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Quantum nondemolition (QND) measurements are a precious resource for quantum information processing.
Repetitive QND measurements can boost the fidelity of qubit preparation and measurement, even when the
underlying single-shot measurements are of low fidelity. However, this fidelity boost is limited by the degree
in which the physical system allows for a truly QND process—slight deviations from ideal QND measurement
result in bit flip errors (“quantum jumps”) if the measurement is repeated too often. Here, we develop a theoretical
framework to understand and quantify the resulting error arising from deviation from perfect QND measurement
in model spin qubit systems. We first develop our model on the ubiquitous example of exchange-coupled electron
spins qubits tunnel-coupled to a charge reservoir. We then extend it to electron-nuclear spin systems, to illustrate
the crucial similarities and differences between the two limits. Applied to the well-understood platform of a
donor nuclear spin in silicon, the model shows excellent agreement with experiments. For added generality, we
conclude the work by considering the effect of anisotropic spin couplings.
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I. INTRODUCTION

The measurement postulate of quantum mechanics is usu-
ally described as follows: Upon measuring some physical
quantity A, described by a Hermitian operator A, the outcome
of the measurement can only be one of the eigenvalues a,
of A; immediately after a measurement has occurred, the
system will be found in the eigenstate |¢,) associated with
the eigenvalue a, [1]. Despite being found in all textbooks,
the second part of the postulate does not describe all (or even
the majority of) practical situations. For example, measuring
the presence or absence of a photon can destroy the photon
completely—if a photon is registered by the detector, we know
that one photon existed before the measurement, but after the
measurement it no longer does. A similar scenario is found
in the measurement of electron spins in semiconductors, via
the mechanism of energy-dependent tunneling [2—4]. A high-
energy electron (spin-up, in materials with positive Landé g
factor) can tunnel into a cold charge reservoir, leaving an
imprint in a nearby charge sensor. After the measurement,
however, the spin-up electron is entirely lost—all we are left
with is the knowledge that the now-lost electron was in the
spin-up state.

The textbook example, where the system remains in the
post-measurement state corresponding to the observed eigen-
value, describes what is otherwise known as a quantum
nondemolition (QND) measurement [5]. Its key property is
that, since the first measurement with outcome a, projects the
system in the eigenstate |¢,) of the observable under study,
every subsequent measurement will return the same outcome
a, with certainty. In realistic experiments, where there may
be noise affecting the apparatus and reducing the single-shot
fidelity, the ability to perform repetitive QND measurements
and averaging over the results can greatly enhance the overall
fidelity of the outcome [6—10]. A high-fidelity QND readout
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enables equally reliable state preparation [11]. Other appli-
cations of robust QND measurements include quantum error
correction [12], entanglement by measurement [13], or obser-
vation of the quantum Zeno effect [14,15].

The experimental realization of a QND measurement usu-
ally consists of three components: (i) the quantum system of
interest (here assumed to be a qubit), described by the Hamil-
tonian ﬁQ, (ii) an ancillary quantum system, Hx, which can
be read out (destructively or otherwise), and (iii) a coupling
between the two systems, I-?C. The condition a measurement
must fulfill to behave in QND measurement manner is that ﬁQ
commutes with the interaction Hc [5,9]

[Hc, Hql = 0. (1)

A faithful implementation of this condition can be achieved
in the context of cavity quantum electrodynamics (cQED),
by coupling the qubit to photons in a high-quality resonator
[16,17]. In the dispersive limit, the qubit state only shifts
the cavity frequency, which is measurable without affecting
the qubit state itself [18]. A wide range of QND experi-
ments in solid-state cQED setups have been demonstrated
on superconducting [6,7] and spin-based [19,20] qubits. The
cQED architecture has been extremely successful in enabling
intermediate-scale quantum computation [21,22], but requires
a large footprint due to the size of the resonator.

Here, we study an approach to realize a QND readout,
where both the qubit and the ancillary system are spins
hosted in a solid-state device. In the context of semiconductor
spin qubits, this approach has the benefit of retaining the
small footprint and high qubit density that is typical of such
platforms [23]. This kind of QND measurement has been
experimentally demonstrated with electrons in quantum dots
[11,24-27], and in various electron-nuclear spin systems in-
cluding nitrogen-vacancy (NV) centers in diamond [8,28-32],
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donors in silicon [9,10,33], and a quantum dot electron spin
coupled to a nuclear spin ensemble [34].

An ideal QND measurement would require the interaction
between the qubit and the ancilla to be of Ising type, or
a similar interaction that fulfills Eq. (1). Unfortunately, the
native coupling mechanism in semiconductor spin systems
is either the Heisenberg exchange (between pairs of electron
spins) or the hyperfine interaction (between an electron and a
nuclear spin). These do not commute with the Hamiltonian of
the qubit, and thus violate the QND condition in Eq. (1). Dur-
ing the QND protocol, these interactions repeatedly weakly
entangle the qubit to the ancilla, which in turn is measured
projectively. This process can lead to unwanted flips of the
data qubit, and constitutes an error channel for the QND
readout.

The goal of this paper is to develop a general theoretical
framework to understand the error channels in this type of
QND measurements, and quantify the corresponding error
rates. The paper is organized as follows. In Sec. II, we review
how to perform QND measurements on the idealized example
of two Ising exchange-coupled spins and establish theoretical
models describing the relevant processes. Section III dis-
cusses error channels in a realistic system of two Heisenberg
exchange-coupled spins. Section IV applies our models to
donor spin systems, covering both exchange-coupled donor
electrons and a nuclear spin hyperfine-coupled to a bound
electron, in the isotropic and the anisotropic case. Section V
concludes and summarizes the results.

II. ISING EXCHANGE: IDEAL QND READOUT SCHEME

The setup needed to perform the QND measurement
scheme is shown in Fig. 1(a). A data qubit, described by
the Hamiltonian Hp, is connected to an ancilla (H,) via a
coupling Hc. The ancilla in turn is tunnel-coupled (Hr) to
a lead, i.e., a cold reservoir of electrons, for the purpose of
performing spin readout based on energy-dependent tunneling
[2-4]. The same mechanism ensures that, after readout, the
ancilla is reset to the low-energy spin state. The ancilla spin
can be controlled via spin resonance (Hsg). In the following,
we establish the model for the data-ancilla system and treat
Hr as a perturbation to determine tunnel rates from and to the
lead.

