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In the field of materials research, machine learning (ML) techniques have emerged as indispensable tools.
However, the opaqueness in decision making by models can compromise the trustworthiness of results, under-
scoring the crucial need for model interpretability. Explainable machine learning (XML) strives to augment
researchers’ comprehension of material properties and performance. Yet, reliance on high-quality datasets
and scarcity of prior knowledge pose challenges for XML research, particularly when dealing with smaller
datasets. In this study, using spinel as a representative example, we successfully addressed the data challenges in
XML through a cationic perturbation strategy. We demonstrate an effective approach for handling information
scarcity in small datasets, thus offering a feasible method for material research and broadening the scope of
XML applications in materials science. Furthermore, our investigation successfully uncovered potential causal
relationships underlying material properties and validated their consistency with physical cognition. These
causal relationships can serve as experimental guides, facilitating the design and optimization of new materials.
Consequently, this research holds significant scientific merit in advancing XML in the realm of materials science,
while providing profound insights into material properties and fostering the development of reliable ML-based
materials research.
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I. INTRODUCTION

In order to explore new materials and reduce experimen-
tal costs and trial and error time, scientists have developed
high-throughput first-principles simulation techniques [1–4].
However, due to the high computational cost [5] and the
limited amount of information that human experts can han-
dle and acquire for multivariate coupling mapping functions,
there is a need for alternative approaches. Moreover, to ensure
high-throughput computational efficiency, most of the data
in material databases are derived from semilocal functionals
and generalized gradient approximation (GGA) [2–4], which
often underestimate the experimental band gap by 30%–100%
[6]. Finding new techniques applicable for exploring new
materials is imperative. In recent years, with the expansion of
some material databases [2–4], machine learning (ML) tech-
niques have been widely applied in the field of material design
and exploration. ML can spontaneously learn hidden patterns
from massive data without relying on deep domain knowledge
[7–11], significantly improving the efficiency and accuracies
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in material research [12]. However, the complexity of ML it-
self and the prevalence of “black-box models” are detrimental
to materials scientists’ understanding of results and insight
into the decision-making process. In fact, some state of the
art ML models suffer from logical unreliability and exhibit
poor extrapolation performance [13,14]. Therefore, materials
scientists generally seek to enhance the interpretability of ML
models.

Explainable machine learning (XML) [15] is primarily
aimed at enhancing researchers’ understanding of the rela-
tionship between new material properties and performance.
By combining computer simulations, ML, and data-driven
approaches, XML can extract useful information from large
amounts of data, thereby accelerating the design and opti-
mization of new materials. In XML, an important aspect is the
generation of highly explainable models, enabling researchers
to intuitively understand the model’s prediction results and
the factors it depends on. However, the application of XML
still faces some challenges. (1) Most material data are scarce,
limiting the predictive and expressive capabilities of the mod-
els. Hidden patterns in small data often exhibit uncertainty
and specificity. (2) The uncertainty and noise inherent in the
data pose challenges to the accuracy and interpretability of the
models. (3) The complexity of correlations between material
properties makes model fitting and interpretation extremely
difficult, highlighting the importance of incorporating domain
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FIG. 1. Flow chart for optimizing the spinel oxide dataset. (a) EGGA
g in MP is corrected by combining the SNUMAT database with MP to

train ML model. (b) The 170 known spinel oxides in MP are replaced by cations at site A and site B, respectively, and are distinguished as to
whether they form spinel structures or not, where blue is the optional element at site A, green is the optional element at site B, and orange is
the optional element at both sites. (c) The proxy model is trained on MP_m to extract the labels of the revised dataset after cation substitution.

knowledge and designing descriptors to balance model accu-
racy and interpretability [16,17].

With the development of generative artificial intelligence
(GAI), large-scale GAI models such as ChatGPT possess
powerful capabilities for generating diverse content across
multiple domains [18]. They can also be deeply integrated
with AI for science, generating abundant high-quality data
guided by domain knowledge, thereby greatly accelerating
material property prediction and new material development
processes. However, the establishment of such GAI strategies
requires a foundation of domain knowledge and a certain scale
of data, making it ineffective for material types with extremely
scarce data. By partially replacing the original ions in materi-
als with a large number of selectable substituting elements, the
scale of generated data can be freely controlled by adjusting
the substitution ratio. Importantly, when the original structure
type remains unchanged under certain conditions after ion
substitution, the structure remains constant while the compo-
sition becomes variable. In this case, it is only necessary to
extract descriptors for the composition, significantly reducing
the complexity of the model and enhancing its interpretability.

