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Optical properties of Rydberg excitons in Cu2O-based superlattices
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Combining the microscopic calculation of superlattice minibands and macroscopic real density matrix
approach, one can obtain electric susceptibilities of the superlattice system irradiated by an electromagnetic
wave. It is shown how to calculate the dispersion relation, excitonic resonance positions, and susceptibility
of a Cu2O/MgO-based superlattice (SL), when Rydberg exciton polaritons appear, including the effect of the
coherence between the electron-hole pair and the electromagnetic field and the polaritonic effect. Using the
Kronig-Penney model for computing miniband SL parameters, analytical expressions for optical functions are
obtained and numerical calculations for a Cu2O/MgO SL are performed.
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I. INTRODUCTION

Excitons, Coulomb-bound pairs of a one-conduction-band
electron and a one-valence-band hole, form an electrical neu-
tral quasiparticle, transferring the energy without transporting
the net electric charge [1]. Those quasiparticles are complex
many-body states embedded in the background of a crystal
lattice, which interact via scattering and screening. Therefore,
the problem of a manipulation of exciton states through an ap-
plication of artificial periodic potentials systems has attracted
a lot of attention; some implementations include colloidal
semiconductor nanocrystals [2], microrod arrays [3], and mi-
cropillars [4]. As pointed out in Ref. [5], so-called structured
excitons can be used as a means of transporting information
and energy in quantum information processing. From this
point of view, controlling these excitons in a superlattice [6]
can be a very interesting problem. Such a system causes a
large shift of exciton energy states and thus influences optical
and electronic properties. In principle, a superlattice (SL) con-
taining a Rydberg exciton is a solid-state analog of a Rydberg
atom trapped in an optical lattice and can be a promising tool
in quantum computing [7–9]. A superlattice can also be used
as a medium for exciton-exciton interaction experiments [5].
The relative simplicity and ease of fabrication of a superlattice
is an argument for potential application of this nanostructure
in quantum information processing. Moreover, in the case of
the Cu2O/MgO system proposed here, when low principal
number excitons are used, room-temperature operation is
feasible [10].

A superlattice is a periodic structure of layers made of two
(or more) semiconductor or insulator materials with different
band gaps, where each quantum well imposes new selection
rules that affect the conditions for charges to flow through
the structure. The two different semiconductor materials are
alternately deposited on each other to form a periodic structure
in the growth direction. Typically, the width of the layers is of
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an order of magnitude larger than the lattice constant and is
limited by the growth of the structure. Due to the small width
of individual layers compared to the illuminating light wave-
length, they merge together to form a homogeneous system,
which behaves like a bulk crystal. Important requirements
of producing a superlattice are a small lattice mismatch and
different band-gap energies between the two material compo-
nents of the structure.

Recently, Yang et al. [6] produced a SL based on a cuprite,
where the wells consist of a narrow-band-gap semiconduc-
tor Cu2O and the barriers are made of a wide-band-gap
insulator MgO. The lattice constants of both of these sub-
stances are quite similar with a small mismatch between
the constituent layers (with the difference 1.35%), while
Cu2O is a narrow-band-gap semiconductor with Eg ∼ 2.2 eV
and MgO is a wide-band-gap compound with Eg ∼ 8 eV
[6], which satisfy the basic requirements for a good SL
structure.

In this paper, we consider a structure of similar dimensions,
e.g., the total thickness of the order of 100 nm and individual
layer thickness of the order of a few nm. We intend to describe
the optical properties of this SL: the optically active layers
of cuprous oxide Cu2O and buffer layer of magnesium oxide
MgO. Further, we will discuss the behavior of Rydberg ex-
citons located in the system of quantum wells, which create
a system of periodic potentials. Since the first observation
of Rydberg excitons (REs) in Cu2O in 2014 [11], they have
become the subject of intensive study. These highly excited
states in Cu2O were observed up to a large principal quantum
number n = 30 [12]. Due to the unusual properties of REs,
such as huge sizes scaling as n2, long lifetimes reaching
nanoseconds, and strong exciton-exciton interactions con-
trolled by so-called Rydberg blockade, REs could have many
promising applications as single-photon emitters, single pho-
ton transistors, and as active medium of masers [13]. Initial
studies on Rydberg excitons were focused at the optical prop-
erties of REs in high-quality natural crystals (bulk crystals);
see Refs. [14,15] for recent studies. Also, some groups con-
centrated on fabrication techniques of Cu2O nanostructures
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[16–18]. Recently, the main interest of research has shifted
from REs in bulk crystals to excitons in low-dimensional
systems [19–21]. The first experimental verification of an
oscillator strength change caused by the quantum confinement
of REs in a low-dimensional quantum system [22] was an im-
portant step forward to exploit them in quantum applications.
Therefore, it seems natural to examine the optical properties
of REs in the specific type of a nanosystem, which consists
of quantum wells forming a lattice of periodic potentials con-
fining REs. The unique property of periodic potential systems
represents a possibility to change the effective masses of par-
ticles inside such structures. Regarding an exciton in a SL,
the electron and the hole effective masses are modified, which
results in an adjustment of an optical susceptibility. For a
given SL structure geometry, one is able to predict the shift of
excitonic resonances positions compared to the bulk case. The
last, but not least, argument for choosing this subject is the fact
that the optical lattices with neutral atoms have been success-
fully applied in quantum information devices. In analogy, we
imply that due to the inherent, repeating pattern of the SL and
long-coherence times of Rydberg excitons, their huge polar-
izability and dipole moments, which allow them to strongly
interact with each other over a long distance, arranged in such
systems, they might also be viable candidates for quantum
computing.