The data qubit and the ancilla are described by

Ap =Y (Ep + epo)dd,. )
Ay =) (Es + €x0)d} ., 3)

where 67; (&;) creates a particle with spin o € {1, |} on the
data (ancilla). Ep,4 is the on-site energy and ep,a the corre-
sponding spin splitting. We assume that e and €, are close
in value but sufficiently different to ensure that both spins can
be individually addressed via spin resonance. This is easily
achieved in quantum dot systems by using gradient magnetic
fields from micromagnets [35] or exploiting different g fac-
tors between dots [36]; in donor systems, it can be achieved
by orienting the donors’ nuclear spins in opposite directions
[37,38]. Since the data qubit electron is never removed, in
the following we may drop the constant energy offset Ep.
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FIG. 1. Illustration of the quantum nondemolition (QND) read-
out scheme of an electron spin qubit. (a) The model under
consideration. A data qubit (with Hamiltonian Hp) is coupled to
an ancilla (H,) via a coupling Hc. The ancilla is tunnel-coupled
(Hr) to a lead. The state of the ancilla can be flipped by driving
a spin resonance (SR) antenna (Hsr). (b) The energy levels of the
two-particle (top) and one-particle (bottom) states are split by the
ancilla on-site energy and the mutual charging energy with the data
qubit. For Ising-coupled spins [Eq. (5)], Hr only allows the indicated
transitions [Eq. (10)]. (c) Exemplary Fermi distribution of the lead
with respect to the chemical potentials from (b). Placing the Fermi
energy of the lead between the 14 and | transitions allows for
initialization (Load) and readout of the ancilla (Read) via spin-
dependent tunneling from and to the lead. (d) Going from left to right
illustrates the different stages of the QND measurement, where the
blue (green) dot indicates the state evolution in case of a ?p ({p).
The flip of the ancilla can be conditional on the |p [CR({p)] or 1p
[CR(Tp)]-

Allowing no more than single-particle occupation, the Ising
coupling between two spins is described by

[—7(: = Z(EC + JIO'U/)ﬁa,aﬁd,a’y (4)

o,0’

where 71, , = &f,&g is the number operator for an ancilla
with spin o and 74, the equivalent for the data. Ec is the
mutual charging energy and J; the magnitude of the Ising spin-
coupling. Throughout this paper we express energies in units
of frequency by dividing by the Planck constant 4. The re-
sulting energy levels are sketched in Fig. 1(b) for Ec 4+ Ea >
€a = ep > Ji. The energy splitting between the center of the
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two-particle (top) and one-particle (bottom) states is given by
Ec + Ej.

From the point of view of the data-ancilla system, the
tunneling of a particle to (from) the lead is the annihilation
(creation) of an ancilla particle. A full picture including an
explicit treatment of the lead can be found in Appendix A.
Assuming the tunnel coupling 7y is constant over the rele-
vant energy range, i.e., the tunnel barrier is not changing
much with energy (E), the rate of a transition between the
one-particle (1P) and two-particle (2P) states scales with
| (IP| Y, tod, |2P) |> (see Appendix A). The 1P states are
simply |1p) and || p), while the 2P states can be easily found
by solving the effective spin Hamiltonian in the two-particle
subspace

Ha + Hp + Hc = €a8a; + €0Sp: + i84:5p.. ()

Here, Sap.. are the spin operators of the ancilla/data qubit in
the basis {|1amp) , [{amp)}. Since all terms in Eq. (5) commute,
the eigenstates of the data-ancilla system are separable, i.e.,
there is no entanglement between the two spins. The only
allowed transitions are those that preserve the spin of the data
qubit [colored arrows in Fig. 1(b)] as required in a perfect
QND measurement.

The chemical potentials pyp.sp, i.€., the energy change of
the system that the ancilla particle carries as it tunnels into
the lead, are indicated by the length of the colored arrows in
Fig. 1(b). Energetically, a particle can only tunnel off (on) the
ancilla, if a state at this energy is unoccupied (occupied) in
the lead. To quantify this, we treat the lead as a continuum
of states with density n(E). The fraction of states in the lead
occupied at energy E for a given temperature T is given by
the Fermi distribution,

1
1+ e(E_l/«L)/kBT ’

J(E) = (6)

where up is the chemical potential of the lead and kg is
Boltzmann’s constant (in units of Hz/K, given our choice
of units for the energy). The full transition rates at which a
particle can tunnel between the lead and the ancilla are then
given by the golden rule [39—42]

i op = [ (1P| Y 1085 12P) Pr(itipee) f (ipwze).  (Ta)

o

TS p = | (2P Y 10} [1P) Pn(uipeop)(1 = f(1t1poop)).

(7b)

Here, Eq. (7a) describes the tunneling of an electron onto
the ancilla while Eq. (7b) is the inverse process. Figure 1(c)
shows an exemplary Fermi distribution with respect to the
transition energies to the right. Electrostatically tuning the
lead with respect to the ancilla, i.e., tuning (ope,;p — (U in
Eq. (6), shifts the ratio of occupied and empty states. A transi-
tion in tune with occupied states (dark grey shade) will result
in Tin,_ . > 'S8t |5, while a transition in tune with empty
states (light grey shade) leads to 'S5, ;p > I'lb_ p.

Finally, the spin resonance antenna [43] depicted on the
right in Fig. 1(a) provides an oscillating magnetic field B,
that drives spin resonance transitions via the Hamiltonian
Hsr = y B} cos (27rvt)(S’A,x + SD,X), where v is a frequency

corresponding to one of the conditional rotations (CR) shown
in Fig. 1(d) and y the gyromagentic ratio of the spin (in units
of Hz/T).

The QND measurement scheme now follows the steps out-
lined in Fig. 1(d). At the start, a previous QND measurement
has left the data qubit either in the 1 or | state, marked
by the blue and green circles. In the first step, we load a |
electron onto the ancilla by tuning the corresponding chemical
potential below that of the lead, while keeping the 1 chemical
potential well above. Subsequently, we tune (“plunge”) to a
regime where tunnel-off events are suppressed, and perform
a 7 pulse on the ancilla conditional on the state of the data
qubit. Here, we can choose to either drive a CR dependent on
the data qubit being | [CR({p)] or 1 [CR(1p)], or alternating
between the two [CR(¢$p)]. Finally, we readout the ancilla
spin by pulsing back to the load/read configuration, where
now only an 7 ancilla will cause a tunnel event, detectable by
a charge sensor. In the CR(|p) case, a tunnel event confirms
that the data qubit was previously in the | state; in the CR(1p)
case, finding a 1 ancilla is associated with a 1 data qubit. Note
that if no tunnel event occurs, we have already performed the
load stage for the next QND measurement, while if a tun-
nel event occurs a |, electron will automatically be reloaded
onto the ancilla if we wait for a sufficiently long time at the
load/read tuning.

The readout protocol with Ising-coupled spins described
above can suffer from various imperfections, such as state
preparation and measurement errors on the ancilla due to the
nonzero temperature of the lead [41] or imperfect  pulses in
the implementation of the conditional rotations. Fortunately,
such errors preserve the QND nature of the measurement and
leave the data qubit unaffected. Therefore it is possible to
repeat the QND measurement cycle multiple times to increase
the confidence in determining the qubit’s state [8,9,24,26].

III. HEISENBERG EXCHANGE: BREAKDOWN
OF THE QND CONDITION

The idealized QND measurement described in the previ-
ous section relied upon an Ising-type interaction between the
spins. In the near-totality of practical applications, however,
the true interaction takes the form of Heisenberg exchange:

Ha + Hp 4 Hc = €xSa. +epSp. +JuSa - Sp,  (8)

where Jy is the amplitude of the Heisenberg exchange in-
teraction and §A/D = (S A/D.xs S A/D,y» SA/D,Z) the vector of spin
operators. The Heisenberg interaction Hamiltonian contains
terms that do not commute with the data qubit Hamiltonian,
and therefore violates the QND condition Eq. (1).

