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Anomalous thermal radiation due to the chiral magnetic effect in Weyl semimetals
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Thermal radiation, universally governed by Planck’s law for objects at nonzero temperatures, is known to
deviate in the near-field regime. In the present paper, we uncover a distinctive thermal radiation behavior in
Weyl semimetals, challenging the established principles of Planck’s law, even in the far-field regime. The chiral
anomaly inherent to these materials gives rise to unique electromagnetic phenomena—namely, the anomalous
Hall effect, which cause a breakdown of Kirchhoff’s law, and the chiral magnetic effect. We theoretically
demonstrate that the latter effect can induce negative emissivity at low-frequency ranges, suggesting an energy
transfer from cooler to warmer bodies. This unexpected emissivity opens up novel approaches for thermal energy
management using Weyl semimetals, with significant potential for future technological innovations.
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I. INTRODUCTION

Thermal radiation is a ubiquitous physical phenomenon ex-
hibited by all objects of finite temperature. This phenomenon
is universally governed by Planck’s law [1], which dictates
that a blackbody’s thermal radiation emission follows a spe-
cific broadband distribution solely dependent on the object’s
temperature. Significantly, Planck’s law delineates an upper
limit for the spectral distribution of the emitted thermal ra-
diation. Nevertheless, there are scenarios where Planck’s law
does not hold. One notable example is the near-field radiation.
Since Planck’s law is rooted in the premise that all dimensions
of the object surpass the thermal wavelength, the law fails
to account for radiative heat transfers between objects with
separations less than the thermal wavelength [2–4]. In such
near-field conditions, evanescent waves, which Planck’s law
overlooks, dominate the radiative heat transfer, allowing the
blackbody limit to be surpassed when objects are brought
close enough. Moreover, the law’s reliability may also be
questioned in far-field scenarios where it overlooks factors
like diffraction. This oversight leads to expected deviations for
objects with dimensions smaller than the thermal wavelength.
Notably, nanophotonic structures, with their subwavelength-
scale features, demonstrate thermal radiation behaviors that
depart from those of standard thermal emitters [5]. Propos-
als have even suggested that far-field thermal radiation from
an object could surpass that of a blackbody [6,7], although
these ideas have been challenged by later research [8,9]. In
a different vein, emerging quantum materials such as Weyl
semimetals are anticipated to display distinctive thermal radi-
ation profiles due to their unique electromagnetic properties
[10,11], which stand in contrast to those of conventional
materials.

Weyl semimetals are three-dimensional quantum materi-
als with unique topological properties. These materials host
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low-energy states characterized by Weyl fermions of both
right- and left-handedness at specific points within the Bril-
louin zone [12,13]. In such systems, the presence of a chiral
anomaly can interrupt the conservation of chiral current. This
disruption has the potential to give rise to distinctive trans-
port phenomena, including the anomalous Hall effect [14,15]
and the chiral magnetic effect [16–18]. These phenomena are
characterized by anomalous Hall and chiral magnetic currents,
which are respectively given as

jA = e2

2π2h̄
b × E, (1)

and

jC = e2

2π2h̄2 μ5B. (2)

Here, as shown in Fig. 1, 2b is the distance between the
two Weyl points and 2μ5 ≡ μR − μL is the chiral chemical
potential that is defined as the difference between the chemical
potentials of the right- and left-handed Weyl fermions. The
chiral magnetic effect is shown to occur only in a nonequilib-
rium state where the chiral chemical potential μ5 is nonzero
[17,18]. When electric and magnetic fields are applied, the
chiral anomaly induces an axial charge difference between
right- and left-handed Weyl fermions [19–21], leading to a
nonzero chiral chemical potential.

Theoretical studies have already established the significant
influence of the anomalous Hall effect on thermal radia-
tion, leading to a violation of Kirchhoff’s law [22,23]—one
of the foundational principles of thermal radiation along-
side Planck’s law. This violation manifests as nonreciprocal
thermal radiation [24,25] and the generation of highly pure
circularly polarized thermal radiation [26,27].

However, the implications of the chiral magnetic effect on
thermal radiation remain unexplored. Recently, Nishida found
that the chiral instability [28] due to the chiral magnetic effect
causes the circular polarized reflectance of Weyl semimetals
to exceed unity [29]. Given the close relationship between a
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FIG. 1. Energy dispersion of the Weyl semimetals and definition
of b and μ5.

material’s optical and thermal radiation properties, the chiral
magnetic effect suggests to induce anomalous behaviors in
thermal radiation as well. This study addresses the gap by
investigating the chiral magnetic effect’s influence on thermal
radiation. We report the theoretical discovery that emissivity
can turn negative at low frequencies, leading to the energy
transfer from cooler to warmer bodies.

