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Transition metal dichalcogenides (TMDCs) combine both strong light-matter interaction and strong Coulomb
interaction for the formation of optically excitable excitons. Through radiative feedback control, a mechanism
to control the linewidth can be applied, which modifies optical transition spectra. Here, we extend these
investigations to the absorption spectra of TMDCs in a variety of geometries with respect to non-Markovian
exciton-phonon-scattering contributions. Our approach is based on the self-consistent solution of the microscopic
Bloch equations and the macroscopic solution of the wave equation. We discuss the formation of a phonon
sideband for MoSe2 embedded in SiO2, and two setups for enhancing or suppressing the phonon sideband in the
spectrum.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDCs) are two-
dimensional atomically thin semiconductors, which exhibit
strong Coulomb-interaction leading to the formation of bound
electron-hole pairs, called excitons, with high binding ener-
gies of hundreds of meV [1–7]. TMDC excitons also exhibit
strong light-matter interaction, which is almost two orders
of magnitude larger than in their bulk equivalent [1,8]. With
these properties, TMDCs exhibit high values of their re-
flectivity [8] and are candidates for various applications in
optoelectronics [8,9]. One possibility to control the function
of corresponding devices is coherent feedback of the radia-
tive emission and provides the possibility to influence the
linewidth and lineshifts of the optical spectra [4,8–10]. The
mechanism is well studied with wide applications as for exam-
ple in the feedback control of quantum well structures [11,12],
in the feedback control of the radiative lifetime [9], or as a
control mechanism of the radiative linewidth [4,8] which can
all influence the optical properties of the device in question.

In this paper we study half-sided cavities [4,13–16], where
we focus on the coherent control of the optical linewidth,
which can be achieved by introducing and varying the position
of the external mirror of the cavity with respect to the TMDC
[4,8,15–18] or varying the thickness of the encapsulation
[9,16]. This way the absorption depends on the time delay of
the back coupled emission, suggesting that microelectronical
mechanical devices can be used to achieve low energy cost
and near perfect absorption [8,19].

In TMDCs, only a fraction of excitons can interact opti-
cally, with most excitons having too much kinetic energy, and
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are thus “momentum-dark” [1,5,20,21]. Their dynamics are
activated by exciton-phonon scattering, leading to the forma-
tion of phonon sidebands, also where the transition energy is
shifted by the polaron energy. This is theoretically explained
by a non-Markovian approach [3], which also inspired work
of other groups [22,23] and is expanded upon in this paper
by inclusion of feedback control. In particular, we discuss the
possibility of the amplification or suppression of phonon side-
bands in linear spectroscopy by coherent feedback control.
This is realized by a self-consistent solution of the macro-
scopic wave equation, where the dipole source is determined
by the microscopic semiconductor-Bloch equations.

The paper is organized as follows: In Sec. II, we first
introduce the interface/geometry, namely a MoSe2 TMDC
monolayer encapsulated in SiO2 with a mirror positioned
behind the encapsulation, which introduces the main mecha-
nism of coherent feedback control. Afterwards we give details
on the excitonic response and the dielectric environment. In
Sec. III we discuss the theoretical results of the suppression or
amplification of the phonon sidebands of the TMDC at room
temperature by varying the mirror position.

II. THEORETICAL DESCRIPTION

A. Homogeneous environment

The geometry we investigate is a TMDC monolayer em-
bedded in a structured dielectric environment with refractive
index n(z), with increasing complexity [Figs. 1(a), 2(a), and
3(a)]. To obtain experimental observables such as absorption
and reflection, we solve the corresponding wave equation [10]
for perpendicular propagation in the z direction: Here, the
macroscopic polarization P represents the excitonic transi-
tions of the TMDC [24] and n(z) represents the refractive
index of the structured dielectric surroundings. The extension
of the TMDC is small compared to the wavelength of the light
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FIG. 1. (a) Sketch of the TMDC embedded in a homogenous
SiO2 environment and the incident field in front of and behind the
TMDC. (b) Field intensity for different excitation energies close
to the exciton 1s resonance (1.75 eV after polaron shift [3]). For
z < 0, the intensity oscillates due to interference effects, and for
z > 0 its value remains constant. (c) Absorption spectra according
to Eqs. (10)–(12) for monolayer MoSe2 embedded in SiO2. The
normalization factor is shown in brackets. The values for the radiative
dephasing and the homogeneous dephasing are provided in Table I.
The excitonic transition is broadened by the non-Markovian-phonon
scattering, which leads also to the formation of a phonon sideband,
where the sideband is marked by an arrow. (d) Same plot as (c), but
logarithmic scale.

