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Exceptional points and phase transitions in non-Hermitian nonlinear binary systems
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A recent study [R. Hanai et al., Phys. Rev. Lett. 122, 185301 (2019)] highlighted a first-order-like dissipative
phase transition in a two-component quantum system with an exceptional point coinciding with the phase
boundary endpoint. Here, we show a disparity between the exceptional point and the endpoint which is closely
connected to the stability of solutions. We present a general phase diagram describing different phases in a
generic nonlinear binary system. The phase transition may occur also in the regime of weak coupling between
the modes, which was excluded previously. In a certain range of parameters, the system converges to a limit
cycle, which vanishes at the exceptional point. Our results emphasize the connection between phase transitions,
bistability, and exceptional points of non-Hermitian nonlinear systems in general, providing insight into strongly
coupled light-matter systems in particular.
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I. INTRODUCTION

Phase transitions correspond to significant alterations of
the properties of a system caused by the modification of
physical parameters. Examples include the ferromagnetic-
paramagnetic phase transition [1], the gas-liquid-solid transi-
tion [2], Bose-Einstein condensation in bosonic and fermionic
systems [3], the metal-insulator transition in the solid state [4],
and topological phase transitions [5]. Phase transitions may
also occur in non-Hermitian systems, which are systems that
do not satisfy the condition of Hermiticity, which is em-
bedded in quantum mechanics [6]. Here, the non-Hermitian
contributions may stem from dissipation [7] or asymmetric
coupling [8] and lead to a number of unique properties such as
nonreciprocity [9], mutually interlinked non-Hermitian phase
transitions [10], and the non-Hermitian skin effect [11].

A striking example of non-Hermitian physics that deviates
significantly from the Hermitian case is the coalescence of
eigenstates and energy eigenvalues at so-called exceptional
points (EPs). These are different from Hermitian singulari-
ties, such as diabolical points, where some of the eigenvalues
may coalesce while corresponding eigenvectors remain or-
thogonal. Exceptional points may be accompanied by a
non-Hermitian phase transition in the case of nonresonant
pumping [12] or a topological phase transition [13,14]. The
standard procedure to investigate these phase transitions is
through the study of the spectrum of the system as some con-
trollable parameters are changed [7]. Typically, the process
involves the meticulous adjustment of loss and gain in order
to achieve the desired outcome. In general, in a linear system
the presence of EPs is independent of the stability of the
stationary state to which the system evolves [15]. However,
in a nonlinear system, more than one solution may be stable,
which gives rise to the phenomena of bistability and multista-
bility [16–19]. The existence of nonlinear features may affect
the non-Hermitian effects realized in linear cases or give rise
to entirely new phenomena [20–27].

In order to examine the relationship between nonlin-
earity and non-Hermitian physics, it is necessary to study
systems that possess variable nonlinearity and controllable
gain and loss. Particularly suitable systems for this study
are those where matter couples with light, as they allow
to take advantage of the difference in the physical proper-
ties of these components. For example, it was demonstrated
that exceptional points appear naturally in light-matter sys-
tems of exciton polaritons and subthreshold Fabry-Pérot
lasers [15,28]. Moreover, it is possible to induce exceptional
points by manipulating spatial and spin degrees of freedom
of exciton polaritons in various configurations [21,29–39]. In
the case of bosonic condensates of exciton polaritons, it was
predicted that a dissipative first-order-like phase transition line
exists in the phase diagram [28], similar to a critical point in a
liquid-gas phase transition. According to this study, this phase
transition line exists in the regime of strong light-matter cou-
pling and has an endpoint which corresponds to an exceptional
point [28].

In this paper, we investigate a non-Hermitian binary model
with nonresonant pumping, accentuating the significance of
nonlinearity in a non-Hermitian phase transition. This min-
imal model can describe a wide range of physical systems,
including simple coupled oscillating modes, but also allows
to describe two-component homogeneous systems in the ther-
modynamic limit of large volume and large particle numbers.
In particular, it describes the light and matter interaction in
exciton-polariton condensation and lasing, as investigated in
Ref. [28]. We note that a separate line of research is devoted to
resonantly driven light-matter systems with a coherent forcing
term [40–45], which differ essentially from our model. We
find that the model under investigation is incomplete unless
the nonlinear saturation of gain is taken into account. Im-
portantly, saturation increases the complexity of the phase
diagram and leads to the appearance of bistability. We find
that while the first-order-like phase transition line with an
endpoint is present, the equivalence of the endpoint to an
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exceptional point as found in Ref. [28] is no longer valid
in the general case. The phase diagram of Ref. [28] can be
restored in the limit of strong saturation, but the transition can
occur also in the weak-coupling regime. This suggests that the
second threshold from polariton to photon lasing, observed in
experiments [46–48], may be related to a dissipative phase
transition in the weak-coupling regime. Moreover, we find
a regime of limit cycle solutions due to a Hopf bifurcation,
which eventually disappear at an exceptional point.