Band-edge optical properties of superlattices can be dis-
cussed by modeling the superlattice as an effective anisotropic
medium in which the quasifree carriers propagate and interact.
In the low barriers limit, the electron and hole motion in
the confinement direction is determined by the superlattice
potential and is replaced by an effective-mass motion, with
the appropriate effective masses obtained from the miniband
dispersion relations [23,24].

Since excitons in the majority of semiconductors are of
the Wannier type, the transition dipole has a spatial extension,
characterizing the interaction of radiation with electrons and
holes located at different sites. This results in a coherence be-
tween the electron-hole pair and the radiation field. In analogy
to bulk semiconductor excitons, SL excitons induced by an
electromagnetic wave propagating through the SL will give
rise to “SL polaritons.”

As in the bulk crystals, polaritons are mixed modes of
the electromagnetic field and discrete excitations of the SL
En(kex) (excitons). Below the gap, one can imagine a polariton
as a photon surrounded by a cloud of virtual electron-hole
pairs (excitons).

All of the above-mentioned components (Wannier exci-
tons, effective mass approximation, exciton polaritons with
coherence) justify the use of the real density matrix approach
(RDMA) to describe the optical properties of superlattices.
The method has already been used to describe excitons and
polaritons in a III-V [25] and II-VI SL [26] and was successful
in the description of REs’ optical properties of Cu2O bulk
crystals [27], and nanostructures (quantum wells, dots, and
wires) [28].

Below we present in detail a procedure of the calcula-
tion, which starts with the Kronig-Penney model to obtain
SL miniband parameters, i.e., anisotropic effective masses
and band gaps. To derive the dispersion relation and reso-
nance positions in a SL, the RDMA with these parameters

is used. This method has a general character and allows one
to get an analytical formula for a system susceptibility. It
takes into account both the Coulomb interaction between an
electron and a hole and a coherence between an electron-hole
pair and a radiation field. The particular calculations will be
done for Cu2O/MgO SL, for which the SL dielectric ten-
sor and the optical functions in the analytical form will be
calculated.

The paper is organized as follows. In Sec. II, we present
the basic equations of the Kronig-Penney model adapted to
the cases of superlattices. Section III shows the scheme for
calculating the SL optical functions in the case in which the
total thickness of the SL is much greater than the excitonic
Bohr radius. In Sec. IV, results obtained for the Cu2O/MgO
superlattice are discussed, and conclusions are presented in
Sec V.

II. KRONIG-PENNEY MODEL FOR SUPERLATTICES

In this section, we recall the basic equations which de-
scribe the electronic states (conduction and valence bands)
of a superlattice. Considering the Kronig-Penney model, we
assume the confinement potential in the z direction (structure
growth direction), which for conduction electrons corresponds
to V (z) = 0 if z corresponds to area inside the well (well thick-
ness LW , effective mass mW ), and V (z) = V0 if z corresponds
to the barrier area (thickness LB, effective mass mB), where VB

is the conduction-band offset. The equation for the values of
the Bloch vector K , and thus the miniband dispersion [23–29],
takes the Kronig-Penney form,

cos KL = cos k1LW cosh κ2LB

− k2
1 − κ2

2

2k1κ2
sin k1LW sinh κ2LB, (1)

where k1 and κ2 are the wave vectors in the well and in the
barrier, respectively. The subscripts W and B in Eqs. (1) de-
note the wells or barriers, and L = LW + LB is the SL period.
The wave vectors in the well and barrier are

k1 =
√

2mW E

h̄2 ,

κ2 =
√

2mB(V − E )

h̄2 . (2)