Figure 2(a) shows the 1P and 2P energy level in this
case for e€x 2 ep > Jy. Crucially, the exchange coupling
now weakly entangles the antiparallel spin states, resulting in
eigenstates of the form

Tatp) = c[tadp) — s14atp), (9a)
[Uatp) = clbatp) +51tadp) (9b)

where ¢ = cos(f) and s = sin(@) with tan(20) = Jy /A€ and
A€ = €x — €p. This hybridization enables additional spin
transitions marked by the double-headed yellow and green
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FIG. 2. Error channels in the QND measurement for Heisenberg exchange coupled spins. (a) Energy levels of the two-particle (top) and
one-particle (bottom) states. For exchange-coupled spins [Eq. (8)], the antiparallel spin states are hybridized [Eq. (9)] and Hr allows the
additional transitions indicated by the yellow and green double arrow [Eq. (10)]. (b) Chemical potentials with respect to an exemplary Fermi
distribution in the lead for the read/load tuning. The resulting rates in Eq. (11) belonging to an up (y44) or down (u,) spin particle tunneling in
or out are indicated. (c) Simulations of the QND measurement with an initial 1p, and driving a conditional rotation on the ancilla dependent on
the data being 1p (CR(1p)) for T = 0 [Eq. (B1)] with ['!" = T'" = Iy, and s* = 2.5 x 107°. The first two panels show the state distribution
as a function of time during the first two read/load periods. The last panel gives the final distribution after the Nth repetition, i.e., the last point
of each QND step (indicated by the small dots in the first two panels) spaced by g1 = 5/T. In total N = 1000 QND cycles are simulated.
(d) Probability of finding the data in a 1 state [Eq. (17)] after repeated QND measurements as a function of time on a logarithmic scale. The
cases of driving the CR(1p), CR({p), and alternating between the two [CR($p)] are shown. The case of CR(1p) and an initial 1 discussed
in (c) is highlighted by the black dotted line. The data qubit flipping rates on the right are (in multiples of the bare tunnel rate I'y) extracted
by fitting Eq. (C3). The evolution of the data qubit is well described by these rates, independently of its initial state. In the 7 = 0 limit, only
an initial 1p can be flipped. (e) and (f) are the same as (c) and (d), but for 7 > 0, i.e., Fi“ = F?‘“ [o(1 — f) and I‘iT“ = I‘j“‘ o f with
f =0.03. (e) Evolution of an initial | p, using CR({p). (f) In the T > 0 case, an initial |p can be flipped as well.

arrows in Fig. 2(a) associated with flipping the data qubit spin,
i.e., a QND violation. To analyze the probability with which
these flips occur while the ancilla is loaded and read out, we
need to find the associated tunnel rates in Eq. (7). As discussed

f(E) is approximately the same for all the three 1 as well as
all three | transitions, the relevant rates are

rin=r , 11a
in the previous section, these have two main contributions. i of (k1) (1)
First, we have the amplitudes of the transition matrix ele- F;’”t =To(1 = f(ur)), (11b)
ments coupling the 1P and 2P states, given b ;
P ey I = Tof(uy), (11e)
Mipop = [ (1P|ay + a,|2P) |”. (10) ou
! I = To(l — f(uy)), (11d)

These can be viewed as a selection rule, as transitions in
Fig. 2(a) are only allowed if M,p p is nonzero.

Secondly, we have the selection through energy. At the
read/load position shown in Fig. 2(b), we now have three
high-energy transitions associated with an 1 particle tun-
neling, and three low-energy transitions where a | particle
tunnels. Note that, since A€ <K €4, €p, transitions where the

where 14 () represents the high (low) energy chemical po-
tentials. Finally, we also assume that ., is perfectly centered

between w4 and py, so that f = f(uqy) =1 — f(uy).

data and ancilla are exchanged in the 2P state have roughly the
same energy. For the rest of this section, we will assume that
the density of states in the lead is approximately constant over
the relevant energy scale and we may define a bare tunneling
rate [y = |fo|?n(n) with n(u) = const. Assuming further that

A. Zero-temperature limit
We begin by analyzing the 7' =0 limit, where f(E) is
a step function and only I''™ and T'" are nonzero at the
read/load position. To understand the breakdown of the QND
measurement, we consider the isolated process of a particle
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being loaded into the ancilla while the data qubit is 1p. The
relevant transitions rates are

in in

_ __ _nmin2
toofale — LMy T = TS (12a)
in __ pin ___ _nmin2
oot = iMoo =T (12b)

The time evolution of the system then obeys the rate equa-
tions [41,42]

p=Lp, (13)

where p is the vector of the state distribution and L is the
Liouvillian of the system. We first restrict our analysis to the
three states in Eq. (12) and obtain

. in 2

pTAlD 00 F_i S2 'OT/A\E)

. _ in o

P | = 00 TP s 14
Pto 0 0 _Fin Pt

For an initial p4,(0) = 1, we find the probabilities of the 2P
states as

prr () =51 —e Ty 2% 2 (152)
pro () =c(1— eTiy 2% 2 (15b)

After waiting long enough for an electron to tunnel, we
have a nonzero probability to flip the data during the load.
For a ratio Jy/Ae = 1/10, as typically found in experiments
[35,36,38,44], the probability is

1 2
s2 = sin? | = tan™! I ~ . =2.5x%x 1073,
2 A€ 2Ae

(16)

This represents the probability of accidentally flipping the
data qubit, purely as a consequence of it becoming weakly
entangled with the ancilla qubit each time it is loaded. Further
errors can arise due to the ancilla electron tunneling back out,
leaving the subspace of states in Eq. (14).

The full QND readout protocol includes repetitive ancilla
loading and readout, and rotation of the ancilla conditional
on a specific data qubit state. Simulating the full protocol
requires solving the rate equations including all states and
transitions allowed by Eq. (10) indicated in Fig. 2(a). The full
Liouvillian in the zero temperature limit is given in Eq. (B1) in
Appendix B. The QND protocol with an initial 1p data qubit
and the CR(1p) ancilla rotation is described in Fig. 2(c). After

loading the | 5 1p state and performing the CR(41p) operation
the system is in the state 1o1p. The first panel shows the
evolution of the state distribution as a function of time in
the first read/load window. The 1A 1p probability decreases
as the ancilla tunnels out with rate F‘T’“‘ = TI'p, leading to an
initially increased probability of finding the 1P state ?p. The
1p probability quickly peaks and decreases as the ancilla is

reloaded into the | A1p state. Here, we chose a read/load
window of duration g /1. = 5/I'g in which a 1, ancilla is read
out and replaced by a | o with a probability of 0.96. Not
surprisingly, the shape of p4,(¢) reflects the averaged signal
from a charge sensor detecting an initial 1 5 electron (see, e.g.,
the supplementary information of Ref. [4] for an example).

The second panel shows the repetition of this process after
the application of the conditional w pulse that swaps the

Ia?tp and 14 1p populations. Here, we notice a small nonzero
P1.4p Population from the start, since the data qubit may have
already accidentally flipped. The last panel shows the final
state distribution after the Nth repetition of the QND scheme,
where each repetition takes t = 5/Iy. In the shown case, the
data qubit will eventually flip to |p and remain in that state.