II. THEORY

We consider that the system consists of a Weyl semimetal
in z < 0 and the vacuum in z > 0 and assume that the Weyl
semimetal is sufficiently thick that electromagnetic waves do
not penetrate the Weyl semimetal.

A. Thermal radiation and emissivity

The thermal radiation propagates in the direction defined
by the angles (θ, φ), where θ is the angle with the z-axis and
φ is the angle made by the in-plane component of the radiation
direction with the x-axis (Fig. 2). Thermal radiation per unit
area emitted by the object is given by

Hη =
∫

dω

∫
d� η(θ, φ)Ib(ω, T ) cos θ, (3)

where ω is the frequency, � is the solid angle,
η(θ, φ) is the dimensionless emissivity, and Ib(ω, T ) =
[ω2/(4π3c2)]{(h̄ω)/[exp(h̄ω/kBT ) − 1]} is the blackbody
radiance at temperature T . Emissivity η(θ, φ) expresses the
material-specific property of thermal radiation and usually
takes the value 0 < η(θ, φ) < 1. For normal materials
where Kirchhoff’s law is satisfied, the absorptivity is
equal to the emissivity and is typically used in (3) instead

FIG. 2. Definition of the thermal radiation direction.

FIG. 3. Polarization conventions of thermal radiation from the
planar surface of a Weyl semimetal. I± is the polarized blackbody
radiance.

of emissivity. The Weyl semimetals are nonreciprocal
materials, however, therefore, Kirchhoff’s law cannot be
used. Fluctuational electrodynamics [30] are thus employed
to directly derive the emissivity, or the thermal radiation
formula [31]. Accordingly, it is shown that for the circular
polarized thermal radiation of interest here, the dimensionless
emissivity η(θ, φ) is the sum of the left circular polarized
emissivity η+ and the right circular-polarized emissivity η−:
η(θ, φ) = [η+(θ, φ) + η−(θ, φ)]/2. Here, η+ and η− are
expressed by the reflectance [26]

η+(θ, φ) = 1 − R++(θ, φ + π ) − R+−(θ, φ + π ), (4)

η−(θ, φ) = 1 − R−+(θ, φ + π ) − R−−(θ, φ + π ), (5)

where Ri j (i, j = +,−) is the reflectance of i circular polar-
ized light for j circular polarized incident waves, which is
derived below. The definition of the polarization is given in
Fig. 3.

B. Reflectance

The following Maxwell equation is solved with the suitable
boundary condition to obtain reflectance at the surface z = 0
of the Weyl semimetal

∇ × B(r, t ) − 1

v2

∂E(r, t )

∂t
= μ j(r, t ), (6)

where v and μ = μrμ0 are the light velocity and the perme-
ability in the Weyl semimetal, respectively.

The electric current in Weyl semimetals is derived using
the consistent chiral kinetic theory with the relaxation-time
approximation [32,33], which is given as

j(r, t ) = σE E(r, t ) + σMB(r, t ) + σH b̂ × E(r, t ), (7)

where b̂ is the unit vector of b. Here, we assume that b is
oriented along the z-axis. The terms with σE , σM , and σH rep-
resent the ohmic conduction, the chiral magnetic effect, and
the anomalous Hall effect, respectively. For sufficiently slow
external fields with |ω|, vF |k| � 1/τ � kBT/h̄, μR/h̄, μL/h̄,
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where vF is the Fermi velocity and τ is the intraval-
ley relaxation time, the conductivities are provided by
σE = [(e2τ )/(6π2h̄3vF )][(2π2(kBT )2)/3 + μ2

L + μ2
R], σM =

e2μ5/(2π2h̄2), and σH = e2|b|/(2π2h̄) [29,33].
When an electromagnetic wave is incident from the vac-

uum side (z > 0) at an angle (θ, φ), as defined in Fig. 2, the
incident wave is expressed as

E i(r, t ) = (
Esei

s + Epei
p

)
ei(kt0 cos φx+kt0 sin φy−kz0z)−iωt . (8)