momentum with the excitonic transition. The polarization
is approximated within the monolayer as a two-dimensional
dipole density P(r, t ) = δ(z)P2D(t ) [10] at position z = 0:(

∂2

∂z2
− n2(z)

c2
0

∂2

∂t2

)
E2D(z, t ) = 1

ε0c2
0

δ(z)
∂2

∂t2
P2D(t ). (1)

The optical transitions of the TMDC excitons occur for only
one direction of circular polarization σ− (or σ+) interaction
with the K (or K ′) valley [1], an effect that is referred to as
the circular dichroism [7,25]. Therefore P2D(t ) is expanded
in σ+ and σ− emissions with the components Pσ±. Without
loss of generality, we only discuss here one polarization com-
ponent, which we denote as P = Pσ± in the following, as
due to symmetry the other circular polarization direction will
simply interact with the other valley (K, K ′) in a completely
similar way. The wave equation Eq. (1) has two solutions: a
forward propagating wave ( f ) from the left to the right, and
a backward propagating wave (b) traveling from the right to
the left. For a spatially homogeneous environment n(z) = n
[Fig. 1(a)], the solutions for a forward E f and backward Eb

propagating field read [10]

E f
T

(
t − nz

c0

)
= E f

0

(
t − nz

c0

)
− 1

2nε0c0

∂

∂t
P

(
t − nz

c0

)
, (2)

Eb
R

(
t + nz

c0

)
= Eb

m

(
t + nz

c0

)
− 1

2nε0c0

∂

∂t
P

(
t + nz

c0

)
. (3)

E f
0 and Eb

m are externally applied fields, and both solutions
differ by their signs of the arguments as they form forward
or backward propagating solutions. Using Eqs. (2) and (3)
both the transmitted field ET and the reflected field ER can
be determined, once P is known.

B. Excitonic response

The dipole density P in the wave equation is determined
by excitonic transitions and can be derived by calculating
the Heisenberg equation of motion for a two band Hamilto-
nian including the Coulomb and electron-phonon interaction
[1,3,5,23,26,27].

In the excitonic basis P(t ) reads [27]

P(t ) = 1

A

∑
q,μ

[(
φμ

q

)∗
dc,νP∗

μ,Q(t ) + φμ
q (dc,ν )∗Pμ,Q(t )

]
, (4)

with the center of mass momentum Q and the relative momen-
tum q of the exciton. The latter is the in-plane momentum
of the excitonic wave function φμ

q in Fourier space, and μ

is the index from the respective exciton Rydberg state. The
eigenfunctions and eigenvalues are obtained from solving the
Wannier equation [1,3,4,27,28]. A equals the size of the quan-
tization area [27] and dc,ν represents the transition matrix
dipole element on the elementary cell between the conduction
band c and the valence band ν of the TMDC at the high
symmetry point K [26]. This notation includes all excitonic
transitions; however, due to the high excitonic binding en-
ergy and due to strong Coulomb coupling, in the following
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section we consider only the spectral range of the μ = 1s exci-
tonic transition. The first term in this equation is off-resonant
for the excitonic transition and can be disregarded in a rotating
wave approximation. The Bloch equation for the excitonic
transition Pμ,Q(t ) in the low density limit reads [3,29,30]

[h̄∂t + iEμ(Q)]Pμ,Q(t )

