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Quantum theory of the magnetochiral anisotropy coefficient in ZrTe5
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Recent experiments performed nonreciprocal magnetotransport studies in ZrTe5 and obtained a giant mag-
netochiral anisotropy (MCA) coefficient γ ′. The existing theoretical analysis was based on the semiclassical
Boltzmann equation. In this paper, we develop a full quantum theory to calculate γ ′ and further explore the
underlying physics. We reveal that the xz-mirror symmetry-breaking term also breaks the parity symmetry of
the system and leads to mixed selection rules and nonvanishing second-order conductivity σxxx . The calculations
show that γ ′ decreases with the magnetic field, survives only to the weak impurity scatterings, and exhibits a
nonmonotonous dependence on the strength of the xz-mirror symmetry breaking. In this paper, we provide deeper
insights into the intrinsic nonreciprocal magnetotransport phenomena in the topological semimetal material.
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I. INTRODUCTION

Symmetries in the microscopic dynamics are vital in de-
termining the macroscopic physical responses to the external
excitations. One example is that the quantum anomalous Hall
effect can emerge in a system with broken time-reversal sym-
metry (TRS) [1–3], while the quantum spin Hall effect is
protected by the TRS [4,5]. Another example is that mag-
netochiral anisotropy (MCA) will occur in a system with
broken inversion symmetry [6]. MCA means that, under a
magnetic field B, the resistance of a three-dimensional (3D)
crystal sample is nonreciprocal when an electric current flows
in the opposite directions. In this case, the nonreciprocal re-
sistance R includes both the linear and quadratic terms and is
written as

R = Vx

Ix
= R0(1 + γ BIx ), (1)

where Ix is the electric current that we assume to flow along
the x direction, Vx is the voltage, R0 is the reciprocal resis-
tance, and the coefficient γ characterizes the magnitude of
MCA. Equation (1) is valid for both the inner-product-type
[7] and the vector-product-type [8] nonreciprocal behaviors,
for which the magnetic field and electric current are parallel
B ‖ I and perpendicular B ⊥ I, respectively.

On the other hand, the current density jx can be written as
a function of the electric field Ex:

jx = j (1)
x + j (2)

x = σxxEx + σxxxE2
x , (2)

in which σxx and σxxx are the first- and second-order longitu-
dinal conductivities, respectively. If the current is expressed
as Ix = LyLz jx and the voltage as Vx = LxEx, with Lx,y,z de-
noting the size of the sample, we obtain γ = σxxx

LyLzBσ 2
xx

. Since γ
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depends on the size and shape of the 3D system, we instead
use the cross-section-independent coefficient,

γ ′ = LyLzγ = σxxx

Bσ 2
xx

, (3)

to characterize MCA [9].
The common bulk nonreciprocal response in a 3D crystal

originates from the relativistic effect and is quite small [8].
The experiments in trigonal tellurium revealed that MCA
had an inner-product type with the coefficient as large as
γ ′ ∼ 10−8 m2 T−1 A−1 [10], where the inversion symmetry
was broken by its helical crystal structure. The recent mag-
netotransport experiments in 3D ZrTe5 at low temperatures
reported that MCA had a vector-product type, in which γ ′
could reach the order of 10−7 m2 T−1 A−1 and was gigantic
[11,12].

Theoretically, to explain the behavior of γ ′, the calcu-
lations of the conductivities, σxx and σxxx, are the central
issues. The existing theoretical analysis [11] employed the
semiclassical Boltzmann equation (SBE) and identified the
microscopic mechanism as the Fermi surface deformation
due to the magnetic-field-induced Zeeman effect [9,13]. As
the SBE can treat the first- and second-order distribution
functions well, it has been widely used in nonlinear con-
ductivity calculations [14–21]. The nonlinear Hall effect has
excited many interests in spin-orbit-coupled semiconductors
and topological materials, including the intrinsic nonlinear
Hall effect [21–23] and the Berry-curvature-dipole-induced
nonlinear Hall effect [14,15,24–27], in which the former is
time-reversal odd and the latter is time-reversal even. How-
ever, in all the above studies [14–27], there have been no
discussions about the nonlinear longitudinal magnetotransport
in Dirac semimetals on the basis of Landau levels (LLs),
which motivated this paper.