The above equations can be solved for electrons and holes
separately, obtaining the relation E (K ), where E is the
electron/hole energy, mW and mB are effective masses in
Cu2O and MgO, and V is the potential barrier between
MgO and Cu2O. Specifically, due to the difference of
band-gap energies (see Table I), we have V0 = 4.99 eV.
From this, we obtain the electron and hole confinement
potentials V0e,h,

V0 = Eg(MgO) − Eg(Cu20),

V0 = V0e + V0h,

V0e = 0.4 × V0, V0h = 0.6 × V0. (3)

This results in two barrier values, V0e = 2 eV and V0h = 3 eV,
for electrons and holes, respectively. The division of V0 into
electron and hole potential barriers follows from the relative
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FIG. 1. Schematic representation of the system.

Fermi energy level of Cu2O [30] and MgO [31] and is similar
to the case of the Cu2O/ZnO heterojunction [32].

One of the important parameters of the SL structure that
makes it different from bulk material are the effective masses
of a hole and an electron in the z direction, which are deter-
mined from the relation

1

mz
= 1

h̄2

d2E

dK2

∣∣∣∣
K=0

, (4)

which, again, can be obtained separately for electrons and
holes, from the respective E (K ) relations. Note that the dis-
persive relation of bulk materials is taken into account with
effective masses mW , mB, and the E (K ) relation only describes
the dominating superlattice contribution.

III. OPTICAL PROPERTIES

We consider a superlattice which consists of a large number
of narrow potential wells of a thickness LW separated by nar-
row potential barriers characterized by a thickness LB, where
tunneling effects are allowed. A total thickness of a single
well-barrier pair is L. The system is presented in Fig. 1. It
is irradiated by a normally incident electromagnetic wave,
linearly polarized in the x direction,

Ei(z, t ) = Ei0 exp(ik0z − iωt ), k0 = ω

c
. (5)

We assume that L < 4 nm and consider barrier width of less
than 2 nm, which is significantly smaller than the diameter of
even the lowest 2P exciton (d ∼ 8 nm) in Cu2O. Therefore,
the tunneling through the barrier is allowed despite the barrier
height. The individual quantum wells (QWs) merge together
into a homogeneous system, which behaves like a bulk crystal;
the total number of layers is of the order of 10–100 and the
exact number is not relevant to the calculations.

The linear optical response of the system (here we consider
the lowest electron and hole miniband) to the electromag-
netic wave originates from a given pair of minibands and
is described by two equations: the so-called constitutive
equation (material equation) and the Maxwell’s propagation
equation. The constitutive equation has the form

−ih̄∂tY − i�Y + HehY = M(r)E(R), (6)

where Y (R, r, t ) is the excitonic transition coherent ampli-
tude, � is a dissipation coefficient, M is the transition dipole

density, R is the excitonic center-of-mass coordinate, and r
the relative electron-hole coordinate. The operator Heh is the
effective mass Hamiltonian of the superlattice,

Heh = Eg + P2
Z

2Mz
+ P2

‖
2M‖

+ p2
z

2μz
+ p2

‖
2μ‖

+ Veh, (7)

with Veh being the electron-hole Coulomb interaction. We
have separated the center-of-mass coordinate R‖ and the re-
lated momentum P‖ from the relative coordinate ρ on the
plane (xy) and the related momentum p‖. In the above for-
mulas, the reduced mass in the z direction is given by

1

μz
= 1

mez
+ 1

mhz
, (8)

where the electron and the hole effective masses in the z
direction follow from the miniband dispersion relations (1),
i.e., one for electrons and one for holes, respectively. The
system is not confined in the xy directions and so the in-plane
effective masses m‖ in the well material are assumed to be
the same as in the bulk medium. Mz and M‖ are the total
excitonic masses in the growth direction and parallel to the
layers, respectively. We use the same form for the transition
dipole density as for bulk semiconductor [27],

M(r) = er M10
r + r0

2r2r2
0

e−r/r0 = erM(r)

= iM10
r + r0

4ir2r2
0

√
8π

3
(Y1,−1 − Y1,1)e−r/r0

+ jM10
r + r0

4r2r2
0

√
8π

3
(Y1,−1 + Y1,1) e−r/r0

+ kM10
r + r0

2r2r2
0

√
4π

3
Y10e−r/r0 , (9)

where r0 is the so-called coherence radius,

r−1
0 =

√
2μ

h̄2 Eg. (10)

Y�m are spherical harmonics, which are complex-valued func-
tions of the spherical coordinates θ, φ. Specifically, we use the
definition [33]

Y�,m(θ, φ) =
√

2� + 1

4π

(� − m)!