= i

A

∑
q

(
φμ

q

)∗
dc,νEtotal(t )δQ,0

− i
∑
λ,q′,α

gμλ,α

q′
[
Sλ,α

Q+q′,q′ (t ) + S̃λ,α
Q+q′,−q′ (t )

]
. (5)

For a homogeneous structure, the field strength at the
TMDC is Etotal(t ) = E f

T (t ) and has to be determined from the
solutions of the wave equation Eqs. (2) and (3). Sλ,α

Q+q′,q′ (t )
represents a phonon assisted exciton transition, with phonon
mode α and the transfer of momentum q′. It is defined as
Sμ,α

Q+q′,q′ = 〈Pμ,Q+q′bα
q′ 〉. Here, bα

q represents the annihilation

operator of one phonon in mode α. Similarly, S̃λ,α
Q+q′,−q′ =

〈Pμ,Q+q′b†α
−q′ 〉 describes the emission of a phonon of mode α

and transfer of momentum −q′. Their corresponding equa-
tions of motion read [3][

h̄∂t + iEμ(Q + q′) + iEα
q′
]
Sμ,α

Q+q′,q′ (t )

= −i
∑

λ

gμλ,α

q′
(
1 + nα

q′
)
Pλ,Q(t ), (6)

[
h̄∂t + iEμ(Q + q′) − iEα

q′
]
S̃μ,α

Q+q′,−q′ (t )

= −i
∑

λ

gμλ,α

q′ nα
q′Pλ,Q(t ) (7)

with the exciton-phonon coupling matrix gμλ,α

q′ , where μ and λ

represent excitonic states and α represents the phonon mode
with momentum q′ and phonon energy Eα

q′ [3]. The phonon
occupation number nα

q′ = [exp(−Eα
q′/(kBT )) − 1]−1 is given

by the Bose-Einstein distribution and is thus a temperature
dependent quantity. Therefore, by introducing exciton-phonon
interaction to our model, the dynamics of the TMDC excitons
become temperature dependent [3]. For optical transitions
only the vanishing center of mass momentum Q = 0 in the
light cone is excited: Pμ,Q ≈ PμδQ,0 [20]. Equations (2)–(4)
contain the macroscopic dipole density and the resulting elec-
tric fields will be self-consistently solved.

In the frequency domain, Eqs. (5)–(7) can be solved, where
the exciton-phonon scattering is represented by the phonon-
induced self-energy 
(ω, T ) [3]:

P1s(ω) =
1
A

∑
q′

(
φ1s

q

)∗
dc,νE f

0 (ω)

−h̄ω − ih̄γr + E1s − 
(ω, T )
. (8)

This self-energy 
(ω, T ) introduces a linewidth broadening
and polaronic frequency shift [3,23]. The radiative dephasing
in Eq. (8) is self-consistently calculated by inserting Eq. (4) in
Eq. (5) and reads

h̄γr = ω

2ε0nc0

1

A2

∣∣∣∣
∑

q

φ1s
q (dc,ν )∗

∣∣∣∣
2

. (9)

For n(z) = n = const the transmission and reflection spectra
can be analytically determined by the ratio of the field inten-
sity with respect to the incident field intensity [27,31]:

T (ω) = |ET |2
|E0|2 =

∣∣∣∣1 + ih̄γr

−h̄ω + E1s − ih̄γr − 
(ω, T )

∣∣∣∣
2

,

(10)

R(ω) = |ER|2
|E0|2 =

∣∣∣∣ ih̄γr

−h̄ω + E1s − ih̄γr − 
(ω, T )

∣∣∣∣
2

, (11)

α(ω) = 1 − T (ω) − R(ω). (12)