In this paper, to calculate γ ′ and further explore the un-
derlying physics of the nonreciprocal magnetotransport in
ZrTe5 [11], we develop a full quantum theory by using the
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density matrix method. Note that the density matrix method
was adopted to explore the second-order Hall conductivity in
the magnetic multipole system [27] as well as the second-
order photocurrent in topological antiferromagnets [28]. Such
a quantized method has the advantages that it can deal well
with the band characters of the system and some other fac-
tors, such as the impurity scatterings. Combining the density
matrix method with thermodynamical averaging over the
current density operators, we derive the conductivity formu-
las of σxx and σxxx. Then within the topological semimetal
model describing 3D ZrTe5 [29–33], where the inversion sym-
metry is broken intrinsically, we make a systematic study
of γ ′ and analyze the effects of the magnetic field, the
impurity scatterings, and the xz-mirror symmetry-breaking
term.

Our main results are given as follows: (i) the intrinsic
xz-mirror symmetry-breaking term also breaks the parity sym-
metry of the system, which results in the mixed selection
rules n → n, n ± 1, n ± 2, · · · , with n denoting the LL index.
The mixed selection rules will in turn play a decisive role
in determining the nonvanishing σxxx; (ii) γ ′ decreases with
the magnetic field B and is nonvanishing at a weak B, which
is consistent with the experimental observations [11,12]; (iii)
γ ′ is susceptible to the impurity scatterings and survives
only with the weak impurity scatterings; and (iv) when the
strength of the xz-mirror symmetry breaking increases, γ ′
grows first and then decreases. It is worth noting that, al-
though γ ′ is consistent with the SBE results in the order
of magnitude, the third point is distinct [11], and the impli-
cations will be discussed. In this paper, we provide deeper
insights in understanding the MCA phenomenon in ZrTe5

experiments.

II. THE FIRST- AND SECOND-ORDER CONDUCTIVITIES

When an electric field E = Eex acts on a system, the
electrostatic force will drive the electrons to deviate from
their equilibrium state. If we consider the electric field as a
perturbation of the system, the nonequilibrium density matrix
ρ(t ), up to the second order, is written as [34,35]

ρ(t ) = ρ0 + ρ1est + ρ2e2st + · · · . (4)

Here, ρ0 = 1/{exp[β(Ĥ0 − μ)] + 1} is the equilibrium
Fermi-Dirac distribution function at chemical potential μ and
inverse temperature β = 1

kBT , with kB being the Boltzmann
constant and T the temperature. Here, ρ1 and ρ2 are the first-
and second-order density matrixes, respectively. The factors
est and e2st are added to ρ1 and ρ2, with the parameter s = 0+
to ensure that they vanish at t → −∞.

The evolution of the density matrix is determined by the
quantum Liouville equation, which is written as (h̄ = 1) [34]

i
dρ(t )

dt
= [Ĥ0 + Ĥ ′est , ρ(t )]. (5)

Here, Ĥ0 is the Hamiltonian of the system, and Ĥ ′ = −eE · r̂
describes the interaction between the electric field and the
system, with r̂ being the position operator. After a direct

calculation, ρ1 and ρ2 are obtained as (see Sec. I in the Sup-
plemental Material (SM) [36])

ρ1 = 1

i

∫ ∞

0
dte−st [Ĥ ′(−t ), ρ0], (6)

ρ2 = 1

i2

∫ ∞

0
dte−2st

∫ ∞

0
dt ′

×e−st ′ {Ĥ ′(−t ), [Ĥ ′(−t ′), ρ0]}, (7)

where Ĥ ′(t ) = exp(iĤ0t )Ĥ ′ exp(−iĤ0t ).
The measurable first- and second-order current densities

are calculated through thermodynamical averaging over the
current density operator ĵ = ev̂, i.e., j (1) = Tr[ρ1 ĵ] and j (2) =
Tr[ρ2 ĵ]. With the help of the Green’s function, the first- and
second-order longitudinal conductivities, σxx and σxxx, can
be derived (see Secs. II and III in the SM [36]). At zero
temperature, their expressions read