Band gap properties play a vital role in understanding
the electronic and optical characteristics of materials and de-
veloping new materials with desired properties for various
applications. In this study, we focused on investigating the
band gap of spinel oxides as an example. However, we en-
countered data challenges due to the limited number of spinel
oxide compounds (only 170) available in the Materials Project
database (MP) [3] when searching with specific chemical
formula (AB2O4) and space group number (227) conditions.
Moreover, the majority of data in the database were derived
from GGA, which constrained the study of XML in terms of

data quality and quantity. To overcome these challenges, we
conducted three key steps as illustrated in Fig. 1:

(i) HSE06 calculations (referred to as HSE) provide band
gaps that are closer to experimental values. Therefore, we
trained a ML model using the SNUMAT database [19], which
contains 10 000 HSE band gaps (EHSE

g ), combined with the
MP to correct the GGA band gaps (EGGA

g ), resulting in a
revised dataset (MP_m) with improved accuracy closer to
experimental values.

(ii) By cationic perturbation strategy, we obtained approx-
imately 140 000 spinel oxides. Subsequently, we trained a
high-precision classification model to screen for materials that
maintain the spinel phase after ion substitution.

(iii) Due to the computational challenges associated with
obtaining the specific structural parameters for such a large
number of materials, structureless learning is more suitable
for this study. However, structureless learning cannot handle
the problem of multiple crystal structures corresponding to the
same chemical formula [20]. Therefore, we made adjustments
to the CrabNet [14] network structure (referred to as Crab-
Net_s) and used the CrabNet_s model to train a regression
model on the MP_m dataset to predict the band gap of new
spinel oxides.

Furthermore, to enhance the model’s expressive power
and prediction capability, we extracted atom-level physical
quantities as descriptors for spinel oxides based on prior
experimental experience (e.g., atomic number, electronegativ-
ity). Finally, using XML, we revealed the causal relationships
behind the band gap of spinel oxides from both a global and
individual perspective, with the dominant factor being the sum
of valence electrons for cations. This approach can unveil
the complex causal relationships underlying these material
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FIG. 2. Structure and data statistics of spinel oxides. (a) Spinel usually adopts a cubic phase lattice structure, in which the anion
occupies the position of the body center, and the A site and B site are occupied by different metal cations, distributed in the tetrahedral
and octahedral voids, respectively. (b) Data distribution of the atomic number of the A site and B site of spinel oxides in the dataset.
(c) Band gap distribution of spinel oxides; metals are distinguished from semiconductors simply by whether the band gap is zero, where
the main panel shows the data distribution for semiconductor materials and the inset shows the data distribution for metal and semiconductor
materials. (d) Data distribution of direct and indirect band gap for spinel oxides.

properties and provides strong support for experimental and
theoretical research.

II. RESULTS AND DISCUSSION

A. Initial spinel dataset

We screened out 170 spinel oxides in MP, and statistical
analysis of the data was conducted. Spinel oxides with the
chemical formula AB2O4 are significant inorganic materials
that commonly exhibit a cubic structure [see Fig. 2(a)] and
belong to the Fd 3̄m space group with a space group number
227. In this structure, the A and B sites occupy 1/8 of the
tetrahedral void and 1/2 of the octahedral void, respectively
[21]. Figure 2(b) illustrates the distribution of atomic numbers
in the dataset, where the A and B sites typically consist of
transition metal elements. Figure 2(c) displays the distribution
of band gaps in the dataset, where 81 materials are semi-
conductors and 89 materials are metals. In this study, the
materials are distinguished as metallic or nonmetallic simply
by whether the band gap is zero or not. Considering the band
gap distribution of the semiconductor materials in the dataset,
the amount of data is not sufficient to train a good regression
model to accurately predict the band gaps. Furthermore, the
dataset predominantly comprises materials with indirect band
gaps, with only 1/5 of the materials having direct band gaps
as shown in Fig. 2(d). Analysis of this dataset shows that it

is difficult to train an effective interpretable model to build a
bridge between cause and effect.

B. Fixing the GGA band gap in MP

As mentioned above, GGA usually underestimates the
band gap, and using such data will hinder the interpretation
of the model. Before continuing with the next work, our first
step is to establish an effective EGGA

g correction model.
The SNUMAT database provides band gap data based on

hybridization generalization calculations, and EHSE
g is closer

to the experimental value compared to EGGA
g . However, the

SNUMAT database contains only about 13 000 data, which
makes it difficult to train ML models with better generaliza-
tion ability compared to the 150 000-volume MP database.
The band gap data provided by the MP database are divided
into two parts, of which 42 938 partial transition metal ox-
ides and fluorides are calculated using GGA+U , and the
remaining 111 777 data calculated using GGA [22] need to
be corrected to achieve near experimental level accuracy.
GGA+U is an effective optimization method [23] and, there-
fore, corrections are only necessary for the 111 777 data as it is
essentially an approximation of the experimentally measured
band gap.