The absorption spectrum for MoSe2 is shown in Figs. 1(b)
and 1(c), where next to the main resonant transition at h̄ω ≈
1.64 eV a phonon sideband can be observed at h̄ω ≈ 1.75 eV.
Here, the initially pure single excitonic transition at E1s =
1.68 eV was considered. This main excitonic transition is
redshifted by the non-Markovian self-energy. Moreover, a
sidepeak occurs due to phonon assisted absorption gener-
ating momentum dark excitons, where the exciton-phonon
coupling provides the momentum for an indirect coupling
to the light field. In the absorption spectrum, this leads to
a modification of the single excitonic Lorentzian line shape
by phonon sidebands. This effect is seen in experiments
[32], and also in photoluminescence [33]. It was explained
with the mentioned non-Markovian theory by our group in
Ref. [3], which was later expanded in Refs. [22,23]. We use
here material realistic values for MoSe2, to correctly predict
the line shape as it is expected in a respective experiment
at room temperature [3]. All material specific parameters
used in Eqs. (6)–(12) to calculate the absorption spectrum
were obtained from ab initio literature and are listed in
Appendix A.

C. Dielectric structure

The effect of time delayed feedback control is introduced
through a dielectric structure shown in Figs. 2(a) and 3(a).
For this purpose the TMDC is considered to be encapsulated
within a dielectric of refractive index n(z) with the top layer
width 
2 and bottom layer width 
1 and a mirror at posi-
tion 
1 reflecting the transmitted field from the TMDC. This
way the optical response of the TMDC P(t ) is influenced
by its time delayed response P(t − τi ) with a time delay
τi = 2n
i

c0
introduced by the optical path time between TMDC

and mirror/interface [4,11–13]. By positioning the mirror at
varying distances 
1 behind the TMDC this time delay can
be varied. We calculate the fields in the time domain similarly
to the previous section, starting with the relevant boundary
conditions for the electric field. We identify the following five
equations from the boundary conditions between the different
dielectrics (air/vacuum-SiO2) and the reflection at the mirror
position as well as the transmission through the TMDC. These
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FIG. 2. (a) Sketch of the geometry of the inhomogeneous
structure. The turquoise arrow indicates the tunability between con-
structive or destructive interference by varying the thickness of the
dielectric material as a function of the mirror position. (b) Field
intensity profile, without the TMDC (solid lines) and with TMDC
included (dashed lines). The area in gray represents the surround-
ing dielectric medium SiO2, with the TMDC at position z = 0.
The structure parameters in (a) are 
1 = 240 nm and 
2 = 60 nm.
The electric field intensity at the TMDC (z = 0) vanishes for
h̄ω = 1.75 eV, i.e., at the spectral position of the phonon side-
band. (c) Comparison of the absorption spectra for the geometry of
Figs. 1(a) and 2(a): Suppression of the phonon sideband absorption
α(ω) due to negligible optical interaction for its spectral position,
and a general reduction of α(ω) occurs. (d) Same absorption in a
logarithmic scale.

FIG. 3. As in Fig. 2, but the parameters are 
1 = 360 nm and

2 = 40 nm. The increased separation 
1 shown in (a) yields an
increase of the field intensity (b) at the position of the TMDC
(z = 0) through constructive interference compared to the case of
a monolayer. This has the effect of increasing the radiative coupling
strength, which increases the overall absorption in (c) and (d) and
amplifies the phonon sideband at h̄ω ≈ 1.75 eV.

equations depend on the width of the top layer 
2, as well as
the mirror’s position 
1:

ET 1

(
t + n
2

c0

)
= t+E0

(
t + n
2

c0

)
+ r+ER1

(
t − n
2

c0

)
,

(13)
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ER

(
t − n
2

c0

)
= t−ER1

(
t − n
2

c0

)
+ r−E0

(
t + n
2

c0

)
,

(14)

ET (t ) = ET 1(t ) − 1

2nε0c0

∂

∂t
P(t ), (15)

ET

(
t − n
1

c0

)
= −EB

(
t + n
1

c0

)
, (16)

ER1(t ) = EB(t ) − 1

2nε0c0

∂

∂t
P(t ). (17)