σxx = e2η2

πV

∑
k

∑
n

∑
n′

× |〈ψn|v̂x|ψn′ 〉|2
[(μ − εn)2 + η2][(μ − εn′ )2 + η2]

, (8)

and

σxxx = 2e3

V

∑
k

∑
εn<μ

∑
εn′>μ

∑
n′′

× Re

[ 〈ψn|v̂x|ψn′ 〉〈ψn′ |v̂x|ψn′′ 〉〈ψn′′ |v̂x|ψn〉
(εn − εn′ − iη)2(εn − εn′′ + iη)2

− 〈ψn|v̂x|ψn′′ 〉〈ψn′′ |v̂x|ψn′ 〉〈ψn′ |v̂x|ψn〉
(εn − εn′ + iη)2(εn′′ − εn′ − iη)2

]
, (9)

respectively. Here, V is the volume of the system, εn is
the energy and |ψn〉 the corresponding eigenstate, v̂x is the
velocity operator, and η denotes the linewidth broadening
that is introduced to represent the impurity scatterings phe-
nomenologically. For simplicity, we take η as a constant for
all eigenstates of the system.

Note that the expression of σxx is the same as those ob-
tained from the well-known Kubo-Bastin formula [37–39].
In σxxx, |ψn〉 and |ψn′ 〉 represent the initial and final states,
respectively, while |ψn′′ 〉 denotes the intermediate state. In-
tuitively, since σxxx does not include the v̂y term, it has no
relation to the Berry curvature and thus is distinct from the
nonlinear Hall conductivity. Equations (8) and (9) relate the
conductivities to the band structures of the system directly,
which are transparent to interpretation.

The presence of a magnetic field will drive the formation
of the LLs. In Eqs. (8) and (9), the nonvanishing velocity
operator matrix element determines the selection rules that
will play important roles in the transport properties. In σxx,
there are no restrictions on the selection rules; they may take
the conventional ones n → n, n ± 1 [40–42], with n the LL
index, or the unconventional ones n → n ± 2 [43]. By com-
parison, in σxxx, there exist multiplications of three matrix
elements that form a closed loop, requiring that the selection
rules would not simply take n → n ± 1, n ± 2; they should
take n → n or other types.
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III. TOPOLOGICAL SEMIMETAL MODEL AND LLS

We use the topological semimetal model to describe the
low-energy excitations in 3D ZrTe5. In the four-component
basis (|+ ↑〉, |− ↑〉, |+ ↓〉, |− ↓〉)

T
, the Hamiltonian Ĥ0(k) is

written as [29–33]

Ĥ0(k) = v(kxσz ⊗ τx + kyI ⊗ τy) + vzkzσx ⊗ τx + mI ⊗ τz,

(10)

where σ and τ are the Pauli matrixes acting on the spin
and orbit degrees of freedom, respectively. Here, v is the
Fermi velocity in the xy plane, vz is the Fermi velocity in
the z direction, and m denotes the Dirac mass. Since it is
generally accepted that ZrTe5 is a narrow-gapped topological
insulator and the Fermi velocities satisfy v  vz, we will
take the model parameters (v, vz ) = (6, 0.5) × 105 m/s, and
m = 5 meV, as extracted from the LL transition energies in
the optical conductivity experiments of ZrTe5 [40,44].

In the 3D system, there exist the xz-mirror symmetry
M̂−1

xz Ĥ0(kx, ky, kz )M̂xz = Ĥ0(kx,−ky, kz ), with the operator
M̂xz = iσy ⊗ τz, the xy-mirror symmetry M̂−1

xy Ĥ0(kx, ky,

kz )M̂xy = Ĥ0(kx, ky,−kz ), with M̂xy = σz ⊗ I , and the in-
version symmetry Î−1Ĥ0(k)Î = Ĥ0(−k), with Î = I ⊗ τz.
In a recent magnetotransport experiment [11], the inversion
symmetry of 3D ZrTe5 was demonstrated to be broken intrin-
sically, which was attributed to the staggered displacement of
the Te atom along the y direction. Such inversion symmetry
breaking terms are represented by

ĤIB = �I ⊗ τx + ξσx ⊗ τy, (11)

in which the parameters � and ξ denote the strengths of the
xz- and xy-mirror symmetry breaking, respectively. Clearly,
the introduction of ĤIB breaks the inversion symmetry as
Î−1ĤIBÎ = −ĤIB.