Figure 3(a) shows a scatter plot of the band gap of the
semiconductor material of SNUMAT, revealing that a strong
linear relationship between EGGA

g and EHSE
g can be found:
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FIG. 3. Pre-data-analysis work to correct the EGGA
g of MP. (a) Scatter plot and distribution plot of EHSE

g and EGGA
g in SNUMAT, revealing

the correlation between them and the consistency of the data distribution. (b) Distribution of the EGGA
g after aggregation of the SNUMAT and

MP data, with overall consistency. (c) Feature importance ranking of the band gap classification model plots, with the feature importance of
the space group number in red.

EHSE
g = 1.19EGGA

g + 0.76. It is feasible to use this linear rela-
tionship for the correction of the EGGA

g . However, it is worth
noting that this linear relationship becomes less reliable for
small band gaps. To address this, richer information and an ad-
vanced integrated learning method, LightGBM [24] (LGBM),
are employed to improve the accuracy of predicting EHSE

g . The
process of correcting the EGGA

g of MP is shown in Fig. 1(a),
where we first aggregate SNUMAT and MP by chemical
formula and space group to obtain an intersection (for data
with the same chemical formula and space group, we keep
the one with the smallest absolute error between the EGGA

g of
MP and the EGGA

g of SNUMAT). The slight error introduced
by different computation methods is reasonable, and after
removing a small number of outliers, the distribution of EGGA

g
of the two databases is nearly identical [see Fig. 3(b)]. The
model is trained using the EGGA

g from MP without considering
the SNUMAT database, ensuring better prediction capability
for unknown data by maintaining consistency in data distribu-
tions.

The EGGA
g is a powerful descriptor for predicting EHSE

g ,
and we also derived the chemical formula into 145 features
related to the constituent elements [25,26] to obtain more
complete information. A major drawback of component-based
ML is that the chemical formulas of some compounds in the
database correspond to multiple structures, making it impos-
sible to establish a one to one mapping relationship from
components to properties. The research object of this paper
takes spinel as an example. Although the specific structure
of each sample is different, all their space group numbers
are 227. The space group represents partial properties of
structures and can greatly alleviate the above shortcomings
of component learning. In addition, we found that the space

group feature plays a significant role in band gap prediction
[see Fig. 3(c)], so it should also be taken into account. In
order to avoid the “curse of dimensionality,” we performed
covariance feature removal and explicit forward selection of
features to substantially reduce the feature size in the subse-
quent stages of our work. The details of features X1–X15 are
shown in Table I.

The model needs to be validated for both extrapolation
ability, which refers to its ability to predict data beyond the
training set, and generalization ability, which pertains to its
performance on arbitrary samples. In this study, 2222 data
(T1) in SNUMAT, excluding the intersection set mentioned
above, are completely unknown during the model’s training
process, allowing for a comprehensive assessment of its ex-
trapolation ability. In addition, to verify the generalization
ability of the model, we also partition the dataset into a test set
(T2) at a ratio of 0.2, and the remaining part is the training set.

We adopt a hierarchical prediction approach: firstly, we
use the classification model to predict whether the band gap
is 0. Subsequently, a regression model is utilized to predict
the non-0 band gaps. This approach offers several advantages,
including the ability to distinguish between 0 band gap and
non-0 band gap materials, avoiding the introduction of noise
through direct regression, improving the regression perfor-
mance by refining predictions for non-0-band gap materials,
and effectively addressing the issue of dataset imbalance.
To prevent feature redundancy and mitigate the risk of di-
mensionality issues, an appropriate number of features were
selected for training the classification and regression models.
The results of feature selection show that the performance of
the model is the best when 18 features and 32 features are
selected for the classification model and regression model,
respectively.

085306-4



CATIONIC PERTURBATION STRATEGY TO SOLVE … PHYSICAL REVIEW B 109, 085306 (2024)

TABLE I. Feature mapping table.

No. Feature Importance Feature description

X1 Max MendeleevNumber 0.085 The highest Mendeleev number among the elements present in all compounds
X2 Min MeltingT 0.061 The lowest melting temperature among the compounds
X3 Space group 0.061 The space group of the structure
X4 Compound possible 0.060 A compound that may be possible or not
X5 Mode MendeleevNumber 0.049 The most frequently occurring Mendeleev number among the compounds
X6 Mean MendeleevNumber 0.044 The mean Mendeleev number among the compounds
X7 Min space groupNumber 0.037 The smallest or lowest space group number among the compounds
X8 Mean GSvolume_pa 0.027 The average ground-state volume per atom among the compounds
X9 Mean Number 0.027 The mean number among the compounds
X10 Range CovalentRadius 0.025 The difference between the maximum and minimum covalent radii among the elements

or compounds
X11 Mode NUnfilled 0.022 The most frequently occurring number of unfilled electron orbitals among the

compounds
X12 Mean NpUnfilled 0.022 The average number of partially unfilled electron orbitals among the compounds
X13 Min NUnfilled 0.022 The smallest number of partially unfilled electron orbitals among the compounds
X14 2-norm 0.021 The 2-norm feature of elements in material composition
X15 Range GSvolume_pa 0.021 The range of ground-state volume per atom among the compounds