II. MODEL AND ANALYTICAL SOLUTIONS

We consider a two-mode anharmonic system described
by a non-Hermitian Hamiltonian with gain and loss, in the
absence of resonant forcing terms. The imbalance between
gain and loss in a linear system leads in general to solu-
tions exponentially growing or decaying in time. To obtain
nontrivial stationary solutions it is necessary to include non-
linearity. Here, we adopt cubic nonlinearity that appears
naturally in symmetric systems with no dependence on the
complex phase. Such a model can be realized, for instance,
in a microcavity [49] or a coplanar waveguide [50]. The
system is described by complex functions ψC = nCeiϕC and
ψX = nX eiϕX . We may refer to those fields respectively as
cavity photons and excitons in the case of a microcavity, how-
ever, they can assigned to any physical modes as long as one
of them (C) experiences loss and the other one experiences
saturable gain and nonlinearity (X ). The dynamics is governed
by equations ih̄∂t |�〉 = H |�〉 with |�〉 = (ψC, ψX )T, where
the non-Hermitian Hamiltonian H is given by [28]

H =
(

EC − ih̄γC h̄�R

h̄�R EX + g|ψX |2 + ip

)
. (1)

Here, h̄�R is the coupling strength, γC is the decay rate of
the photon field, and p represents the gain to the exciton field.
This gain can be realized in practice by nonresonant optical
or electrical pumping. We note that the above description
does not explicitly include the incoherent reservoir, which is
justified under certain conditions such as the separation of
timescales for the reservoir and polaritons [51]. We define the
complex nonlinear coefficient as g = g1 − ig2, where g1 is the
strength of Kerr-like nonlinearity and g2|ψX |2 is the saturation
term. The spectrum of Hamiltonian (1) is

E = 1
2

[
Ec + E + i(P − h̄γc)

±
√

4h̄2�2
R + [E − Ec + i(P + h̄γc)]2

]
, (2)

where P = p − g2(nSS
X )2 and E = Ex + g1(nSS

X )2. For conve-
nience, we denote the solution associated with plus (minus)
by U (L). The respective steady state analytical solutions
|�〉 = |�0〉e−iEt can be found from the condition Im[E ] = 0.
In Ref. [28], it was argued that one or two real-energy solu-
tions exist in certain regions in parameter space. However, it
can be seen from (2) that except from special values of the pa-
rameters, real-energy solutions can exist only when saturation
represented by g2 is taken into account. We will show below
that accounting for the nonlinear g2 term does in fact lead to
the appearance of up to three real-energy solutions, each of

them of the form (2). The condition Im[E ] = 0 allows one to
find analytical expression for nSS

X ,

(nSS
X )2 = 1

g

(
Re[E ] − EX − iP − (h̄�R)2

Re[E ] − EC + ih̄γC

)
.

(3)

The resulting explicit formula for nSS
X is tedious, but for a

given nSS
X , one can find closed forms of steady state nSS

C and
ϕCX = ϕC − ϕX ,

nSS
C = nSS

X

√
p

h̄γC
−

(
nSS

X

)2
g2

h̄γC
, (4)

ϕSS
CX = arg

(
δ − g1(nSS

X )2

h̄�R
(
nSS

C /nSS
X − nSS

X /nSS
C

) − i
γCnSS

C

�RnSS
X

)
, (5)

where we introduced photon-exciton energy detuning
δ = EC − EX .

III. RESULTS AND DISCUSSION

A. Non-Hermitian first-order-like phase transitions

We use the analytical solutions from the previous section to
determine the phase diagram. We analyze steady state so-
lutions and their multiplicity in Fig. 1(a). Additionally, we
consider the lowest-energy state among the dynamically sta-
ble ones [see Fig. 1(b)]. The latter is equivalent to adding
a weakly coupled energy sink, which does not perturb the
spectrum, but picks the lowest-energy stable solution due to
its energetic stability.

In the case when the conservative nonlinearity g1 is
stronger than the dissipative nonlinearity g2, representative
phase diagrams are shown in Fig. 1. We focus on the
blue-detuned case (δ > 0), which is much richer that the red-
detuned case. In Fig. 1(a) the number of steady state solutions
is shown. Up to three nonzero solutions, corresponding to both
the upper and lower branches of Eq. (2), can exist, which
results from the nonlinearity of the system. The region of zero
solutions corresponds to the situation where pumping cannot
overcome losses and no lasing nor polariton condensation
occurs. For a given � and γC , increasing pumping p can lead
to one or several thresholds, as indicated with horizontal lines.