The Fresnel coefficients for perpendicular incident fields
read t+ = 2nvac

nvac+nSiO2
, t− = 2nSiO2

nvac+nSiO2
, r+ = nSiO2 −nvac

nvac+nSiO2
, and r− =

nvac−nSiO2
nvac+nSiO2

[9]. Equations (13) and (14) represent the transition

from vacuum/air to SiO2. Equation (16) represents the condi-
tion that the field strength at the surface of the mirror vanishes,
i.e., the existence of a fully reflecting mirror. In order to
calculate the optical spectra of the TMDC, the reflected field
strength ER and the total field strength Etotal = ER1(z = 0) +
ET 1(z = 0) = EB(z = 0) + ET (z = 0) have to be determined
solely depending on the incident field strength E0 and P. By
transforming all equations into Fourier space, the resulting
equations form a linear system of equations, similarly to the
transfer matrix method [9]. The details of the calculation can
be found in Appendixes B and C. We can neglect the trans-
mission through the mirror, thus only the reflected intensity
and absorption have to be calculated:

R(ω) =
∣∣∣∣AR + ih̄γr (AT 1 + AR1)BR

−h̄ω + E1s + δr (τ1, τ2) − ih̄γr (τ1, τ2) − 
(ω, T )

∣∣∣∣
2

, (18)

α(ω) = 1 − R(ω) (19)

with the phonon induced self-energy 
(ω) introduced in
Eq. (8), and the time delay induced radiative dephasing

h̄γr (τ1, τ2) = h̄γr Im[BT 1 + BR1], (20)

h̄γr = ω

2ε0nc0

1

A2

∣∣∣∣∣
∑

q

φ1s
q (dc,ν )∗

∣∣∣∣∣
2

(21)

and a radiative frequency shift are introduced

δr (τ1, τ2) = h̄γr Re[BT 1 + BR1]. (22)

The complex coefficients Ai and Bi [Eq. (C2)] represent
geometry induced phase factors and influence the feed-
back controlled radiative dephasing h̄γr (τ1, τ2), which differs
clearly from the radiative dephasing for the homogeneous
structure [Eqs. (9) and (21)]. The energy shift [Eq. (22)] in-
duced by feedback induced interference has been theoretically
predicted [4] as a polaritonic frequency shift, which changes
the position of the resonant transition. In this paper we want
to focus on the time delayed radiative dephasing h̄γr (τ1, τ2),
which is now a function of the mirror position and may be
increased or reduced compared to the radiative dephasing of
the monolayer h̄γr . The extension to multilayered structures is
straightforward [10] and should, for a careful design, conserve
the interference effects described here for a single layer. A
discussion of the absorption spectra [Eq. (19)] is provided in
Sec. III.

III. DISCUSSION

In the previous section the models of the linear absorption
spectra involving the interplay of non-Markovian exciton-
phonon scattering at the temperature T = 300 K and mirror
induced time delayed feedback were derived. The corre-
sponding radiative dephasing develops according to Eq. (20),
where the non-Markovian exciton-phonon scattering intro-

duces phonon sidebands. In this section, two possible setups
[Figs. 2(a) and 3(a)] will be discussed, where the absorption
is influenced by the feedback, i.e., either enhanced through
constructive interference at the TMDC or decreased via de-
structive interference. To illustrate this scheme, we use the
material system of MoSe2, where phonon sidebands are al-
ready observed experimentally, due to strong exciton-optical
phonon coupling [3,23]: In this material, in addition to the
main resonant transition for a homogeneous dielectric envi-
ronment, a pronounced phonon sideband can be observed at
h̄ω ≈ 1.75 eV in Figs. 1(c) and 1(d), thus reproducing the
results of Ref. [3]. The enhancement or suppression of this
sideband will be the focus of our paper. The mirror introduc-
ing the optical feedback is now positioned such that phonon
sidebands are optically suppressed, by tuning the structure
parameters 
1 and 
2, such that the radiative dephasing van-
ishes at this position.