(� + m)!
Pm

� (cos θ )eimφ, (11)

where P�,m are the associated Legendre functions,

Pm
� (x) = (−1)m

2� �!
(1 − x2)m/2 d�+m

d x�+m
(1 − x2)�. (12)

Thorough the manuscript, indices n, l, m are main, angular
momentum, and magnetic quantum numbers, respectively.

The above expression gives the coherence radius in terms
of effective band parameters Eg (the bulk gap energy) and
μ (the electron-hole reduced effective mass; the bulk effec-
tive masses of the electron and the hole are assumed to be
isotropic). M10 is the integrated dipole strength. In order to
present the form of the susceptibility with Rydberg excitons
adapted for a case of a superlattice, we recall the procedure
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similar to that presented in [27]. The steps of the calculation
scheme are the following:

(1) The excitonic amplitude Y is determined from Eq. (6)
with the Hamiltonian (7).

(2) The coherent amplitude Y enables one to calculate the
SL polarization, which is given by the formula [27]

P(R) = 2
∫

d3rM(r)Y (R, r). (13)

(3) The polarization P is then inserted into the Maxwell
propagation equation,

c2∇2
RE − ε

b
Ë(R) = 1

ε0
P̈(R), (14)

with the use of the bulk dielectric tensor ε
b

and the vacuum
dielectric constant ε0.

In analogy to bulk crystals, the description of the SL ex-
citon polaritons is based on the separation of the relative
electron-hole motion with well-defined quantum levels from
the center-of-mass motion which interacts with the radiation
field and produces the mixed modes (polaritons). We as-
sume that the center-of-mass motion is described by the term
exp(ik R) with the wave vector k. Additionally, we use the
electromagnetic wave that has a harmonic time dependence
∝ exp(−iωt ). These simplifications allow us to calculate the
dielectric susceptibility. Because in Cu2O the conduction band
and the valence band are of the same parity, the dipole mo-
ment between them vanishes; the n > 1 lines correspond to
excitons with the angular momentum l = 1 and therefore the
absorption process is dipole allowed. Equation (6) will be
solved by expanding the coherent amplitude Y in terms of
eigenfunctions of the Hamiltonian Heh,

Y =
∑
n�m

cn�mRn�m(r)Y�m(θ, φ). (15)

The radial functions Rn�m are given in the form [33]

Rn�m(r) =
(

2η�m

na∗

)3/2 1

(2� + 1)!

√
(n + �)!

2n(n − � − 1)!

×
(

2η�mr

na∗

)�

e−η�mr/na∗
M

×
(

−n + � + 1, 2� + 2,
2η�mr

na∗

)
. (16)

The coefficient ηlm depends on an effective masses ratio α,
which for the SL is different from that of the bulk and there-
fore is crucial for eigenvalues En�m,

η�m =
∫

d�
|Y�m|2√

sin2 θ + α cos2 θ
, (17)

En�m = −η2
�m(α)R∗

n2
, n = 1, 2, . . . ,

� = 0, 1, 2, . . . , n − 1, m = 0, 1, 2, . . . , �,

α = μ‖
μz

. (18)

In Eq. (16) above, a∗ is the exciton Bohr radius and M(a, b, z)
is the Kummer function (confluent hypergeometric function)

in the notation of Ref. [34]. The anisotropy parameter α,
first introduced by Kohn and Luttinger [35], corresponds to
the dimensionality of the system [36,37]; specifically, in the
so-called fractional dimensionality approach [38], the system
dimension d = 2 + √

α, so that it is two dimensional in the
limit of α → 0 and three dimensional for α = 1.