Area under the receiver operating characteristic (ROC)
curve (ROC_AUC) is a measure of classifier performance,
which measures the magnitude of the area under the ROC
curve, and is calculated in Eq. (1),

ROC_AUC =
∫ 1

0
TPR[FPR−1(t )]dt, (1)

where TPR represents the true positive rate (the ratio of cor-
rectly identified positive cases to the total number of positive
cases), and FPR denotes the false positive rate (the ratio of
negative cases incorrectly identified as positive cases to the
total number of negative cases).

The coefficient of determination (R2) is employed as an
overall accuracy measure for the regression model’s predic-
tions:

R2 = 1 − SSres

SStot
. (2)

R2 reflects the proportion of the variance of the dependent
variable that can be explained by the model, with values
ranging from 0 to 1, and the closer it is to 1 indicates a
better fit of the model. SSres represents the residual sum of
squares, and SStot denotes the total sum of squares. The sum
of squared residuals quantifies the difference between actual
and predicted values, while the total sum of squares captures
the difference between actual values and the sample mean.

MAE (mean absolute error) is used to evaluate the average
absolute error of the model’s predictions. A smaller MAE
indicates more accurate model predictions. The calculation
formula for MAE is provided in Eq. (3): yi represents the true
value and ŷi represents the predicted value.

MAE = 1

N

N∑
i=1

|yi − ŷi|. (3)

According to Fig. 4, our trained ML model demonstrates
excellent performance. The ROC_AUC of the classifier on
T1 is 0.97, indicating strong extrapolation performance. The
ROC_AUC on T2 is 0.99, indicating strong generalization

ability, and the fivefold cross validation ROC_AUC, averaging
around 0.99, further demonstrates the stability of the model.
The regression model also exhibits good overall fit. R2 is 0.81
and MAE is 0.44 eV on T1; R2 is 0.96 and MAE is 0.23 eV on
T2. These results indicate that the regression model possesses
both extrapolation and generalization capabilities. Although a
few outliers are present, the overall performance of the model
is satisfactory. Finally, we obtained the improved dataset
(MP_m) by using classification to predict whether the band
gap in the MP database is 0 or not, and subsequently using the
regression model to correct the non-0 band gaps.

We compared the improved dataset MP_m with an ex-
perimental dataset of 4604 band gap measurements provided
by Zhuo et al. [27], which is accessible on the MATMINER

[26] platform. Although this experimental dataset only in-
cludes chemical formulas and band gaps, the compositions of
semiconductors significantly influence the band gaps. As the
band structure and electronic properties are directly related
to the composition, we can roughly estimate the approximate
band gap range. To ensure accuracy and avoid errors caused
by polycrystalline phenomena, we removed data points from
MP_m where the chemical formula matched multiple struc-
tures. This resulted in a final dataset of 2621 data points for
analysis. Comparing the predicted band gap in MP_m with the
experimental band gap, we calculated the MAE to be 0.37 eV.
In contrast, the MAE between the band gap calculated by
GGA and the experimental band gap is 0.91 eV. In conclusion,
our dataset MP_m generated in this study demonstrates closer
accuracy to experimental measurements when compared to
the previous dataset MP.

C. Cationic perturbation strategy

The cationic perturbation strategy involves systematically
replacing the cations of the components in incremental steps
to generate a large number of hypothetical materials. These
materials are not necessarily physically realizable, but their
purpose is to enhance the effectiveness and explanatory power
of ML models. Therefore, it is not necessary to consider the
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FIG. 4. Plots of model performance for predicting EHSE
g . (a) Plot of the fivefold ROC curve for the classification model used to predict

whether EHSE
g is 0. The area below the curve is closer to 1 indicating the better classification performance of the model. (b) Plot of the

performance of the regression model used to predict the specific value of EHSE
g . The more the blue points converge toward the center of the

best-fit line the closer the predicted value of the regression model is to the true value.

stability of these hypothetical materials; rather, the focus is on
whether their components can form the space group number
227. Figure 1(b) illustrates the workflow of cation substitution
in the A and B sites of the spinel structure, with the optional
elements for these sites taken from the work of Wang et al.
[28]. Since the cations in the A and B sites occupy interstitial
positions within the crystal structure, we chose to replace only
one cation at a time while keeping the other cation unchanged.
The substitution process was carried out sequentially, with a
chemical coefficient of 0.1, until complete substitution of the
site was achieved. It was ensured that the same elements did
not appear in both the A and B sites.

