repulsive interaction.

The dynamics of a PT -symmetric polariton condensate
is characterized by closed pseudoconservative trajectories,
which opens the perspective to use it as a coherent qubit.
The analytical expressions for the trajectories are derived.
We have analyzed the bifurcations of the fixed points of this
system and the crossover in the topology of the manifolds of
trajectories. At a weak dissipation imbalance, γ < ε, the spin
of the condensate precesses on the spindle-shaped ellipsoids,
which is topologically equivalent to the usual spin precession
on a sphere. For a large dissipation imbalance, however, the
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precession takes place on hyperboloids and there is a decrease
in the number of fixed points by one. The dynamics of large
spins is featured by the presence of saddle trajectories. In
the vicinity of them, the motion is slow with large peri-
ods of precession. The rich spin dynamics of PT -symmetric
trapped polariton condensates and the bifurcations of the fixed
points make this platform promising for classical computation
and neuromorphic simulations. To establish the possibility of
quantum computation, an additional analysis of the decoher-
ence due to the environment and of the effects of noise should
be done in the framework of a fully quantum description.

The main signature of the formation of a PT -symmetric
polariton condensate is the coexistence of different dynamical
states. The switching between them is expected to be slow, as

far as the noise is weak. Experimentally, this regime should
be manifested by the formation of several distinct lines in the
spectrum, demonstrating the superposition of emission com-
ing from different fixed points, not just a single lasing line,
with possible frequency combs appearing due to long-living
periodic spin orbits.
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