R∗ is the effective excitonic Rydberg energy defined as

R∗ = μ‖e4

2(4πε0
√

ε‖εz )2h̄2 . (19)

Modified by the periodic potential of the SL effective masses,
one can calculate the anisotropy factor α and the correspond-
ing eigenvalues En�m from Eq. (18). In the considered case of
P excitons, we use the quantities

η00(α) = arcsin
√

1 − α√
1 − α

,

η10(α) = 3

2(1 − α)
(η00 − √

α),

η11(α) = 3

2

[
η00(α) − 1

3
η10(α)

]
. (20)

The energies for the electron and hole E0e,h = Ee,h(K = 0)
determine the SL energy gap,

Eg(SL) = Eg + E0e + E0h, (21)

which is shifted by E0e + E0h as compared to the bulk. The
eigenenergies En�m affect the positions of the SL excitonic
resonances, given by the transverse energies ET n�m,

ET n�m = Eg(SL) + En�m, (22)

which are, in consequence, also moved due to the modifica-
tion of effective masses by the influence of the SL periodic
potentials’ pattern.

Since the superlattice consists of multiple quantum wells,
it is justified to assume that the symmetry properties of ex-
citons in the SL are similar to those in quantum wells. The
considered system geometry (see Fig. 1) and the electric field
polarization (5) allow one to use the x component of the dipole
density (9),

Mx(r) = M10
r + r0

4ir2r2
0

√
8π

3
(Y1,−1 − Y1,1)e−r/r0 . (23)

With the help of Eqs. (16) and (23), the expansion coefficients
cn�m are calculated. Then the coherent amplitude Y is used
in Eq. (13), which in turn is inserted into the Maxwell equa-
tion (14), from which one obtains the dispersion relation for
SL polaritons,

c2k2

ω2
− εb = εb

N∑
n=2

�
(P)
LT fn11

ET n11 − h̄ω + (h̄2k2/2Mz ) − iΓn
, (24)

with

fn11 = 32

3

(n2 − 1)η5
11

n5
. (25)

�
(P)
LT is the longitudinal-transversal splitting energy, and ET n11

are the energies of excitonic resonances [see Eq. (22)]. The
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FIG. 2. Comparison of the imaginary part of susceptibility in a
bulk Cu2O and in a Cu2O/MgO SL, calculated from Eq. (26). The
first few excitonic states n = 2, . . . , 4 are marked.

relation [39]

|M10|2 = 4ε0εba∗3�
(P)
LT

π (r0/a∗)2

has been used. In the considered narrow frequency range, one
can use εb = const = 7.5 [11].

The spatial dispersion, described by (24), makes it possible
to have two or more wave modes connected with a given
frequency. The term h̄2k2/2Mz in the denominator on the
right-hand side of Eq. (24) is responsible for the effect of
multiplicity of polariton waves. In the considered case of a
Cu2O/MgO SL, the total exciton mass Mz is much larger than
in other semiconductors (both bulk and SL), so it is justified
to neglect this term. As pointed out in [40], a relatively small
oscillator strength and resulting weak light-exciton coupling
in bulk Cu2O makes it difficult to achieve the strong-coupling
regime that is necessary for polaritonic effects to become
significant. It is demonstrated in [40] that this problem can
be solved by placing the crystal between two Bragg reflec-
tors, forming a cavity; multiple, strong reflections on the
Cu2O/MgO interfaces considered here might provide another
way to achieve a strong-coupling regime. In view of the above
findings, we obtain the excitonic contribution to the linear
optical susceptibility in the form

χ (ω) = εb

N∑
n=2

�
(P)
LT fn11

ET n11 − h̄ω − iΓn
. (26)

In particular, we are interested in the imaginary part of the
susceptibility, where absorption maxima corresponding to ex-
citonic states can be observed; we note that in this energy
region, MgO is mostly transparent. In our calculations, we
do not include nonexcitonic contributions to the absorption
of Cu2O, which provide approximately 25% of the total ab-
sorption coefficient in the region of excitonic maxima [11].

IV. RESULTS

The above presented scheme allows for the calculation
of all optical SL functions. We have chosen the optical sus-
ceptibility since its imaginary part is proportional to the SL

FIG. 3. Imaginary part of the superlattice susceptibility (a) with
and (b) without the lowest Cu2O/MgO SL band energy shift in-
cluded. Inset: Zoom-in of excitonic spectrum for L = 2 nm.

absorption. We have computed the susceptibility Cu2O/MgO
SL for a variety of Cu2O QW and MgO barrier thicknesses.
The values of the relevant parameters are given in Table I. The
obtained results are illustrated in Figs. 2–9.

Figure 2 presents the imaginary part of the susceptibility of
bulk Cu2O and a superlattice with L = 4 nm (LW = LB = 2
nm). Even for such a relatively large L (of the order of 10
lattice constants), the energy shifts Ee0, Eh0 are considerably
larger than the energy spacing of the excitonic levels. The
two key features visible in Fig. 2 are a slight increase of
the oscillator strength (proportional to the area under the
absorption peak) in the SL, as well as a slight modification of
the Rydberg energy, in accordance with Eq. (19).