The unprocessed dataset obtained after cation substitution
consists of approximately 140 000 entries. However, it is com-
putationally challenging to calculate the crystal structure for
such a large dataset, especially considering our requirement
of retaining the spinel phase in the substituted material. To
address this issue, we employed a suitable method based on
the tolerance factor. The tolerance factor can roughly estimate
whether the material can form the spinel phase [29]. However,
it is difficult to estimate the ionic radius and tolerance factor
(the calculation of the tolerance factor depends on the ionic
radius, which is related to the oxidation valence state), particu-
larly for spinel structures containing transition metal elements
with complex and variable oxidation states. In addition, some
hypothetical materials may have complex crystal structures or
contain defects, which may lead to the existence of valence
imbalance. To overcome this challenge, we trained a classi-
fication model to predict whether a material would form a
spinel structure after cation substitution.

We created a training dataset for the classification model
by selecting 170 spinel oxides as positive examples and 200
non-spinel-structured ternary and quaternary materials from
the MP database as negative examples. The features used
for training were derived from chemical formulas, resulting
in a dataset size of 370 entries with 145 features. To con-
struct the best ML pipeline for classification, we employed

the tree-based pipeline optimization tool (TPOT). TPOT utilizes
genetic algorithms to optimize ML pipelines and has shown
effectiveness in solving regression and classification problems
[30]. TPOT takes a lot of time and computational resources
when dealing with large-scale data, but is very suitable for
this dataset of only 370 data. The 370 data are divided into
training and test sets in the ratio of 4:1, and then the classifier
is trained on the training set using TPOT, with the population
parameter set to 50 for each training, and the optimization
target is the mean value of ROC_AUC for the fivefold cross
validation. After ten iterations, the best model achieved a
score of 0.99 on the training set and a score of 0.94 on the
test set, indicating good generalization ability of the classifier.
Using this classifier, we screened out 111 138 materials with
spinel structure from the initial dataset of 140 000 materials.

D. Proxy model to extract tags

The 111 138 data generated after cation substitution only
have information on the chemical formula and corresponding
sites, while they lack the target variable (label). Therefore,
it is necessary to train a generalizable model on MP_m to
extract labels for this dataset. The information contained in
crystal structures is richer than that in compositions, so some
deep learning (DL) methods based on crystal structure as input
[31–33] have achieved impressive results in predicting band
gaps. However, due to the significant time and cost required
for the precalculation of these 110 000 crystal structures,
structure-based DL methods are dismissed. Some structure-
free learning DL methods [14,29,34] have also achieved quite
good results in the field of band gap prediction. In cases where
the standard for model prediction accuracy can be relaxed ap-
propriately, these structure-free DL methods are more suitable
for this task.

One such structure-free learning method is CrabNet, which
is a Transformer-based [35] approach for building atten-
tion graph neural networks. CrabNet achieves accurate band
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TABLE II. Comparison of MAE performance of CrabNet and
CrabNet_s on MP_m.

No. MAE of CrabNet_s (eV) MAE of CrabNet (eV)

Fold_0 0.3916 0.4126
Fold_1 0.4046 0.4286
Fold_2 0.4004 0.4193
Fold_3 0.3983 0.4186
Fold_4 0.3995 0.4178
Mean 0.3989 0.4194

gap predictions using only composition and element ratio
information. It is worth noting that CrabNet fractionally
encodes elemental ratio information and maps it into a
high-dimensional space, making it sensitive to small changes
in elements that can impact overall material properties. How-
ever, structure-free learning usually uses some methods of
averaging the target variables to create a unique mapping
between inputs and outputs, which may lead to incorrect
predictions of compound properties. Spinel is a typical com-
pound with polycrystalline phenomena, and failure to address
this issue can lead to significant errors between the model
output and the true band gap of spinel. To address this issue,
we incorporate space group information, an important concept
in crystallography [36]. Spinel oxides typically exhibit a spe-
cific space group symmetry (space group number 227), and
within a database like MP_m, many candidate materials may
have the same chemical formula but different structures and
properties. Using space group features can help to accurately
identify oxides with spinel structures from these candidate
materials. Figure 3(c) shows the importance of space group
features, and space group information can be used to guide
the model to learn interactions between different elements in
the crystal and capture relationships between properties, thus
enhancing the representativeness of the model.