Figure 2(d) shows the probability of finding the data in an
/b state independent of the current state of the ancilla

P(Tp) = prato + P15 + P1o a7

after the Nth read/load window on a logarithmic scale and
for the cases of driving the CR(1p), CR({p), and alternating
between the two [CR($p)]. We can see that an initial P(1p
) = 1 decays exponentially as a function of time. The decay
is in fact fastest when the ancilla rotation is conditioned on
the opposite state [CR({p)] and the system practically idles

in the | A1p state, from which the data qubit can be flipped

via oTp — !p. In the CR(1p) case, shown in Fig. 2(c), the
system spends time in the 141p, which only allows spin-
preserving transitions, and the decay is slowed down. Fitting
Eq. (C3) to the evolution, we extract the flipping rates on
the right of Fig. 2(d). An initial |p data qubit state cannot
be flipped due to the fact that the corresponding transitions
require an 14 ({a) particle to tunnel into (out of) the system.
These transitions are energetically forbidden at zero tempera-
ture.

B. Nonzero temperature

In the T > 0 case, the Fermi distribution is no longer a
step function, resulting in small but nonzero I‘iTn and F‘j“‘
and the Liouvillian in Eq. (B1) needs to be extended by the
elements in Eq. (B2). To demonstrate how this introduces flips
of a |p, Fig. 2(e) shows the same simulations as in Fig. 2(c)
for the case of driving the CR({p), an initial |p, and T >
0, ie., Filn = F‘T"“ =To(1 — f) and FiT“ =TI =Tof. We
choose f = 0.03, corresponding to py — py =2up x 1T =
27.97 GHz (for electron spins with Landé g factor ~2) and
kpT = kp x 200mK ~ 4 GHz. Here, the read/load process
is marginally slower compared to the 7 = 0 case, due to
the slight reduction of the fast rates (T‘?‘lt and Fil“) through
temperature and the small probability of accidentally loading
a 1A or a loaded | o tunneling back out. This reduces the
probability to reinitialize the system to | 4 | p to 0.92, leaving
the ancilla empty with probability 0.07. After repeated mea-
surements, the probability of finding the data flipped to 1p,

i.e., the | o7Tp state, increases, but then quickly saturates at
1.2 x 1072, While a |p can now be flipped via processes in-
volving the slow rates FiT“ and Fi‘“, the much faster processes
involving F"l“ and F?‘“ will still flip the 1 back down, and the
rate equations converge to an equilibrium state of these two
competing processes.

The P(1p) [see Eq. (17)] as a function of QND repetitions
for T > 0 in Fig. 2(f) show that a different equilibrium is
reached depending on whether the CR(1p) or CR(|p) is
driven. The equilibrium ratio P(1p)/(1 — P(1p)) equals the
ratios of the 1p and |p flipping rates (see Appendix C). The
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FIG. 3. Example of error channels in the QND measurement of exchange-coupled spins with experimental parameters. (a) Chemical poten-
tials with respect to a Fermi distribution in the lead for an off-centered read/load tuning representing the given set of experimentally informed

spin-dependent tunnel rates from Eq. (11). For an electron in a magnetic field By = 1.77 T, where u, —

ny, =2pup x 1.77T ~ 50 GHz, the

ratios of spin-up and spin-down tunnel rates correspond to a temperature of roughly 600 mK. (b) Simulations of the QND measurement with
an initial |p, and driving a conditional rotation on the ancilla dependent on the data being |p [CR({p)] for the tunnel rates in (a), and
s> = 2.5 x 1073. The first two panels show the state distribution as a function of time during the first two read/load periods. The last panel
gives the final distribution after the N'th repetition, i.e., the last point of each QND step spaced by fr,;, = 1 ms. (c) Probability of finding the data
in an 1p state [Eq. (17)] after repeated QND measurements as a function of time. The cases of driving the CR(1p), CR({p), and alternating
between the two [CR($p)] are shown. The case of CR({p) and an initial |p discussed in (b) is highlighted by the black dotted line. The data
qubit flipping rates on the right are extracted by fitting Eq. (C3). The evolution of the data qubit is well described by these rates, independently

of its initial state.

data qubit flipping rates for 7 > 0 on right in Fig. 2(f) are
extracted by fitting Eq. (C3). The I'} flipping rates are much
slower when driving the CR({p) transition. This differences
can be understood by looking at the flow chart of the involved
processes. In the case of CR({p), flipping the data from | to
1p requires a slow and a fast process:

o —2% [aTp

slow
slow

TAiD

(18)

Conversely, driving CR(1p) requires two slow processes

dadp —=Ip ——=>lalp, (19)
which results in a much slower flipping rate. Alternating be-
tween the two [CR($p)] yields an intermediate situation.

Overall, the above discussion indicates that driving the
CR(1p) transition yields a better QND readout fidelity, and
is particularly effective at protecting the | state.

IV. APPLICATION TO DONOR SPINS AND
ELECTRON-NUCLEAR SYSTEMS

The previous section assumed the data and ancilla qubits
to be exchange-coupled electron spins in a double quantum
dot. In this section, we apply the discussion to the case where
the qubits are electron spins bound to donors atoms in silicon
[38,45], and then extend it to the case where the data qubit
is the donor nuclear spin [9], while the ancilla is the donor-
bound electron [9]. Finally, we extend the latter scenario
to the case where the electron-nuclear hyperfine coupling is
anisotropic, which applies to much wider range of electron-
nuclear spin systems, including NV centers in diamond [8].

A. Exchange-coupled donor electron spins

For the analysis of donor electron spin experiments, we
augment the model in the previous section by relaxing the as-
sumption that the lead has a constant density of states [46,47],
and its chemical potential is perfectly centered between the 114
and p transition energies. Figure 3 describes the repetitive
quasi-QND readout protocol, using experimentally informed
values for the spin-dependent tunneling rates [Eq. (11)] given
in Fig. 3(a). These rates are chosen to allow a direct compar-
ison to experiments. The sketched off-centered tuning of the
transition energies with respect to the Fermi distribution at
the readout position can explain the ratio of tunnel in and out
rates, while a nonconstant density of states [47] n(E’) or tunnel
coupling 7y can motivate the differences between spin up and
down rates. For an electron in a field of By = 1.77 T as used
in Ref. [9], where uy — py =2up x 1.77T ~ 50 GHz, the
ratios of spin-up and spin-down tunnel rates correspond to a
temperature of roughly 600 mK. This value is seemingly high
compared to the base temperature of dilution refrigerators,
but consistent with effective electron temperatures observed
in recent experiments [41].

Figure 3(b) shows the simulation of the QND protocol for
this set of parameters, an initial | p, and driving the CR({p),
i.e., the same as Fig. 2(e) but with the parameters in Fig. 3(a).
We can see that now the initial peak belonging to the 1P state
is much smaller, i.e., the system resides in a 1P state for a
much shorter time, due to the fast tunnel-in rates. Addition-
ally, the smaller ratio of I'l" /T"I" = 2 decreases the probability
to successfully reinitialize a | o spin. For the chosen read/load
window of fg,1.1 ms, this probability is 0.82. Looking at the
state distribution after the Nth QND repetition, we can see
that the probability of flipping the data from |p to 1p is
significantly increased compared to Fig. 2(e). This is due to
the fact that the higher probability of accidentally loading an

1 a spin increases the likelihood of the |p— | A1p process.
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TABLE I. Data qubit flipping rates in the QND measurements
using exchange-coupled donor electron spins additionally including
a spin relaxation rate l":‘ =1s7L

CR(p) CR(1p) CR(¢$p)
Ty (s7) 7.11 6.47 6.70
T, (s™) 1.10 0.18 0.78

In the equilibrium state, the probability of finding the data in
a | p state [see Eq. (17)] is 0.13.