As the SL period L is decreased, the energy shift increases
proportionally to ∼1/L. This is shown in Fig. 3(a). For values
L < 4 nm, the shift exceeds the total width of the excitonic
spectrum, which means that the confinement energy exceeds
the Rydberg energy, which is a necessary condition for the
strong confinement regime assumed here. It should be stressed
that the energy shift of the excitonic spectrum is very consid-
erable, exceeding 1 eV for L < 1 nm. By omitting the energy
shifts Ee0, Eh0 [Fig. 3(b)], one can see the weaker effects; as
L decreases, there is a slight decrease of the Rydberg energy.
One can see this by comparing the spectra in Fig. 3(b) with the
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FIG. 4. Polariton dispersion relation of the Cu2O/MgO superlat-
tice, calculated from Eq. (24), for two values of the SL period L.
The dashed line marks the dispersion relation calculated for εb =
7.5, without excitonic effects. Inset: Zoom-in of a single excitonic
resonance.

dashed, vertical lines that mark the n = 2 exciton energy and
gap energy for L = 6 nm, which is close to a bulk. In general,
exciton energies and related optical properties of the system
approach bulk values in the limit L → ∞. For small values of
L, the excitonic spectrum becomes visibly narrower, which is
the result of a smaller effective Rydberg energy η2

�m(α)R∗.
For further insight into the properties of the system, one

can calculate the dispersion relation from Eq. (24). The re-
sults for two values of L (LW = LB = L/2) are shown in
Fig. 4. A similar shape of the function E (K ) is present for

each excitonic resonance (n = 3 is visible in the lower-left
corner). Overall, the excitons result in a small, localized dis-
turbance of the bulk dispersion relation (dashed line), which
is energy shifted depending on the value of L. Notably, even
a small change from L = 2.1 to L = 2.2 nm results in an
energy shift comparable to the width of the entire excitonic
spectrum.

To calculate the relevant quantities, such as electron and
hole effective masses in the z direction and the anisotropy
parameter α, one has to numerically solve Eq. (1). The results
obtained for a few selected values of LW , LB are presented in
Fig. 5. For the smallest well and barrier widths, approximately
equal to that of a single atomic layer, only two electron/hole
band pairs are visible in the energy range E < 5 eV. The low-
est band is characterized by a positive effective mass, while
the masses in the second band are negative and relatively small
(∂2E/∂k2 	 0). An increase of both the well thickness and
the barrier width result in a higher density of bands, although
the effect of increased LB is less significant. Notably, the
dispersion relation of the lowest band becomes extremely flat,
especially for holes (∂2E/∂k2 → 0), which results in a very
big hole effective mass in the z direction.

Figure 6 depicts the effective electron and hole masses
[Eq. (4)] as well as anisotropy parameter α [Eqs. (8) and
(18)] as a function of LW , where LW + LB = 1.4 nm. One
can see that there are some optimal values of LW = 0.5 nm,
LB = 1.5 nm, where effective masses reach their maximum
value. The anisotropy parameter reaches a minimum value
α ≈ 0.25 for a slightly smaller well width. As mentioned
above, the effective mass of the hole can reach a very high
value in the considered system, up to mz ∼ 70 m0, while the

FIG. 5. SL dispersion relations of electrons and holes, calculated from Eq. (1), for various values of well (LW ) and barrier (LB) widths.
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FIG. 6. Electron and hole effective masses [Eq. (4), left axis] and
anisotropy parameter α [calculated from Eqs. (8) and (18), right axis]
of the Cu2O/MgO SL, as a function of LW ; LW + LB = 1.4 nm.

effective electron mass does not exceed 3 m0, where m0 is the
electron mass in bulk crystal. A significantly increased effec-
tive mass in the z direction means that the system approaches a
quasi-two-dimensional one, with only two degrees of freedom
(x, y) for the exciton motion. This is reflected in a small value
of the anisotropy parameter α.

An overview of effective mass values for a range of LW , LB

is shown in Fig. 7. In the limit of wide barriers, the effective
mass of a hole can reach values of up to 103 m0. In practice,
this means that the hole cannot tunnel through the potential
barrier and the system becomes two dimensional, allowing
only for the motion in the xy plane. In such a case, the struc-

FIG. 7. Electron and hole effective masses in the Cu2O/MgO SL
as a function of LW and LB, calculated from Eq. (4).