The energies of Ĥ0 + ĤIB are obtained as

εsλ(k)=s
[(√

v2k2
x +v2

z k′2
z +λ

√
�2 + ξ 2

)2 + v2k′2
y + m2

]1/2
,

(12)

where the index s = ±1 denotes the conduction/valence band
and λ = ±1 the two branches. The redefined wave vectors are
vk′

y = vkycosφ − vzkzsinφ, vzk′
z = vkysinφ + vzkzcosφ, and

tanφ = ξ

�
, which is equivalent to rotating the yz plane around

the x axis by angle −φ. In Fig. 1, the energy bands are
plotted for ky = kz = 0. We see that the two λ = 1 branches
have a gap of 2δ1 = 2

√
m2 + �2 + ξ 2; another two λ = −1

branches cross at zero energy for m = 0 [Fig. 1(a)] and are
gapped for a nonvanishing m [Fig. 1(b)]. The former occurs
when kx = ±(�2 + ξ 2 − v2

z k′2
z )1/2/v and ky = vzkztanφ/v,

indicating that the system lies in the nodal-line semimetal
phase and the Fermi surface has a torus shape [11,19], while
the latter means that the system is a gapped insulator.

The one-dimensional Landau bands develop when a mag-
netic field is applied along the z direction, B = Bez. To solve
the LLs, we choose the Landau gauge A = −Byex, which
is minimally coupled to the crystal momentum through the
Periels substitution p → p + eA. Then we replace the mo-
mentum operators in Ĥ0 by the standard ladder operators
k+ →

√
2

lB
â† and k− →

√
2

lB
â, with the magnetic length lB =

(1,1)

-m
m

-δ
1

δ 1
ε

kx

(b)

(1,-1)

(-1,-1)

(-1,1)

Δ/v-Δ/v

(-1,1)

(-1,-1)

(1,-1)

-δ
1

δ 1

-Δ/v Δ/v

ε

kx

(a)

(1,1)

FIG. 1. The energy bands vs kx for ky = kz = 0, with the band
index (sλ) being labeled. In (a), when m = 0, the system lies in the
nodal-line semimetal phase, and in (b), when m �= 0, the system is a
gapped insulator. We set the parameter ξ = 0.

1√
eB

. The total Hamiltonian Ĥ0 + ĤIB under a magnetic field
is written as

ĤB =

⎛
⎜⎜⎝

m Pâ + � 0 vzkz − iξ
Pâ† + � −m vzkz + iξ 0

0 vzkz − iξ m −Pâ† + �

vzkz + iξ 0 −Pâ + � −m

⎞
⎟⎟⎠,

(13)

in which the parameter P =
√

2
lB

v.
When � = 0, the LLs can be solved analytically. For

the n � 1 LLs, we use the trial wave function ψn = (c1
n|n −

1〉, c2
n|n〉, c3

n|n〉, c4
n|n − 1〉)T , with |n〉 being the harmonic os-

cillator state defined as â†â|n〉 = n|n〉. The LL energies are
obtained as

εnsλ(kz ) = s[v2
z k2

z + m2 + (P
√

n + λξ )2]1/2. (14)

For the zeroth LLs, we use the trial wave function ψ0 =
(0, c2

0|0〉, c3
0|0〉, 0)T . The energies are given as

ε0s(kz ) = s
(
v2

z k2
z + m2 + ξ 2

)1/2
, (15)

which remain unchanged to the magnetic field.
The LL spectra are displayed in Figs. 2(a)–2(c). When ξ =

0, the λ = ± branches are degenerate [Fig. 2(a)]. The nonva-
nishing ξ will break the twofold degeneracy of the n � 1 LLs
[Fig. 2(b)]. At weak magnetic fields, when εn′++ > εn+− with
n′ < n, the LL crossings at higher energies are clearly seen,
leading to the separation of the ns± LLs. In the quantum Hall
measurements, the LL crossings were also caused by broken
inversion symmetry, which can induce complicated filling fac-
tors with the varying carrier density as well as the magnetic
field [45,46]. At strong magnetic fields with P

√
n  ξ , the

ns± LLs will rearrange and pair with each other.