Plotting this quantity on a linear scale for all six considered
cases, i.e., initial 1p or | p with CR(1p), CR({p), or CR($p),
in Fig. 3(c), we recognize the same features as in Fig. 2(f).
However now the equilibrium is shifted more towards 1p
states. The data qubit flipping rates on right in Fig. 3(c) are
extracted by fitting Eq. (C3). In comparison to the natural spin
relaxation rate ' ~ 157! [48,49] of an donor-electron spin,
the imperfections of the QND measurements are the dominant
process. We verify that including the relaxation process in
our simulations [see Eq. (B3)] has but the effect to slightly
accelerate the I'| rates. The precise results are given in Table 1.

B. Nuclear spin hyperfine-coupled to a bound electron

The case of two exchange-coupled electrons considered
so far, where the individual qubit energy splittings are only
slightly different (the case ey = ep is discussed in Ap-
pendix D), €5 2 ep, makes the system prone to errors because
(i) the small A€ leads to a substantial hybridization of the
Tpda, DT states and (ii) flip-flop transitions between data
and ancilla qubits are almost energy-conserving. In this sec-
tion, we discuss the case €5 > €p, which is representative of a
data qubit encoded in a donor nuclear spin [9], read out via an
electron spin ancilla, coupled to the nucleus via Fermi contact
hyperfine interaction.

Mathematically, this system is similar to Heisenberg
exchange-coupled spins [Eq. (8)], since the isotropic Fermi
contact hyperfine interaction takes the same Hamiltonian
form:

H=¢eS, + el + AS T, (20)

where A is the hyperfine coupling strength and I = (/, fy L)
is the vector of nuclear spin operators in the basis {|1}), [{})}
(we treat here the simple case where the donor is a *'P atom
with nuclear spin I = 1/2). The crucial difference is that the
energy splitting of the ancilla electron is much larger than that
of the data nucleus due to their vastly different gyromagnetic
ratios [9], |Ve/vaBo| > 103. With €. > A; > |e,| (€, < O for
a3'p atom), the 1 states are energetically well separated from
the | ones in Fig. 4(a), while the nuclear splitting is two orders
of magnitude smaller. As a result, the transition energies in
Fig. 4(b) are split depending on whether a spin up (u+) or spin
down (1) electron tunnels, independent of the nuclear spin
state. This energy reordering now allows an initial |} nucleus

(a) (0) T>0 Case  Ly(s") _
m 1 % T, (s7)
™ CR(L) 2.64x10
1 . 0.29%x10™
— =
m 05

TT 717 CR(1) [0.29x107
U 0.67x10
Tr 0 05 1
(b) Nxtg, (hrs)
(d) Flip Flop Case  Ty(s")
CR() Ty(s™)
l-\out DRW -3
L _54><l()‘
— R CR(1) 0.29%10°
\,{ £05
4 o
By,
l“”” )
\L llLJUU 1.58x10™
= Mot 1y 0.67x10°
L7 | Hifeu S —
I 0 20 40
f(E) NXtR/L(min)

FIG. 4. Error channels in the QND measurement of a nuclear
spin via the hyperfine coupling to an electron, based on the ex-
ample of a 3'P atom with nuclear spin I = 1/2. (a) The energy
levels of Eq. (20) are reordered compared to Fig. 2(a), since the
nuclear spin energy splitting is much smaller than that of the electron:
€ > A1 2 |€,|, with €, < 0. This gives a clear energetic distinction
between allowed transitions [Eq. (10)] of an 1 or | electron tun-
neling. (b) Transition energies with respect to an exemplary Fermi
distribution in the lead for the read/load tuning. The resulting rates
in Eq. (11) belonging to an 1 or | electron tunneling in or out
are indicated. (c¢) Simulations of the QND measurement for 7 > 0
[Egs. (E1) and (E2)] with the rates in Fig. 3(a), s> ~ 107°, and a
read/load time of #z,;, = 1 ms. Shown is the probability of finding
the nucleus in a {} state [Eq. (17)] after repeated QND measurements
as a function of time. The cases of driving the CR({}), CR(1}) alter-
nating between the two CR({) are considered for an initial f} and |}
state. The nuclear flipping rates on the right are extracted by fitting
Eq. (C3). (d) To reproduce the nuclear flipping rates in Ref. [9] the
T > 0 model in (c) is augmented by including a flip-flop relaxation
rate I'T = 53.3 x 1073 s~! [Eq. (E3)].

to be flipped in the zero-temperature loading process:

. i 2 ~
Pl 0 0 Fln_s P
pu =10 o rin o1y 1)
Py 0 0 —IM+s))\py

This is in contrast to Eq. (14), where only an 1 data could
be flipped since the energy needed to excite an initially |p
data spin could not be provided at w . Using the parameters in
the experiment of Ref. [9], A; = 117.5MHz and A€ = (y. —
¥a)Bo ~ 50 GHz in a field of By = 1.77 T, the resulting flip
probability is

Ap

§2
— _~ | — 22
1+s2 <2Ae 22)

2
) =1.4x107°,
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orders of magnitude smaller than in the exchange-coupled
electron pair in Eq. (16). The nuclear spin readout is thus
almost perfectly QND, even in presence of the noncommuting
terms in Eq. (20). This is thanks to the hierarchy of energy
scales |€.| > |A| 2 |e,|, which ensures that the eigenstates of
Eq. (20) are almost exactly the product states 1, | ® 1, {.
Furthermore, the isotropic nature of the interaction weakly
hybridizes only the [1}), |[{ 1) states, leaving |11, [{{) as
exact eigenstates unlike an anisotropic coupling discussed in
the following section. Note that a positive €, merely flips the
order of the 1P states, while the above discussion remains
valid.

Figure 4(c) shows simulations of the probabilities of find-
ing the nucleus in the 1} state [compare Eq. (17)] after repeated
QND measurements of the nucleus via the electron, using the
combined Liouvillian of Egs. (E1) and (E2) with the rates
from Fig. 3(a). The extracted flipping rates on the right are
now on the order of 103 s~!, i.e., on the order of a million
QND measurements to flip the nucleus instead of a thousand
for the exchange-coupled electron example. In general, we can
see that the nucleus flips faster if the system is driven, i.e.,
if the electron frequently tunnels off and on. Consequently,
driving the off-resonant transition will best preserve the nu-
clear spin state in a QND measurement. This is in contrast
to the exchange-coupled spins, where driving the CR(|p)
resulted in faster flipping rates for both spin configurations. As
expected from Eq. (21), which describes the dominant error
channel of a |} nucleus being flipped as an electron is loaded,
the fastest flipping rate is I'y in the case CR({}). In fact, in
the zero-temperature limit, this would be the only mechanism
causing nuclear spin flips.