Special points in the phase diagram (marked by stars in
Fig. 1) include the exceptional point (EP) and the endpoint
of the first-order-like phase transition (ET). In contrast to
Ref. [28], we find that in general they do not coincide. An-
alyzing the eigenvalues in Eq. (2), one can find the following
conditions for the EP,

pEP = h̄�R + g2δ

g1
, γC = �R. (6)

This can occur when nSS
X = √

δ/g1, that is, whenever the
system is blue detuned (δ > 0). On the other hand, the ET
point is clearly visualized in the phase diagram that takes
into account the energetic instability in Fig. 1(b). The first-
order-like phase transition line begins at the ET point in the
weak-coupling regime (γC > �R) and follows the arc repre-
sented by the ET-EP line towards the EP point. Below the
EP, the phase transition line follows into the strong-coupling
regime. We conclude that, contrary to the results of Ref. [28],
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FIG. 1. (a), (b) Phase diagrams of binary system (1). In (a), the
number of stationary states is marked with colors in the function of
photon decay rate (γc) and pumping strength (p). In (b), only the
lowest-energy stable state is shown. Here, colors indicate the real
part of the energy. In (a) and (b), the exceptional point (EP, red
star) and the endpoint of the first-order-like phase transition (ET) are
shown. At the C-line two solutions coalesce and the periodic solution
vanishes. Cross sections of constant γc with different numbers of
thresholds (th) are marked with horizontal lines. In (c), we show the
case γC = �R, for which the energy eigenvalues coalesce at the EP.
Stable solutions are marked with S and black lines, while unstable
solutions are marked with US and orange lines. (d) shows the real
part of energy for different pumping and decay rates. The ET point
corresponds to the transition to bistability at γC > �R. This cross sec-
tion is depicted in (e), while in (f) we show the case γC < �R, where
the unstable solution is split into two branches, and the lowest-energy
solution becomes unstable. Other parameters are [52] δ = 0.2h̄�R,
g1 = 0.1h̄�R, EX = 0, EC = 0.2h̄�, and g2 = 0.3g1.

the first-order-like phase transition can occur also in the
weak-coupling regime. This can be explained by a simple
physical argument. Since the pumping influences the effec-
tive detuning between modes δ̃ = EC − [EX + g(nSS

X )2], the
increase of pumping can change of the sign of δ̃, leading to an
abrupt change of the lowest-energy state in the weak-coupling
regime.

Figure 1(d) shows the dependence of the real part of the
energy of solutions shown in Figs. 1(a) and 1(b), in the

2

0

(a) (b)

FIG. 2. Phase diagrams in the case when dissipative nonlinearity
g2 dominates over the conservative nonlinearity g1. The endpoint of
the phase transition (ET) and the exceptional point (EP) coincide,
recovering the results of Ref. [28]. Parameters as in Fig. 1, except for
g2 = 4.5g1.

vicinity of the ET-EP line. As can be seen, the ET point is the
point of the transition to bistability. On the other hand, the EP
point corresponds to a turning point in the bistability curve.
The cross section including the EP point (γC = �) is depicted
in more detail in Fig. 1(c), which shows the occurrence of
two stable branches from the upper and lower branches of
Eq. (2) and one unstable branch. At the EP, the unstable upper
branch coalesces with the lower stable branch, leading to the
first-order-like phase transition. The cross section with the ET
point (γC > �R) is shown in Fig. 1(e), where the bistability
curve closes, and the transition from the upper to lower branch
becomes smooth. This leads to the possibility to encircle the
exceptional point, as indicated with arrows in Fig. 1(d).

Interestingly, additional features that have an influence on
the physics of the system can occur in the strong-coupling
case (γC < �R) [see Fig. 1(f)]. These include the disappear-
ance of one of the solutions in a certain parameter range and
the dynamical instability of the lowest-energy branch (marked
with an orange line). Consequently, the upper, higher-energy
solution may become the only stable solution.

In the opposite case when the dissipative nonlinearity g2

dominates over the conservative one g2, we find that the phase
diagram of energetically stable solutions recovers the results
of Ref. [28] (see Fig. 2). As the dissipative nonlinearity is
increased, the length of the ET-EP arc decreases, and finally
the two points coalesce. In this specific case, the exceptional
point is characterized by a jagged crest in the phase diagram,
embodying a third-order exceptional point (see Supplemental
Material [53]).