We partitioned 170 spinel oxides from MP_m as the test
set, and the rest of the data are used for fivefold cross-
validation. Table II shows that the performance of the revised
network architecture, CrabNet_s, has improved by approxi-
mately 5% compared to the original CrabNet, with the same
evaluation methodology. This improvement is attributed to the
inclusion of space group information and enhanced feature
representation in our model. It is worth noting here that the
MAE of the CrabNet MAE on MP_m is higher than that on
MP [37], which is caused by the fact that EHSE

g is typically
larger than EGGA

g .
The test set of 170 spinel oxides was used to validate

the prediction ability of the model on unknown spinel data.
Table III shows that CrabNet_s achieves a significantly
smaller MAE compared to CrabNet for predicting spinel ox-
ide data, improving performance by approximately 12%. The
CrabNet_s model trained by Fold_1 has the strongest predic-
tion ability, so we use this model for the subsequent study.
Among these 170 spinel oxides, 64 data have band gap records
calculated by GGA. We assume that the corrected band gap
in MP_m is the true value and the band gap calculated by
the GGA method is the predicted value, and the MAE of
these 64 data is 1.029 eV, while the MAE predicted by the

TABLE III. MAE performance of CrabNet vso CrabNet_s on
170 spinel oxide datasets.

No. MAE of CrabNet_s (eV) MAE of CrabNet (eV)

Fold_0 0.5287 0.5641
Fold_1 0.4663 0.5856
Fold_2 0.5017 0.5617
Fold_3 0.4809 0.5484
Fold_4 0.5051 0.5761
Mean 0.4965 0.5636

Fold_1-trained CrabNet_s is 0.4663 eV. Figure 5 provides a
violin plot illustrating the residual value statistics from these
two methods, indicating that CrabNet_s provides more accu-
rate and stable predictions. Therefore, the CrabNet_s model
demonstrates positive prediction ability on these 170 spinel
oxides. On this basis, we used the model to extract labels for
the aforementioned 111 138 cation-substituted spinel oxide
data.

E. Explainable machine learning

We obtained 111 138 spinel oxide data after optimizing
the original set of 170 spinel oxides. This dataset now has
a sufficient data size and, importantly, labels that closely
correspond to experimental results. To extract features from
each data point, we consider the A and B sites separately
and extract difference features and summation features. Since
the anion is fixed as O, these features mainly reflect the
differences between cations. These features contain 12 ba-
sic physical quantities (density, dipole polarizability, covalent
radius, atomic radius, first ionization, number of valence elec-
trons, number, period, electronegativity, number of s and p
electrons, number of d electrons, and Mulliken electronega-
tivity).

The features of the substituted sites are calculated using
Eq. (4):

Xsite = s1E1 + s2E2, (4)

where E1 and E2 represent the two elements present at the site;
s1 and s2 denote the stoichiometric numbers, respectively.

We conducted correlation analysis on the dataset to assess
the associations between variables and improve the perfor-
mance and reliability of the ML models. Then we selected
the four features with the highest correlation with the band
gap from the feature pool. The correlation coefficients be-
tween these features are visualized in the heat map shown
in Fig. 6(a). The sum of the valence electron numbers of
the cations (X VE

2 ), the Mulliken electronegativity of B sites
(BMEn), and the sum of the densities of the cations (X D

2 )
show a negative correlation with the band gap [see Figs. 6(b),
6(d), and 6(e)], while the average ionic properties (AIC) are
positively correlated with the band gap [see Fig. 6(c)].

Before training the ML model, the data need to be analyzed
and a suitable modeling strategy needs to be selected first. The
dataset contains 59 601 samples with 0 band gap and 51 537
data samples with non-0 band gap. Directly predicting the
band gap value by regression will cause significant errors.
To address this, a hierarchical training approach is adopted,
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FIG. 5. The violin plot of residual statistics. (a) The violin plot shows the residual statistics of the target variable predictions by the
CrabNet_s model. (b) The violin plot displays the residual statistics of the target variable predictions by the GGA method.

involving two tasks: classification and regression. Firstly, a
classification model is trained to predict whether the material
has a 0 band gap. Secondly, for the 35 602 data with band gap
greater than or equal to 0.5 (as this study focuses on semicon-
ductor materials that generally have a band gap greater than
0.5), a regression model is trained to predict the band gaps.

XML requires models that have good predictive perfor-
mance and are not too complex. For this purpose, we employ
the random forest (RF) algorithm, which is an ensemble learn-
ing algorithm based on multiple decision trees. It combines
the results of each decision tree to obtain the final prediction.
Random forest is simpler, easier to understand, and has good
generalization ability and robustness compared to the boosting
idea of the LGBM algorithm. As the amount of training data
increases, the performance improves. Notably, only with a
training dataset of at least 10 000 samples, the classifier can
achieves good performance (ROC_AUC >= 0.85), while the

original dataset only had 170 samples. This highlights the ne-
cessity of optimizing the original dataset. The random forest
classifier achieves a ROC_AUC of 0.92 on the test set, while
the regression task achieves an R2 of 0.82 and a MAE of
0.38 eV. These results indicate that the model exhibits strong
predictive power, and it also proves that cationic perturbation
can significantly improve the performance of ML.