Reference [9] performed nuclear QND measurements us-
ing the CR(¢) transitions, and found a rate I'y ~ 10731
consistent with our prediction. However, they found a much
faster I'y ~ 15 x 1073571, attributed to the electron-nuclear
flip-flop relaxation process [49,50] m — ﬁr Including in
our model for a flip-flop relaxation rate I'f = 53.3 x 1073 57!
in Eq. (E2) increases I'y to 15.73 x 1073 s™!, consistent with
Ref. [9]. The state evolutions of all cases [CR(}), CR({}),
CR(¢)] are shown in Fig. 4(d) with the extracted nulcear
flipping rates on the right. The CR({}) case constantly brings
a || state to the 1| state prone to flip-flop relaxation, making
I'y faster. The CR({}) case mostly avoids the 1| state and
remains the preferred option. The intrinsic relaxation rate of
a nuclear spin is immeasurably small [50] and needs not be
included in the model.

Reference [9] also performed a resonant tunneling (RT)
experiment described in detail Appendix F, where in each
QND iteration p is tuned in resonance with py, for a 0.7 ms
time period. During this time |, electrons repeatedly tunnel in
and out at a high rate. The resulting nuclear flipping rates can
be found in Fig. 7(c). The CR({}) case rates obtained with our
model are in good agreement with the results in Ref. [9].

C. Anisotropic hyperfine coupling

In the previous section, we considered a coupling that
could hybridize the antiparallel spin states, i.e., |1{) and
[{ ), which introduced the error channels shown in Fig. 3(a).
As these states are split by Ae = €., which is much bigger

than Ay, this hybridization is weak and nuclear flipping rates
slow.

In this section, we extend the discussion of nuclear readout
by including an anisotropic hyperfine interaction [51]. The
electron-nuclear Hamiltonian becomes

A=eS. +el.+AS- T+ DySil;. (23)
iJ

where D;; describes the anisotropic dipolar coupling between
electron and nucleus, and we sum over the Cartesian coor-
dinates. In the case of donors in bulk silicon, D;; = 0 due
to the spherical symmetry of the electron ground-state wave
function. Breaking this symmetry, e.g., by an electric field or
by strain, typically results in anistropic terms much smaller
than the isotropic ones Ay 3> D;; [52,53]. This Hamiltonian
describes many electron-nuclear spin systems, such as NV
diamond [8,28-32], defects in SiC [54], molecular magnets
[55], atoms on surfaces [56], rare-earth ions [57], and *°Si
nuclei coupled to donors [33,58,59] or quantum dots [60] in
silicon. Equation (23) hybridizes all spin states in Fig. 5(a),
such that Eq. (10) now allows all possible transitions between
1P and 2P states indicated by the arrows. As a result, the
anisotropic hyperfine coupling term in Eq. (23) introduces
new error channels in the QND measurement.

Crucially, the Dy, and Dy, components hybridize the |
subspace, i.e., |[{ 1) and || {}), as well as the 41 one. The corre-
sponding transitions in Fig. 5(b) can flip the nuclear spin as a
J electron tunnels in, or an 1 tunnels out, which routinely hap-
pens during the measurements. The amplitude of the transition
matrix elements Mip op [Eq. (10)] of this detrimental process
depends on the ratio of diagonal versus off-diagonal elements
in the respective subspace. Restricting ourselves to the D,
tensor component, Eq. (23) in the {|{ 1), |{{)} subspace has
the form
H — l(_ee + (én — Al/z) sz/2 > (24)
2 Dy /2 —€c — (en — A1/2)

We can interpret D, as an effective field that tilts the quan-
tization axis of the nuclear spin through the presence of the
electron [61], effectively hybridizing the nuclear spin basis
states. The smaller the nuclear energy splitting €, — Ay/2, the
stronger the hybridization. While Ay is typically only weakly
tunable [50], €, = ¥, By is a function of the applied magnetic
field, which allows the degree of hybridization to be tuned
in an experiment. Figure 5(c) shows calculations of M, ry,
i.e., the | subspace hybridization, as a function of ¢, (B) and
D, on alogarithmic scale for the parameters of an exemplary
29Sj atom near a phosphorus donor in silicon [33,58]: A;/2 =
2.254 MHz, y, = 8.458 MHzT~!, and Ve = 27.97 GHzT .
At the point where €, = A;/2 the hybridization is strong as
expected. To reach the same degree of hybridization at a
bigger splitting in Eq. (24) requires an increasingly stronger
coupling D,,. The 1 subspace hybridization would be the
strongest when €, = —A;/2. However, for a negative mag-
netic field everything is effectively flipped, in other words
J} becomes 1 and the hybridization in the 1 subspace is
always weaker for positive y,. This model thus suggests
measuring the nuclear flipping rate—i.e., the deviation from
QND measurement—as a function of By is an experimentally
realizable way to quantify the anisotropy of the hyperfine
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FIG. 5. Error channels in the QND measurement of a nuclear
spin in the presence of anisotropic hyperfine coupling with an elec-
tron. (a) Energy levels of Eq. (23) for €. > €, > A; > D;;. The
anisotropic terms hybridize all spin states, such that Eq. (10) now
allows all possible transitions marked by the colored arrows between
the loaded (top) and ionized (bottom) energy states. (b) Transition
energies with respect to an exemplary Fermi distribution in the
SET island for the read/load tuning. The resulting rates in Eq. (11)
belonging to an 1 or | electron tunneling in or out are indicated.
(c) Mﬂ' i [see Eq. (10)] for eigenstates of Eq. (23) on a logarithmic
scale as a function of By and D, with all other D;; =0, A;/2 =
2.254MHz, €, = 8.458 MHzT ! - By, and €, = 27.97 GHzT ! - By.
The dashed lines mark D,, = 106.2kHz and By = 1.77T. (d) Simu-
lations of QND measurements in the presence of anistropic hyperfine
(not including I'"" or resonant tunneling) for the parameters above,
the tunnel rates in Fig. 3(a), and a read/load time of tz; =
1 ms. Shown are the probabilities of finding the nucleus in an {}
state (Eq. (17)) after repeated QND measurements as a function
of time. The cases of driving the CR({}), CR({}) alternating be-
tween the two CR({) are considered for an initial {} and |} state.
The nuclear flipping rates on the right are extracted by fitting
Eq. (C3).

interaction. This method would be particularly useful in cases
where the anisotropy is very weak and therefore would be
difficult to observe directly in the resonance spectra, since the
resonance frequency is only affected by off-diagonal elements
to second order [58].

For the chosen »Si atom [58] with D,. = 106.2kHz and
a field of B = 1.77 T indicated in Fig. 5(c), where M, =~

4 x 107% and the hybridization in the 1 subspace M, g~
2 x 107°, we simulate the QND measurements using the Li-
ouvillian in Appendix F and the rates in Fig. 3(a). Figure 5(d)
shows the probability of finding the nucleus in the 1} state
[compare Eq. (17)] after repeated QND measurements (not

including I'"" or RT) with the extracted flipping rates on the

right. Although the isotropic component of the hyperfine inter-
action A; = 4.5 MHz is much smaller than that of a 3'P atom
(A1 = 117.5 MHz), the anisotropic components lead to faster
flipping rates than in Fig. 4(c). This is a direct consequence
of the fact that, for a D,.-like coupling, the simple presence of
the electron is sufficient to hybridize the nuclear spin states. In
other words, unlike the case of an isotropic A; coupling, here
the hybridization does not require a process that includes an
electron spin flip.