IV. SELECTION RULES

When � = 0, the Hamiltonian HB owns the parity sym-
metry with the operator P̂ = (−1)â†âσz ⊗ τz [43,47]. This
means that each LL carries a definite even or odd parity, as
represented by the red solid or blue dashed lines in Figs. 2(a)
and 2(b). For the velocity operator v̂x = vσz ⊗ τx, because
P̂−1v̂xP̂ = −v̂x, it has an odd parity. Thus, the nonvanishing
velocity operator matrix element 〈ψn|v̂x|ψn′ 〉 requires that the
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FIG. 2. The Landau-level (LL) spectra in (a)–(c), with the in-
dex nsλ being labeled, and the velocity operator matrix element
|〈ψnsλ|v̂x|ψn′s′λ′ 〉| between the initial state and the final state for
different � in (d), with the initial state index chosen as (3 − −). The
parameters are set as (�, ξ ) = (0, 0) in (a), (�, ξ ) = (0, 6) meV in
(b), (�, ξ ) = (10, 6) meV in (c), and the magnetic field B = 1 T and
ξ = 6 meV in (d). In (a) and (b), each LL owns a definite even or
odd parity that are represented by the red solid or blue dashed lines,
respectively. In (d), the neighboring bars are shifted vertically for
clarity.

initial and final states own opposite parities, leading to the
conventional selection rule n → n ± 1 [40–42].

When � is finite, ĤB needs to be solved with numerics: in
the infinite Hilbert space spanned by the harmonic oscillator
state |n〉, the LLs are obtained by diagonalizing HB after
truncating the Hilbert space at the cutoff Nc. In the calcula-
tions, we set Nc = 200 to obtain the well-convergent results.
Now since P̂−1(�τx )P̂ = −�τx, the parity symmetry of the
system is broken, and the LLs will not carry a definite parity.
With a finite � = 10 meV, the LL crossings remain at higher
energies, and their movements are clearly seen [Fig. 2(c)].
Note that, as P̂−1(ξσx ⊗ τy)P̂ = ξσx ⊗ τy, a finite ξ does not
break the parity symmetry of the system.

To find out the selection rules, in Fig. 2(d), we display the
velocity operator matrix element |〈ψnsλ|v̂x|ψn′s′λ′ 〉| between
the initial state |ψnsλ〉 and the final state |ψn′s′λ′ 〉 for different
�. The magnetic field is set as B = 1 T, and the initial state
is chosen as (3 − −). We see that, when � = 0, the matrix
elements are nonvanishing only for the final states (2 + ±)
and (4 + ±), from which the selection rules are inferred as
the conventional ones n → n ± 1 [40–42] and agree with the
above parity symmetry analysis. Actually, in such an analyt-
ically solvable system, the velocity operator cannot generate
the transitions between the states with large n difference. As
a result, the selection rules n → n ± (2m + 1), with m � 1,
are prohibited, although they meet the requirements of parity
symmetry.

When � = 2 meV and the parity of each LL is broken,
we find that, in addition to n → n ± 1, the selection rules
can take n → n as well as n → n ± 2. Further increasing �,

the LL eigenstate |ψn〉 may involve the harmonic oscillator
state |n′〉 that is far away from |n〉, leading to more selection
rules. When � = 20 meV, the selection rules can even take
n → n + 4. Therefore, we suggest that the broken parity sym-
metry by the � term can lead to the mixed selection rules,
n → n, n ± 1, n ± 2, · · · , which makes σxxx nonvanishing.

V. MCA COEFFICIENT γ ′

To obtain the MCA coefficient γ ′, we need to calculate
the conductivities σxx and σxxx by using Eqs. (8) and (9).
The results are plotted in Figs. 3(a) and 3(b) as functions
of the magnetic field B for different linewidths η. We fix
the chemical potential at μ = 30 meV to ensure a low carrier
density in the 3D system [32,44].