After confirming the model’s good predictive performance,
we proceeded with its interpretation using SHAP (SHap-
ley Additive exPlanations), a method for XML models [17].
SHAP is based on Shapley values, which quantify the contri-
bution of each feature to the model’s predictions, providing a
highly interpretable approach to global and local model inter-
pretation [38]. Figure 7 shows the SHAP plot of the model.
The summary_plot function from the SHAP library visualizes
the importance and influence of each feature on the predic-
tion results. As observed in the previous model-independent

FIG. 6. Correlation analysis. (a) Heat map of these features. (b)–(e) Two-dimensional density diagrams of them with respect to the band
gap. The feature naming rules are as follows: features named after elements represent the fraction of elements, A and B represent the features
of corresponding sites, X1 represents the difference of features between cations, and X2 represents the sum of cation features.
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FIG. 7. SHAP plot of the model. In SHAP plots, blue points
typically represent a negative impact on the model’s prediction for
a certain class, while red points indicate a positive impact on the
prediction.

interpretation (Fig. 6), a lower number of valence electrons in
the cation and a lower Mulliken electronegativity of the B site
correspond to a larger band gap.

In solid-state band theory, the band gap is directly cor-
related with a material’s ionicity [39]. A key parameter for
measuring ionicity is the AIC. Our data mining reveals that
an increase in AIC usually corresponds to a wider band gap,
confirming the established correlation between band gap and
ionicity. This is further supported by the concept that ionicity
can be inferred from the electronegativity difference between
constituent atoms of the material. Typically, a larger differ-
ence in electronegativity leads to a wider band gap [40–42].

However, our XML data analysis has unveiled a unique
trend: in most samples, as the electronegativity of B-site atoms
increases, the band gap decreases. This is likely due to the re-
duced electronegativity difference between these B-site atoms
and oxygen, altering the band gap. Another critical factor is
the valence electron count of cations. In spinel oxides, an
increase in valence electrons, which fills the d orbitals more,
tends to reduce the band gap. This reduction results from the
d-orbital energy levels splitting due to crystal field effects and
intensified electron-electron interactions.

Overall, these effects could lead to a reduction in the band
gap, but this is not a fixed rule. Instead, it is subject to the
interplay of several factors, including the specific properties of
the material, electronic configuration, and crystal field effects.

Therefore, understanding and predicting changes in the band
gap requires a comprehensive consideration of these complex
interactions by XML. These findings adhere to the funda-
mental laws of physics and are vitally important in materials
science. They relate directly to the electronic properties and
potential applications of materials, offering valuable insights
into their functionality and uses.

In addition, from Fig. 7, we can see that the introduction of
various transition metals affects the band gap of the material.
To investigate this effect, we selected several transition metals
for study. ZnBi2O4, a material of interest in photocatalytic
applications, has an experimentally measured band gap rang-
ing from 2.2 to 3 eV [43]. Figures 8(b) and 8(c) show the
band gap regulation by cation substitution at the A and B
sites. It can be observed that the introduction of all transition
metals, except Cd, leads to a smaller band gap than the initial
value (2.25 eV). This is probably due to Cd being in the last
group of transition metals, where all electrons are already
paired, resulting in lower electron activity, consistent with the
finding in Fig. 7. The introduction of other transition metals
reduces the band gap, potentially because the position of the
valence band top (VBM) in spinel is often determined by the d
orbitals of transition metals. As the number of electrons filled
in the eg orbitals increases, the Coulomb interaction between
the d orbitals and neighboring orbitals strengthens, leading
to a narrowing of the band gap. In Fig. 8(a), features that
increase the prediction are represented in red, while features
that decrease the prediction are represented in blue. The length
of the lines indicates the magnitude of the feature’s impact
on the output. By examining the scale values on the x axis,
we can observe the amount of increase or decrease in the
influence. It can be concluded that the higher the valence
electron count of the cations, the smaller the band gap, which
is consistent with the previous analysis, further confirming
the inference made in Fig. 6(b). It also can be seen that Zn
promotes the band gap value more than Fe does, accounting
for the smaller band gap in Figs. 8(b) and 8(c) when Fe is
introduced.

Understanding the material’s stability is crucial for pre-
dicting its performance in practical applications. The “energy
above hull” (�Eh) is a common and effective method for mea-
suring stability. A material is considered thermodynamically
stable if its �Eh is small, typically less than 0.2 eV/atom.
Consequently, we trained a ML model with �Eh as the tar-
get, achieving a MAE of 0.029 eV/atom. Subsequently, we
analyzed the feature importance of the model and found that
the electronegativity of the B site is the most significant factor
affecting stability. As the electronegativity of the B site in-
creases, the material’s band gap tends to decrease, but its �Eh
increases, thereby destabilizing the material. This could be
due to the fact that an increase in the cation’s electronegativity
reduces the difference in electronegativity between the cations
and anions, leading to weaker ionic bonds, thus destabilizing
the material.