FIG. 8. The energy of the lowest electron and hole band in the
Cu2O/MgO SL, as a function of LW and LB, calculated from Eq. (1).

ture is no longer a superlattice, but a set of separated quantum
wells (a multiwell system). The obtained results confirm that
the barrier width should not considerably exceed the Bohr
radius of the exciton (1.1 nm). It should be stressed that the
small barrier width is a necessary condition for the tunnelling
to occur, which is needed for the validity of the presented
approach. Another effect visible in Fig. 7 is that in the case
of a narrow well (LW < 1 nm), the increase of the effective
mass is slower due to the fact that the well thickness is smaller
than the exciton diameter, so that its wave function enters the
barriers, facilitating an easier tunneling through them. One
can also see that in the limit of large LW , the effective mass
stops increasing with LW and is only a function of LB. Finally,

FIG. 9. Exciton oscillator strength in Cu2O/MgO SL, as a func-
tion of LW and LB, calculated from Eq. (25), normalized to the bulk
value.
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FIG. 10. Electron and hole effective masses [Eq. (4), left axis]
and anisotropy parameter α [calculated from Eqs. (8) and (18), right
axis] of the Cu2O/ZnO SL, as a function of LW ; LW + LB = 1.4 nm.

we note that the bulk effective mass can be obtained from the
model in the limits of both LW → ∞ and LB → 0.

Figure 8 depicts the lowest polariton band energy as a
function of LW , LB. One can see that the energy dependence
on the well width is much more pronounced, resulting in
E0e ∼ 0.8 eV and E0h ∼ 2.2 eV for LW = 0.4 nm. This result
is analogous to the case of a single quantum well, where the
energy of the lowest level strongly depends on the well width.

Finally, in Fig. 9, one can see that the effective oscillator
strength of the excitons is slightly enhanced in the SL, in
particular when both the barrier and the well thickness are
large. This is an expected result—as the effective masses mez

and mhz increase, the reduced mass μz [Eq. (8)] also increases
and the anisotropy parameter α [Eq. (18)] is decreasing. This,
according to Eq. (20), affects the oscillator strength.

A superlattice containing Cu2O can use various barrier
materials; one of the possibilities is ZnO [32]. In contrast to
MgO, ZnO is a semiconductor with a relatively narrow band
gap, Eg = 3.4 eV [41], which results in barrier energies of
E0e = 0.7 eV and E0h = 1.88 eV. The relatively small value
of the barrier yields low effective masses in the z direction and
a large value of α. The results of the calculations are shown in
Fig. 10. The material parameters used in the calculations are
given in Table I.

V. CONCLUSIONS

In conclusion, we have developed a simple mathematical
procedure to calculate, in the analytical form, the suscepti-

TABLE I. Parameter values for bulk Cu2O, MgO, and ZnO.
Masses in free electron mass m0, R∗ calculated from (μ/ε2

b ) ×
13 600 meV, R∗

e,h = (me,h/μ)R∗ calculated by the assumption that
the masses in the x − y plane remain unaltered, lengths in nm,
a∗

e,h = (μ/me,h )a∗.

Parameter Cu2O (bulk) MgO (bulk) ZnO (bulk) References

Eg 2172.08 7160 3400 [11,41,42]
R∗ 87.78 60 [41]
�LT 0.0125 [45]
mez 0.99 0.378 0.24 [41,43,44,46]
mh‖ 0.58 1.575 0.54 [41,43,44,46]
mhz 0.58 1.575 0.54 [41,43,44,46]
μ‖ 0.363 0.319 0.17
μz 0.363 0.319 0.17
Mz 1.56 1.953 0.83
α 1 1 1
a∗ 1.1 [11]
r0 0.22 [27]
εb 7.5 [11]
� j 3.88/ j3 [11,13]