In Fig. 2(a), one possible structure is shown, where 
1 =
240 nm for a top layer width of 
2 = 60 nm. Here, the electric
field intensity profile in Fig. 2(b) shows that the electric field
destructively interferes at the position of the TMDC, which
suppresses optical interaction at the frequency of the phonon
sideband. In Figs. 2(c) and 2(d) the calculated absorption
spectrum is shown. It can be seen that, in principle, the whole
spectrum is influenced by the geometry induced decrease of
absorption [see the normalization factors in Fig. 2(c)]. The
feedback causes the absorption at the energetic position of the
sideband to vanish completely, due to h̄γr (τ1, τ2, 1.75 eV) ≈
0. This setup shows that besides the possibility to control
the radiative dephasing, destructive interference from a mirror
can be used to suppress phonon sidebands from appearing
within the optical absorption spectra for TMDCs. In a second
setup, the value of the radiative dephasing is increased by con-
structively interfering the field at the position of the TMDC.
For 
1 = 360 nm and a top layer width of 
2 = 40 nm, the
mode profile and optical spectra are shown in Fig. 3. From
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the comparison of the mode profile in Figs. 1(b) and 3(b), it
can be concluded that the field intensity is enhanced by three
times the incident field intensity. The constructive interference
increases the radiative dephasing and yields an increase of
the overall absorption shown in Fig. 3(c). Thus the presented
structure may be applied to increase optical absorption, by im-
proving the ratio of radiative dephasing to the phonon induced
broadening, which could help pronounce and identify phonon
sidebands of TMDCs.

IV. CONCLUSION

The optical absorption for a monolayer MoSe2 at T =
300 K was calculated with respect to the interplay of non-
Markovian exciton-phonon scattering and feedback induced
radiative dephasing. Two possible geometries for MoSe2 were
presented, one where the absorption of a phonon sideband was
suppressed through destructive interference at the TMDC, and
another structure where the sideband was enhanced through
constructive interference. An experimental validation of the
predicted exciton-phonon interaction control is not restricted
to a single TMDC layer, where the radiative decay can be
suppressed or amplified with feedback [9], and recently also
the experimental control of bright and dark exciton splitting
was reported [34]. It could be extended to multilayer samples
[10] and also be used to enhance the coherence and quantum
correlations of light by feedback in cavities [13] by suppress-
ing the exciton-phonon coupling. For organic semiconductors,
typically involving a series of phonon sidebands [35], and
for quantum dots [36,37], the control of phonon sidebands
is also in reach. Besides, since similar phonon replicas are
also known to occur for cavity exciton-polariton setups [38],
it would in principle be intriguing to see whether additional
mirrors could be used to apply the suggested suppression
scheme also in related systems. This might however not be
very straightforward, as the feedback mirror would intro-
duce a tradeoff between strong coupling and the control of
phonon sidebands. Also an application of the proposed setup
to localized plasmons, e.g., in hybrid systems with metal
nanoparticles, where peaked resonances occur in respective
spectra [39,40], could be a subject to control.
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APPENDIX A: PARAMETERS

In Table I we show the material parameters of the investi-
gated monolayer MoSe2.

TABLE I. Material parameters of the investigated monolayer
MoSe2.

Parameter Value

h̄γr0 (MoSe2) 2.2 meV [1]
h̄γ0 (MoSe2, 300 K) 18 meV [1]
nSiO2 1.46 (1.6 eV) [41]
E1s (MoSe2) 1.68 eV [32]
gα

q (MoSe2) 50 meV [3,42]
Eα

q (MoSe2) 37 meV [3,42]

APPENDIX B: DETAILS ON THE FOURIER TRANSFORM

In Sec. II, the properties of the Fourier transform were
applied, in order to determine the electric field strength and
to solve the Bloch equation. The applied properties will be
derived in this section. First we identify the definition of the
Fourier transform, which transforms a function into Fourier
space:

f (ω) :=
∫

dt f (t )eiωt . (B1)

Certain properties may be derived for derivatives or arguments
of f (t ):

∫
dt f (t − τ )eiωt =

∫
ds f (s)eiω(s+τ ) = eiωτ f (ω), (B2)

∫
dt∂t [ f (t )]eiωt = −

∫
dteiωt (iω) f (t ) = −iω f (ω). (B3)

The two properties may both be applied as in the case for
∂t [Pμ(t − τ )], and were used to calculate the optical spectra
shown in Sec. II.