Firstly, we study σxx. In the limiting clean case of η =
0.1 meV, σxx exhibits a series of oscillation peaks that sit on a
descending background. This is because, under a weak mag-
netic field, the LLs are densely distributed. With increasing
B, the LLs will cross the chemical potential μ one by one,
resulting in the oscillation peaks of σxx [41,48]. Meanwhile,
the decreasing LL number around μ leads to the descending
background. When B > 2.44 T, the system enters the extreme
quantum limit, with all electrons confined to the zeroth LL
[42,49,50]. When η grows, in the quantum limit, σxx increases,
whereas in the quantum oscillation regime, σxx exhibits a non-
monotonous variation, which is consistent with the previous
studies [39,41].

Next, we study σxxx. When η = 0.1 meV, σxxx exhibits
strong oscillations [the left inset of Fig. 3(b)] but will quickly
drop to zero at a relatively large magnetic field. The former
behavior can also be explained by the densely distributed LLs,
and the latter is attributed to the enlarged LL spacings. With
increasing impurity scatterings, the neighboring oscillations
will merge together. For weak impurity scatterings of η = 1
and 2 meV, we see that σxxx first increases with B; after
reaching its peak value at the magnetic field Bp, σxxx then
decreases to zero. To see this behavior more deeply, in the
right inset of Fig. 3(b), we plot Bp and the corresponding
conductivity σxxx(Bp) as functions of η. We observe that Bp

increases with η and is saturated when η � 4 meV, while σxxx

decreases steadily to zero. Such a dependence of σxxx on the
magnetic field is consistent with the second-order longitu-
dinal resistance observations in the experiment [12], where
temperature plays a similar role as the impurity scatterings
here. Further increasing η to η � 5 meV, σxxx is completely
suppressed. These results indicate that σxxx is evident only
at a weak magnetic field and is susceptible to the impurity
scatterings.

After obtaining σxx and σxxx, we calculate the MCA coeffi-
cient γ ′ by using Eq. (3). According to the above analysis,
we see that γ ′ depends on the impurity scatterings, which
is different from the SBE. In the SBE, the relaxation time τ

enters through the time evolution of the distribution function,
based on which σxx ∼ τ and σxxx ∼ τ 2 are obtained, resulting
in the independence of γ ′ on the impurity scatterings [11]. By
comparison, in the density matrix calculation, τ is introduced
through the imaginary part of the retarded/advanced Green’s
function as ĜR/A(ε) = 1

ε−Ĥ0±iη
[27,28], with the linewidth
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FIG. 3. (a) and (b) The conductivities σxx and σxxx vs the magnetic field B for different linewidths η. In (b), the left inset shows that, with
η = 0.1 meV, σxxx exhibits strong oscillations, and the right inset shows the magnetic field Bp and the corresponding conductivity σxxx (Bp) vs
η. (c) The magnetochiral anisotropy (MCA) coefficient γ ′ at η = 1 and 2 meV. We take the parameters (�, ξ ) = (10, 6) meV, and the chemical
potential μ = 30 meV.

η = τ−1. Therefore, the dependence of γ ′ on the impurity
scatterings is expected for the quantum oscillations due to the
formation of the LLs.

Figure 3(c) plots γ ′ at η = 1 and 2 meV, for which σxxx

takes relatively large values. We observe that (i) γ ′ exhibits a
decreasing trend with the magnetic field B, which can cap-
ture the experimental results qualitatively [11,12]; and (ii)
γ ′ reaches the order of 10−10 T−1 A−1 m2 and agrees with
the SBE calculation γ ′ ∼ 10−11 T−1 A−1 m2 [11]. Compared
with the experimental value γ ′ ∼ 10−7 T−1 A−1 m2 [11,12],
our results still exhibit a large discrepancy, which may be
attributed to the unavoidable presence of charged impurities
and charged puddles [51,52].

VI. EFFECT OF THE � TERM

Since the xz-mirror symmetry-breaking � term plays a
decisive role in the selection rules, we study its influence
on MCA. With the magnetic field setting as B = 0.2 T, in
Figs. 4(a) and 4(b), the conductivities σxx and σxxx are dis-
played as functions of �, respectively. In the limiting clean
case of η = 0.1 meV, we see that σxx exhibits certain os-
cillations with � [Fig. 4(a)], which are caused by the �

term-driven LL crossings over the chemical potential. With
the linewidth η � 1 meV, the oscillations are smeared by the
impurity scatterings, and σxx increases slowly with �.