bility of a superlattice with Rydberg excitons, taking, as an
example, a Cu2O/MgO SL, in the case of the normal inci-
dence of the excited electromagnetic wave. With the help of
the Kronig-Penney model for the superlattice, we have calcu-
lated effective masses of a hole and electron and then we have
used the real density matrix approach to obtain resonances
for any REs and the polariton dispersion relation. Periodic
potentials of the SL structure cause the change of effective
masses, which results in an increase of oscillator strengths and
significantly shifts the positions of the excitonic resonances
by over 1 eV. This sensitivity of the energy of excitonic reso-
nances to the SL dimensions may provide an efficient way to
measure mechanical deformation and temperature via thermal
expansion of the lattice. The influence of the SL geometry, i.e.,
the well and barrier thicknesses, on the excitonic spectrum
and the dispersion relation has been examined. It turned out
that the periodic potential of the considered geometry leads
to a significant anisotropy and either small or large value of
the anisotropy factor α, which can be tuned depending on the
intended structure application. Finally, we note that Rydberg
excitons confined in a superlattice may be a promising plat-
form for quantum computing technologies, being a solid-state
analog of an atomic optical lattice, with a significant advan-
tage of compactness and higher operating temperatures.
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[39] S. Zielińska-Raczyńska, D. Ziemkiewicz, and G. Czajkowski,
Magneto-optical properties of Rydberg excitons: Center-
of-mass quantization approach, Phys. Rev. B 95, 075204
(2017).

[40] K. Orfanakis, S. Rajendran, V. Walther, T. Volz, T. Pohl, and H.
Ohadi, Rydberg exciton–polaritons in a Cu2O microcavity, Nat.
Mater. 21, 767 (2022).

[41] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F.
Chisholm, and T. Steiner, ZnO: Growth, doping and processing,
Mater. Today 7, 34 (2004).

[42] Q. Yan, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg,
M. Scheffler, and C. G. Van de Walle, Strain effects and band
parameters in MgO, ZnO, and CdO, Appl. Phys. Lett. 101,
152105 (2012).

085309-9

https://doi.org/10.1007/s11664-016-5049-5
https://doi.org/10.1103/PhysRevLett.104.010503
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1038/s41567-020-0907-8
https://doi.org/10.1016/j.jlumin.2022.119227
https://doi.org/10.1038/nature13832
https://doi.org/10.1103/PhysRevB.104.245206
https://doi.org/10.1364/OE.27.016983
https://doi.org/10.1002/qute.201900134
https://doi.org/10.1103/PhysRevLett.129.137401
https://doi.org/10.1038/s43246-020-0013-6
https://doi.org/10.1103/PhysRevB.97.205305
https://doi.org/10.1038/s41598-023-41465-y
https://doi.org/10.1103/PhysRevB.93.245302
https://doi.org/10.1088/1361-6455/ab56a9
https://doi.org/10.1103/PhysRevB.106.085431
https://doi.org/10.1103/PhysRevB.103.245426
https://doi.org/10.1103/PhysRevB.42.7084
https://doi.org/10.1103/PhysRevB.54.2035
https://doi.org/10.1002/pssb.200675119
https://doi.org/10.1103/PhysRevB.93.075206
https://doi.org/10.1103/PhysRevB.101.205202
https://doi.org/10.1103/PhysRevB.69.165419
https://doi.org/10.1103/PhysRevB.67.235409
https://doi.org/10.1021/acsami.6b07325
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1103/PhysRevB.46.4092
https://doi.org/10.1007/BF01318277
https://doi.org/10.1103/PhysRevB.42.11751
https://doi.org/10.1103/PhysRevB.95.075204
https://doi.org/10.1038/s41563-022-01230-4
https://doi.org/10.1016/S1369-7021(04)00287-1
https://doi.org/10.1063/1.4759107


DAVID ZIEMKIEWICZ et al. PHYSICAL REVIEW B 109, 085309 (2024)

[43] N. Naka, I. Akimoto, M. Shirai, and K.-I. Kan’no, Time-
resolved cyclotron resonance in cuprous oxide, Phys. Rev. B
85, 035209 (2012).

[44] C. W. Miller, Z.-P. Li, I. K. Schuller, R. W. Dave, J. M.
Slaughter, and J. Akerman, Dynamic spin-polarized resonant
tunneling in magnetic tunnel junctions, Phys. Rev. Lett. 99,
047206 (2007).

[45] H. Stolz, F. Schöne, and D. Semkat, Interaction of Ryd-
berg excitons in cuprous oxide with phonons and photons:
Optical linewidth and polariton effect, New J. Phys. 20, 023019
(2018).

[46] J. Wang, Y. Tu, L. Yang, and H. Tolner, Theoretical inves-
tigation of the electronic structure and optical properties of
zinc-doped magnesium oxide, J. Comput. Electron. 15, 1521
(2016).

085309-10

https://doi.org/10.1103/PhysRevB.85.035209
https://doi.org/10.1103/PhysRevLett.99.047206
https://doi.org/10.1088/1367-2630/aaa396
https://doi.org/10.1007/s10825-016-0906-2