APPENDIX C: DETAILS ON THE FEEDBACK CONTROL

For the inhomogeneous structure [Figs. 2(a) and 3(a)], the
field strengths as a function of the incident field strength are
represented in the frequency domain through the following
system of linear equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
t+ 0 0 0 r+g+

2 0 0
0 1 0 0 0 0 iκ

r−g−
2 0 0 0 t− 0 0

0 0 0 0 0 1 iκ
0 0 −g+

1 0 0 0 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0

ET 1

ET

ER

ER1

EB

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0

ET 1

ET

ER

ER1

EB

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(C1)

where the delay times τ1 = 2n
1
c0

and τ2 = 2n
2
c0

were intro-
duced, which represent the optical path time between the
TMDC and the mirror and the optical path time between
the top layer and the TMDC. The optical phase shift can be
calculated through g+

j = exp(iωτ j ), which influences the field
strength when interfering at a surface or TMDC. The solution

085308-6



SUPPRESSION AND AMPLIFICATION OF PHONON … PHYSICAL REVIEW B 109, 085308 (2024)

depending on the incident field E0 and P reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0

ET 1

ET

ER

ER1

EB

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
AT 1

AT

AR

AR1

AB

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

E0 + iκ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
BT 1

BT

BR

BR1

BB

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

P, (C2)

where

⎛
⎜⎜⎜⎜⎝

AT 1

AT

AR

AR1

AB

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t+
1+g+

1 g+
2 r+

t+
1+g+

1 g+
2 r+

r−
g+

2
− g+

1 t+t−

1+g+
1 g+

2 r+

−g+
1 t+

1+g+
1 g+

2 r+

−g+
1 t+

1+g+
1 g+

2 r+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

⎛
⎜⎜⎜⎜⎜⎝

BT 1

BT

BR

BR1

BB

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g+
2 r++g+

1 g+
2 (r+ )2

1+g+
1 g+

2 r+

1+g+
2 r+

1+g+
1 g+

2 r+

−g+
1 t−+t−

1+g+
1 g+

2 r+

1−g+
1

1+g+
1 g+

2 r+

−g+
1 g+

2 r+−g+
1

1+g+
1 g+

2 r+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C4)

which allows us to insert the relevant fields into the Bloch
equations and calculate the excitonic transition,

P1s(ω) =
1
A

∑
q(φq

1s)∗dc,ν (AT 1 + AR1)E0(ω)

−h̄ω + E1s + δr (τ1, τ2) − ih̄γr (τ1, τ2) − 
(ω, T )
,

(C5)

where the feedback controlled radiative dephasing

h̄γr (τ1, τ2) = h̄γrIm[BT 1 + BR1], (C6)

h̄γr = ω

2ε0nc0

1

A2

∣∣∣∣∣
∑

q

φ1s
q (dc,ν )∗

∣∣∣∣∣
2

(C7)

and a radiative frequency shift are introduced:

δr (τ1, τ2) = h̄γrRe[BT 1 + BR1]. (C8)

This energy shift induced by feedback induced interference
has been theoretically predicted [4] as a polaritonic fre-
quency shift, which changes the position of the resonant
transition. In this paper we want to focus on the radiative
dephasing, which is now a function of the mirror posi-
tion and may be increased or reduced compared to the
radiative dephasing of the monolayer h̄γr . The complex
coefficients Ai and Bi represent the phase factors and influ-
ence the feedback controlled radiative dephasing h̄γr (τ1, τ2),
which differs from the radiative dephasing for the homoge-
neous structure [Eqs. (9) and (21)]. The mechanism is also
dependent on the frequency ω. One possible classical interpre-
tation might be the frequency dependence of the interference
pattern, which is shown in the mode profiles [Figs. 2(b)
and 3(b)].
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