For σxxx, when η = 0.1 meV, it also exhibits strong oscil-
lations with � [Fig. 4(b), inset]. Compared with σxx, more
oscillations are visible in σxxx. With increasing impurity scat-
terings, the neighboring peaks of σxxx merge together. When
η = 1 meV, we see that the oscillations lie on an increas-
ing background [Fig. 4(b)]. If � = 0, the parity symmetry
of the system is preserved, and the selection rules take the
conventional ones n → n ± 1 [43,47]; thus, σxxx vanishes.
This conclusion is consistent with the previous tilted Weyl
semimetal study [20], in which the second-order longitudinal
conductivity vanishes without inversion symmetry breaking.
At a finite �, the parity symmetry is broken, and the selection
rules are mixed, leading to the nonvanishing σxxx. Since more
selection rules are allowed, meaning that more electronic
states can participate in the magnetotransport, thus σxxx shows
a pronounced enhancement with �. When η = 2 meV, σxxx

also increases linearly with �, and the oscillations disappear.
When � further increases to � � �0 = 27.8 meV, with

η = 0.1 meV, we observe that (i) the peak heights of σxx get
enhanced [Fig. 4(a)], as the additional saddle points of the

FIG. 4. (a) and (b) The conductivities σxx and σxxx vs � for different linewidths η. The inset in (b) shows that, with η = 0.1 meV, σxxx

exhibits strong oscillations. When � � �0, the almost unchanged σxxx is pointed out by the arrow. (c) The magnetochiral anisotropy (MCA)
coefficient γ ′ vs � when η = 1 and 2 meV. We take the parameter ξ = 6 meV, the magnetic field B = 0.2 T, and the chemical potential
μ = 30 meV.
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inverted LLs that are located at the finite wave vectors ±kz

move across the chemical potential (see Sec. III in the SM
[36]); and (ii) σxxx becomes almost unchanged, as pointed out
by the arrow [Fig. 4(b), inset]. This is because σxxx is domi-
nated by the electronic states of the saddle points; now around
the chemical potential, the LL energies at the � point become
stable, and the additional saddle points of the transitioned LLs
have different k′

zs (see Sec. IV in the SM [36]). In both η = 1
and 2 meV cases, the weak impurity scatterings will drive the
decreasing of σxxx with � [Fig. 4(b)].

The MCA coefficient γ ′ is determined by the combined ef-
fects of σxx and σxxx, and the results are displayed in Fig. 4(c).
When η = 1 meV, γ ′ first oscillates with � on a linear in-
creasing background and then decreases, in which the crossing
point occurs at � = �0. When η = 2 meV, γ ′ exhibits a sim-
ilar variation but with no oscillations. The trend of γ ′ at large
� is consistent with the SBE calculations [11], where γ ′ was
suggested to be inversely proportional to � when �  μ.

VII. DISCUSSIONS AND CONCLUSIONS

We discuss the effect of the Zeeman term caused by
the magnetic field. The corresponding Hamiltonian is ĤZ1 =
− 1

2 g1μBBσz or ĤZ2 = − 1
2 g2μBBσz ⊗ τz [42,49], where g1(2)

denotes the Landé g factor and μB is the Bohr magneton.
Although the Zeeman term can further split the λ = ±1
LL branches, it will not break the parity property of the
LLs, as the Zeeman term commutes with the parity operator

P̂−1ĤZ1(2)P̂ = ĤZ1(2). Thus, the selection rules as well as our
main conclusions will remain unchanged to the Zeeman term.

To summarize, in this paper, by developing a full quantum
theory, we calculate the MCA coefficient γ ′ in 3D ZrTe5

and explore the effects of the magnetic field, the impurity
scatterings, and the xz-mirror symmetry breaking. We reveal
the role played by the xz-mirror symmetry breaking in form-
ing the mixed selection rules, which in turn determines the
nonvanishing σxxx and γ ′. The results show that γ ′ can capture
the qualitative features of the experiments [11,12] and exhibits
a nonmonotonous dependence on the strength of the xz-mirror
symmetry breaking.