V. CONCLUSION

In this paper, we established a theoretical framework to
understand and quantify the error channels in QND measure-
ments in realistic spin systems. Errors are introduced when the
interaction, needed to map the spin state of the data qubit onto
the ancilla, entangles the two systems (exchange/hyperfine)
or tilts the quantization axis of the data spin (anisotropic
hyperfine). This enables transitions which flip the data spin
as the ancilla tunnels off and on as part of the spin readout
process. Their rates depend on the degree of hybridization and
which transitions are energetically allowed. We analyzed this
dependency for three different cases.

In exchange-coupled spins, the fact that €5 ~ ep leads to a
strong hybridization and fast error rates. The dominant error
channel is the flip of an 1 as its energy can be transferred on
to a | o in the tunnel process. We showed that for a realistic
set of parameters this process is an order of magnitude faster
than the natural spin relaxation rate.

For a nuclear spin hyperfine-coupled to an electron, €. >
€n holds and the much weaker hybridization leads to lower
error rates. The energy of the tunnel process now almost ex-
clusively depends on the electron spin state. Using a realistic
set of parameters for a 3! P atom and including a flip-flop re-
laxation process, allowed us to reproduce the nuclear flipping
rates measured in Ref. [9].

Finally, we showed that anisotropic hyperfine components
can significantly hybridize the nuclear spin states and lead to
faster flipping rates. As the degree of hybridization can be
tuned by varying the nuclear splitting with a magnetic field,
measuring the nuclear flipping rates as a function of field
and its direction could be used to probe the anisotropy of the
hyperfine coupling.
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APPENDIX A: EXPLICIT TREATMENT OF THE LEAD

We treat the lead as a continuum of states described by the
Hamiltonian

A=) adl e, (A1)

k,o

where 67«; creates a particle with momentum k, spin o, and
energy €; on the lead. Then the tunneling between the lead
and the ancilla is described by

Ar =" t0(a5 e}, + & éo),
k,o

(A2)

where we assume the tunnel coupling #, to be constant over the
relevant energy range, i.e., the tunnel barrier is not changing
much with energy (E).

We are now interested in processes, where a particle
tunnels to (from) the lead causing transition between the one-
particle (1P) and two-particle (2P) states of the data-ancilla
system. Assuming that the lead is initially in the state |L), the
rate of the process |L) [1P) — &, |L) |2P), where a particle
with energy €, and spin o tunnels to the ancilla, is given by

Fk,a

5 p = | (L, 1P|Hréio|L, 2P) [28(€x — f1psop)  (A3)
= | (IPltods [2P) |*| (LI&} ko IL) 1*8(ex — f1posap).
(A4)

The last term describes the fact that the particle can only
tunnel if it carries the energy equal to the chemical potential of
the transition, i.e., €, = Wop1p. The term | (L|Ezaéka IL) |? is
1 if the state with energy €, and spin o was initially occupied
and 0 otherwise. By taking the thermal average over all states
L), we replace this term by the Fermi distribution f(e),
i.e., the fraction of states with energy ¢, that is on average
occupied at a given temperature. We may do so as the energy
€; does not depend on the spin. Summing over all spins o and
momenta k, we get

Cipoop = Z T (AS)
k,o
= > [{IPltods [2P) > f (€)8(€k — pr1pesp)
k,o
(A6)

= [ (1P| Y 105 |2P) [* f (i1ps2p)n(j1p e )(AT)

where n(E) is the density of states counting the number of
states in the lead at energy E. We have arrived at Eq. (7a) of
the main text.

To derive Eq. (7b), we start by looking at the tunnel process
L) [2P) — éZG L) |1P) with rate

r&e o =1(L,2P|Hre} |L, 1P) [28(e; — jt1pp)
= | (2P|toa} [1P) |*| (L|éo ¢}, IL) |

X 8(€x — M1P2P) (A9)
= [ (2Plto@} [1P) [*| (L1 — &} ¢o L) I*8(ex — ftiprop).
(A10)

From here we can follow the same steps as above to arrive at
Eq. (7b).

APPENDIX B: LIOUVILLIAN OF HEISENBERG
EXCHANGE COUPLED SPINS

In the baSiS {TATD? TA‘LDa \LATD! i’A‘l’D? TD? \LD}9 the Ll'
ouvillian of two Heisenberg exchange-coupled spins in the
zero-temperature limit is given by

-t 0 0 0 0 0
0 I 0 0 I 0
0 0 I 0 I 0
Lr—o= .
T=0 in
0 0 0 0 o I}
ro 0 0 o0 -r" 0
0 T rm* 0 0 -Ip
(BD

Here, the second-last column describes the loading process in
Eq. (14). Inthe T > 0K case, we get the following additional
matrix elements:

0 0 0 0 FiT“ 0

0 —Fjutsz 0 0 0 l"iT“cz

0 0 —F‘j”tc2 0 riT“s2
LT>O = out

0 0 0 —I9 0 0

0 rj‘“s2 rjmcz 0 —F;n 0

0 0 0 o 0 —FiT“

(B2)

The T; spin relaxation process with rate I‘:‘ is described by

—2r 0 0 0 0 0

ri . -rj 0 0 0 0
o r 0o - 0o 0 0 ©3)
A o0 0 0

0 0 0 0 -Ir{ o

0 0 0 o0 1y 0

APPENDIX C: FLIPPING RATES AND EQUILIBRIUM
STATE

Given that an 7 is flipped with rate I'y and a | with I',
their time evolution is described by the following rate equation

Py T T (o
)=\ r . (CDH)

Py T \e

(A8) For an initial p4(0) = 1, we get the solution

r, Ty _
t)=—"—1+ e Tt C2
p1 (1) F¢+F¢(+F¢e (C2)
'y

1) = (1 — e 1T, C3
P = ) (C3)
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Talp Ialp
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FIG. 6. Simulations of a load/read period in the €5 = €p case,
ie., s2 = c? = 1/2, and the tunnel rates in Fig. 3(a). Shown is the
state distribution as a function of time. In (a) the initial state is 1p,
while in (b) it is 1A 1p.

which reaches the equilibrium state

ry

p¢(t = 00) = m, (C4)
Ty

pL(t =00) = T +T, (C5)

This means that the ratio of state occupation in equilibrium
equals the ratios of the flipping rates.

APPENDIX D: EXCHANGE-COUPLED SPINS
WITH €5, = ¢p

In the case where the two coupled electrons have the same
individual energy splitting, ex = €p, the hybridized states in
Egs. (9b) and (9a) become

1
V2
1
V2

1S) =

(IMadp) = Hato)), (D1)

IT) = —=({atp) +[Talp). D2)

This makes it unreasonable to attempt the QND measurement,
since an 1p can be flipped within a single load cycle as shown
in Fig. 6(a). Here we use the tunnel rates in Fig. 3(a) with s =
¢ = 1/+/2. The initial 1, is quickly loaded into either a S or T
state. However, these states still contain a p4+ energy quantum,
which can be released by one of the electrons tunneling out,
leaving a flipped |p behind. Finally, the ancilla is reloaded
into | A {p. Note that the simulated load time was doubled to
compensate for the S and T tunnel times that are twice as long
forc? =52 = 1/2.