III. METHODS

The model was trained on Nvidia GeForce RTX 4080, and
the neural network was built based on TORCH1.12.0+CU113.
The version of CrabNet is 2.0.8, and all parameters are set by
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FIG. 8. Cation substitution and predicted band gap for ZnBi2O4, with M as transition metal element. (a) Feature decision map for predicting
ZnBi2O4. (b) Ratio between A-site substitution and band gap. (c) Ratio between B-site substitution and band gap.

default. We adapted the network architecture of CrabNet by
introducing the space group information. To prevent overfit-
ting caused by having too many layers in the neural network,
we have set the number of layers in the TransformerEncoder-
Layer to 2, the dropout ratio to 0.2, the output dimension
of the fully connected layer to 1024, and the rest of the
parameters remain unchanged, and the model parameter scale
is 11992839.

In this work, we utilized a graph neural network (GNN)
with an incorporated attention mechanism. The details of the
model are described as follows:

Attention(Q, K,V ) = softmax

(
QKT

√
dk

)
V, (5)

ht
i = σ

⎡
⎣∑

j∈Ni

α
(
ht−1

i , ht−1
j

)
W t−1ht−1

j

⎤
⎦. (6)

In Eq. (6), α represents an attention function that adaptively
controls the contribution of neighboring node j to node i. In
order to learn the attention weights for different subspaces,
GNN can also employ multiple attention mechanisms:

ht
i = ||Kk=1σ

⎡
⎣∑

j∈Ni

α
(
ht−1

i , ht−1
j

)
W t−1

k ht−1
j

⎤
⎦. (7)

By incorporating the attention mechanism, the CrabNet
model can optimize feature representation and improve per-
formance and accuracy. However, the original CrabNet model
lacks representation of spatially symmetric information de-

spite its optimized feature representation for component
information in the final output of the attention layer. There-
fore, we added the space group information to CrabNet and
modified the original network architecture. The inputs to the
model consist of both chemical composition and symmetry
information. The chemical composition related inputs include
matrices derived from atomic numbers and stoichiometry.
We changed the operation rule of these two matrices in the
original work from addition to multiplication, to weight the
elemental information by stoichiometric numbers. The input
related to the symmetric information is unique in this study
and is represented by the matrix derived from the space group
number (SDM). Since the space group number information
is one dimensional, and in order to align it with the dimen-
sionality of the component information, we first map it to a
high-dimensional space using a fully connected layer. Then
we apply an attention layer to optimize its feature representa-
tion and obtain the input matrix. The process of obtaining the
input matrix is shown in Fig. 9.

Detailed information about the revised network architec-
ture (CrabNet_s) is in Fig. 10. The composition information
and symmetry information belong to the same layer. There-
fore, after obtaining the final feature representation of the
element information (EDM′), we concatenate the space group
information (SDM) to it to obtain the global information rep-
resentation of the material (GDM). The self-attentive layer is
then repeated N times to optimize the global information fea-
ture representation and obtain the final feature input (GDM′).
After multiple Transformer layers, the purpose is to extract
features that are closer to objective physical laws, thereby
obtaining a higher level of model performance.
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FIG. 9. Schematic representation of the derivative matrix of ZnBi2O4, where B denotes the batch, d_model denotes the number of
elemental characteristic dimensions, and n_elements denotes the number of elements.

IV. SUMMARY

In materials science, we often face challenges related to
poor data quality and limited size. This study successfully
overcomes these challenges. Our method for generating large-
scale HSE level data is not limited to spinel oxides; it is
also applicable to other material systems with fixed formulas

and structures, such as perovskite halides, which follow the
formula ABX3.

To tackle the quality issues in the original dataset, we
expanded the initial 170 entries using a cation perturba-
tion method, along with HSE level predictions. This ap-
proach generated 111 138 valid entries, establishing a strong

FIG. 10. Schematic diagram of CrabNet_s structure, including input EDM, self-attentive layer (repeated N times), updated element
representation EDM′, space group input SDM, global information input (GDM), self-attentive layer (repeated N times), updated global
information representation GDM′, residual network, and the final model output.
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foundation for future XML studies. Calculations at the
HSE level are usually time consuming. Processing 111 138
materials quickly using traditional methods is impractical.
Therefore, our method is notably efficient.

During our research, we created a dataset, MP_m, which
nearly matches experimental accuracy. We improved han-
dling polycrystalline structures in structure-free learning,
enhancing the CrabNet model’s performance. We identified
factors affecting the band gap in spinel oxides. For exam-
ple, we quantified the impact of cations’ valence electron
count and the electronegativity of B-site elements. These
findings align with physical intuition. Our work also shows
how changing elements and their amounts affects material
properties. Once validated, these causal relationships could
guide improvements in material performance in experimental
settings.

The dataset and code during the current study are available
in the GitHub repository [44].
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