Since the full quantum theory is based on the LL ener-
gies and wave functions, we expect that the derived σxxx can
be used to analyze the recently reported MCA in the Weyl
semimetal WTe2 [53], and the formula of σαβγ can be further
extended to study the nonlinear Hall effect in bilayer and
few-layer WTe2 [24,25].
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Zherlitsyn, D. Gorbunov, M. Uhlarz, P. M. Lozano, Q. Li, G. D.
Gu et al., Signatures of a magnetic-field-induced Lifshitz tran-
sition in the ultra-quantum limit of the topological semimetal
ZrTe5, Nat. Commun. 13, 7418 (2022).

[50] W. Wu, Z. Shi, Y. Du, Y. Wang, F. Qin, X. Meng, B. Liu, Y.
Ma, Z. Yan, M. Ozerov et al., Topological Lifshitz transition
and one-dimensional Weyl mode in HfTe5, Nat. Mater. 22, 84
(2023).

085202-7

https://doi.org/10.1103/PhysRevLett.122.036601
https://doi.org/10.1103/PhysRevB.103.L041301
https://doi.org/10.1103/PhysRevB.104.245141
https://doi.org/10.1103/PhysRevB.105.235408
https://doi.org/10.1103/PhysRevLett.132.026301
https://doi.org/10.1103/PhysRevLett.127.277201
https://doi.org/10.1103/PhysRevLett.127.277202
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41563-019-0294-7
https://doi.org/10.1103/PhysRevB.106.125114
https://doi.org/10.1103/PhysRevResearch.2.043081
https://doi.org/10.1103/PhysRevX.11.011001
https://doi.org/10.1103/PhysRevX.4.011002
https://doi.org/10.1103/PhysRevLett.115.176404
https://doi.org/10.1073/pnas.1613110114
https://doi.org/10.1038/s41586-019-1180-9
https://doi.org/10.1038/s41467-021-23435-y
https://doi.org/10.1088/0022-3719/10/12/021
https://link.aps.org/supplemental/10.1103/PhysRevB.109.085202
https://doi.org/10.1016/S0022-3697(71)80147-6
https://doi.org/10.1103/PhysRevB.98.081202
https://doi.org/10.1103/PhysRevB.101.085201
https://doi.org/10.1103/PhysRevLett.125.046403
https://doi.org/10.1103/PhysRevB.107.125203
https://doi.org/10.1103/PhysRevB.108.155202
https://doi.org/10.1103/PhysRevB.106.205102
https://doi.org/10.1103/PhysRevLett.122.217402
https://doi.org/10.1103/PhysRevLett.130.046201
https://doi.org/10.1103/PhysRevX.10.011050
https://doi.org/10.1103/PhysRevLett.127.116602
https://doi.org/10.1038/s41467-022-35106-7
https://doi.org/10.1038/s41563-022-01364-5


YI-XIANG WANG AND FUXIANG LI PHYSICAL REVIEW B 109, 085202 (2024)

[51] B. Skinner, T. Chen, and B. I. Shklovskii, Why is the bulk
resistivity of topological insulators so small, Phys. Rev. Lett.
109, 176801 (2012).

[52] N. Borgwardt, J. Lux, I. Vergara, Z. Wang, A. A. Taskin,
K. Segawa, P. H. M. van Loosdrecht, Y. Ando, A. Rosch,
and M. Grüninger, Self-organized charge puddles in a

three-dimensional topological material, Phys. Rev. B 93,
245149 (2016).

[53] T. Yokouchi, Y. Ikeda, T. Morimoto, and Y. Shiomi, Giant
magnetochiral anisotropy in Weyl semimetal WTe2 induced
by diverging Berry curvature, Phys. Rev. Lett. 130, 136301
(2023).

085202-8

https://doi.org/10.1103/PhysRevLett.109.176801
https://doi.org/10.1103/PhysRevB.93.245149
https://doi.org/10.1103/PhysRevLett.130.136301