This process could also explain the experimentally ob-
served increase of the visibility of the fA7p state in
exchange-coupled phosphorus donors [38] when the nuclear
spins are parallel, i.e., €x = ep. During the read/load sim-
ulated in Fig. 6(b), the ancilla will tunnel off and back

on twice, first while 1o1p—1p— S/T and secondly while
S/T — |p— | alp- This gives the charge sensor two chances
to detect a signal instead of just once, which can make a
visible difference when the single-shot readout contrast is not
perfect.

APPENDIX E: LIOUVILLIAN OF A NUCLEUS
HYPERFINE-COUPLED TO AN ELECTRON

In the basis {11, 14, {1, 44, . U}, the T = 0 Liouvil-
lian of a nucleus hyperfine-coupled to an electron is

—F%”t 0 00 0 0

0 —F?‘“ 00 0 0

0 0 00 Fi“cz 1"?’52
L =
T=0 in

0o 0 00 0 r

ou out ;2 in .2

FTt Iy s 0 0 —I'f'c _ 0

0 I™ 00 0 —Th(1+s)

(ED)

In the T > OK case, we get the following additional matrix
elements:

00 0 0 1"iTn 0
0 0 0 FiT“s2 I’iT"c2
c 00 —F‘j“‘ 0 0 0
=" loo o - 0 0
00 '™ 0 —Ird+s%) 0
00 I“‘j“ts2 Fi’“‘ 0 —Fi{‘c2
(E2)
Relaxation processes are described by
—ri 0 0 0 0 0
ris? —ric—rft 0 0 0 0
£ = ric rf ~Tfis® 0 0 0
! T 2 T 2 ’
0 FT c FT s 0O 0 O
0 0 0 0 0 O
0 0 0 0O 0 O
(E3)

where we also included the flip-flop relaxation process [9,50]
with rate ',
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FIG. 7. Nuclear spin flipping during resonant electron tunneling
in a donor system. (a) Illustration of two consecutive resonant tunnel-
ing (RT) experiment iterations. Left: tuning of the transition energies
with respect to an exemplary Fermi distribution of the SET island
during the different stages of the RT iterations. Driving pluses are
followed by a 1ms read/load window, a 0.7 ms RT stage, and a
0.3 ms load time to reinitialize a | electron. A RT iteration has a
total length of tgr = 2 ms. During read and load periods we have the
rates in Fig. 3(a), while during RT periods, where w, is tuned in
resonance with pp, I'l' = T'{" =28 x 10°s7, F‘T“ = 140s7!, and
g =56 x 103571, 2~ 107%, and I'f = 53.3 x 1073s7!. (b) Re-
sulting state distribution as a function of time. In the RT period an
equilibrium of an equally likely neutral (electron loaded) or ionized
(electron unloaded) donor is quickly reached. (c) Probabilities of
finding the nucleus in a {} state [Eq. (17)] after repeated RT iterations
as a function of time. The cases of driving the CR({}), CR(1}) alter-
nating between the two CR(¢{) are considered for an initial f} and
| state. The nuclear flipping rates on the right are extracted fitting
Eq. (C3).

APPENDIX F: NUCLEAR FLIPPING VIA RESONANT

ELECTRON TUNNELING

Reference [9] performed a QND measurement on a 3p
nuclear spin hyperfine-coupled to an electron, while including

a resonant tunneling (RT) window for the electron, whereby
the | electron state was tuned in resonance with the electro-
chemical potential of the lead, i = ur, [see RT in Fig. 7(a)].
This tuning yields " > I'{" = ['" > I'Y", and results in |,
electrons randomly and frequently tunneling on and off the
donor (akin to random telegraph signals [62]). The process is
described by the following rate equation

e -y 0 I ris? o
pu | 0 -If 0 Iy oLy
N - l'“fc2 0 —1"1‘c2 0 or |’
oy Fi‘s2 Fi‘ 0 —F‘f(l +5%) o4
(F1)

where T = Fil“/ " Due to o = Fi“, the system will
quickly reach an equilibrium py = o3 and py = pyy, which
allows us to simplify Eq. (F1) to

. t o2 t o2

Jols —Is s Jols

. = 2 2 .
py R RAYS

Equation (F2) means that during the RT period both nuclear
spin configurations will be flipped at a rate F?sz, i.e., a signif-
icantly faster flipping of the 1} nucleus.

Figure 7(a) illustrates the tuning of the electrochemical
potentials during a repetition of the RT experiment [9]. Driv-
ing pluses are followed by a 1ms read/load window as
in the usual QND experiment. Here, this is followed by a
0.7ms RT window and a 0.3 ms load time to reinitialize a |
electron.

Figure 7(b) shows simulations for pulses alternating be-
tween case 1 and 2, an initial /) nucleus. In the RT window we
assume Fi‘ =28 x 103s7 1, FiT“ = 140s7!, and F‘T’“‘ =56 x
10351 Before the first shown read/load window, a CR({})
leaves the |1 initialized in a previous iteration unchanged.
Reading a | electron only improves the state preparation,
i.e., decreases the remaining 1 probability, through a longer
wait time. At the following RT tuning, we quickly reach
the py = P = 0.5 equilibrium discussed above at which
the nucleus is flipped at the rate I''s?>. Before applying a
driving pulse, now conditional on a f} nucleus (CR(1)), a
short loading window initializes a | electron state. In the
subsequent read/load window, the 7 electron tunnels out
and the donor is quickly reloaded with a | followed by the
same RT and reload processes. The probabilities of finding
the nucleus in an 1) after many repetitions of this sequence
for the cases of driving the CR({}), CR({}), or alternating
between the two CR(¢), for an initial f} and | state, are
shown in Fig. 7(c) with the extracted flipping rates on the
right.

(F2)
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APPENDIX G: LIOUVILLIAN FOR ANISOTROPIC HYPERFINE COUPLING
In the basis of the eigenstates of Eq. (23) {ﬁr, ﬂl ffr fll 1, U} the T = 0 Liouvillian of nucleus coupled to an electron

via anisotropic hyperfine is

—rout  _ pout
=t -t 0 00
__Tout _ Tout
0 FTH—W =1 00 ) 0 ) 0
mn m
. 0 0 0 o 1o I N G
T=0 — 0 0 0 0 in in ’
-l =3
out out _pin __ _ pin_
-1 -1 U U S B ' 0 A
out out _rin __ _pin _
Fﬂ?—)l} Fﬂl—ﬂl 00 0 FU—>¢TT FU—WH
where the rates are given by
F%L P = F?HMIP,ZPv (Gza)
Tih_op = T'Mipop. (G2b)
Inthe T > 0K case, we get the following additional matrix elements:
in in
0 o0 0 0 r 7% P
m m
0 0 0 0 r Py V7T
0 0 Iy —ro 0 0 0
— { =4
[-:T>O - 0 0 TT‘>ﬂ0 i __Tout __ Tout 0 0 ’ (G3)
Wt -y ' _
out out T i
00 s e e R Sl N o ' 0 A
out out _rin __ _pin _
00 =y -y 0 S S e
where the rates are given by
o ap = F%anp,zpy (G4a)
Lol ip = D" Mip op. (G4b)
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