B. Permanent oscillations

Our analysis allows to predict that a peculiar oscillat-
ing state may form next to the coalescence line (C-line) in
Fig. 1(a). In this case, long evolution leads to periodic os-
cillations, or a limit cycle, instead of stationary solutions. To
explain this phenomenon, we examine Jacobian eigenvalues
of linear stability (denoted by λ) given in the Supplemental
Material [53]. Examples are shown in Figs. 3(a) and 3(b). In
close proximity to the C-line [pC = (g2/g1)δ + h̄γC] the sta-
bility of the steady state changes. As we approach pC , the only
stable solution becomes unstable, as two complex eigenvalues
cross the imaginary axis in the Argand map [Fig. 3(b)], and a
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(a) (b)

(c) (d) (e)

FIG. 3. (a) Example of oscillations converging to a limit cycle.
The red point is the initial condition that is close to an unstable fixed
point. (b) Argand map of Jacobian eigenvalues of fixed points. As
the real part crosses the zero axis, oscillations appear. [(c)–(e)] Imag-
inary part of the spectra of elementary excitations corresponding to
three points (αi=1,2,3) in Fig. 1(c). [(c)–(e)] correspond to α1, α2, and
α3, respectively. The stability region in (d) is marked in gray. Parame-
ters are p = 0.775h̄�R, γC = 0.75�R, g1 = 0.1h̄�R, g2 = 0.3g1, and
δ = 0.2h̄�R.

periodic solution emerges (see Supplemental Material [53] for
more details). This oscillation is due to Hopf bifurcation [54].
As shown in Fig. 3(a), the fixed point is unstable and the blue
trajectory converges to the stable orbit. The frequency of oscil-
lations can be approximated by the gap in the complex plane
shown in Fig. 3(b), that is, h̄� = 2 Im[λ0] with Re[λ0] = 0.
At p = pC , the periodic solution dies out and the solutions
coalesce to a single point with nSS

C = nSS
X = √

δ/g1 and ϕCX =
sin−1[−γC/�]. When the parameters of the system approach
the exceptional point (�R = γC) the two solutions meet at a
stable point. Therefore, the exceptional point is the endpoint
of the C-line. In other words, the C-line is where the oscil-
latory solutions vanish. At the EP, the system has only one,
stable, degenerate solution.

C. Spatial fluctuations

Our model can describe both simple, discrete bi-
nary systems, and extended homogeneous systems in the

thermodynamic limit. In the latter case, nonlinearity may give
rise to elementary excitations, which may be of a classical
or quantum [55] nature. Such fluctuations can be analyzed
via linearization around the steady state and plane-wave ex-
pansion, ψ j = ψSS

j + ε(u jeikxx + v∗
j e

−ikxx ), where j = C, X .
Keeping terms linear in ε, the dynamics of fluctuations δψ =
(uX , uC, v∗

X , v∗
C )T follow ih̄∂tδψ = Lδψ , where L is given

in the Supplemental Material [53]. The imaginary parts of
eigenvalues of L, denoted by ω, are shown in the lower panels
of Fig. 3, for three points in the bistable regime as marked by
αi=1,2,3 in Fig. 1(c). The solutions corresponding to α1 and α2

are stable against spatial fluctuations if Im[ω] < 0. One can
see that the fluctuations of the lower-branch α2 solution are
not stable at high momentum. Therefore, this solution may be
stable only in the case when additional effects that suppress
these high-momentum modes come into play, such as energy
relaxation [56].

IV. CONCLUSION

We showed that, contrary to previous understandings,
non-Hermitian two-mode systems exhibit a first-order-like
dissipative phase transition with an endpoint that in general
does not coincide with the exceptional point. While the end-
point is where the bistability appears, the exceptional point is
where the stable and unstable solutions coalesce. We demon-
strated that a first-order-like phase transition may occur in the
weak-coupling regime, and that for certain values of parame-
ters one can predict oscillatory solutions, which converge to a
stable exceptional point.

The predicted results contribute to the ongoing debate
surrounding polariton/photon lasing in a nonlinear polariton
system. The presented results are also applicable to a much
broader class of systems. The non-Hermitian Hamiltonian in
Eq. (1) describes an arbitrary two-mode nonlinear system
with gain and loss in the two modes, and the cubic non-
linearity in one of them. This term appears naturally in any
oscillatory system in the first order as long as it respects the
global U (1) symmetry. Examples include systems such as
Bose-Einstein condensates, high-frequency coupled classical
oscillators, where the phase of oscillations is irrelevant on the
timescale of a slowly varying envelope.
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