Here, we use the basis of s- and p-waves:

ei
s = (sin φ,− cos φ, 0), (9)

ei
p = (kz0 cos φ, kz0 sin φ, kt0)√

k2
t0 + k2

z0

, (10)

where kt0(ω) ≡ k0 sin θ = ω
c sin θ and kz0(ω) ≡ k0 cos θ =

ω
c cos θ , with k0 = ω/c. The reflected wave is expressed as

Er (r, t ) = (
Esrsser

s + Eprpper
p + Esrpser

p + Eprsper
s

)
× ei(kt0 cos φx+kt0 sin φy+kz0z)−iωt , (11)

where ri j (i, j = s, p) denotes the Fresnel reflection coefficient
when an incident wave with j-polarization is reflected with
i-polarization. The basis of the reflected wave is given as

er
s = (sin φ,− cos φ, 0), (12)

er
p = (−kz0 cos φ,−kz0 sin φ, kt0)√

k2
t0 + k2

z0

. (13)

On the other hand, the transmission wave to the Weyl
semimetal region (z < 0) is given by

Et (r, t ) = (
Estsset

s + Eptppet
p + Estpset

p + Eptspet
s

)
× ei(kt0 cos φx+kt0 sin φy−kzz)−iωt , (14)

where ti j (i, j = s, p) denotes the Fresnel transmission coeffi-
cient for an incident wave with j-polarization transmitted with
i-polarization. The basis of the transmission wave is given as

et
s = (sin φ,− cos φ, 0), (15)

et
p = (kz cos φ, kz sin φ, kt0)√

k2
t0 + k2

z

. (16)

The dispersion relation kz(ω) of the electromagnetic wave
in the Weyl semimetals can be obtained by substituting the
transmitted wave (14) into the Maxwell equation (6) and
solving the characteristic equation obtained as the determi-
nant of the coefficient matrix of Et

s and Et
p being zero. This

yields four distinct solutions: two manifest as traveling waves
that propagate in the −z direction, while the remaining two
move in the z direction. Among these, the pair of solutions
k(i)

z (i = 1, 2) that exhibit a decay for z → −∞ within the
Weyl semimetal is selected. The characteristic equation can
be solved analytically in the limit of (θ, φ) = (0, 0) [29], and
for ω > 0:

k(i)
z (ω) = ±μσM

2
−

√(μσM

2

)2
+ iμσEω ∓ μσHω +

(ω

v

)2
,

(17)

where i = 1, 2 corresponds to ± representing the two solu-
tions that satisfy the boundary condition at z → −∞.

The Fresnel coefficients can be obtained using the
boundary condition of the electromagnetic field at
z = 0: E(r, t )|z→−0 = E(r, t )|z→+0 and B(r, t )|z→−0/μ =
B(r, t )|z→+0/μ0. Hereafter, we set μ = μ0 (μr = 1). The
substitution of (8), (11), and (14) into these conditions gives
the Fresnel reflection coefficient ri j and Fresnel transmission
coefficient ti j . Using the Fresnel reflection coefficients ri j for
the s and p waves obtained, the circular polarized reflectance
can be expressed as

R++(θ, φ) = |(rss + rpp) + i(rsp − rps)|2
4

, (18)

R−−(θ, φ) = |(rss + rpp) − i(rsp − rps)|2
4

, (19)

R−+(θ, φ) = |(rss − rpp) + i(rsp + rps)|2
4

, (20)

R+−(θ, φ) = |(rss − rpp) − i(rsp + rps)|2
4

. (21)

III. RESULTS

A. Anomalous reflectance

To capture the essence of the anomalous reflection and
thermal radiation, Ri j and η are first analyzed in the zero
frequency limit at (θ, φ) = (0, 0) by deriving the analytical
expressions.

The reflectances in the zero frequency limit at (θ, φ) =
(0, 0) are analytically derived as

lim
ω→0

R++(0, 0)

=

⎧⎪⎨
⎪⎩

4σ 2
Hσ 2

M(
σ 2

E + σ 2
H

)
[(cσH + σM )2 + (cσE )2]

(σM > 0),

0 (σM < 0),

(22)

lim
ω→0

R−−(0, 0)

=
⎧⎨
⎩

0 (σM > 0),
4σ 2

Hσ 2
M(

σ 2
E + σ 2

H

)
[(cσH + σM )2 + (cσE )2]

(σM < 0),

(23)

lim
ω→0

R−+(0, 0)

=

⎧⎪⎨
⎪⎩

(cσH − σM )2 + (cσE )2

(cσH + σM )2 + (cσE )2
(σM > 0),

1 (σM < 0),

(24)

lim
ω→0

R+−(0, 0)

=

⎧⎪⎨
⎪⎩

1 (σM > 0),

(cσH − σM )2 + (cσE )2

(cσH + σM )2 + (cσE )2
(σM < 0).

(25)

Two interesting features are noted in these expressions. The
first is that the interconversion reflectances R++ and R−− can
manifest finite values for σM > 0 and σM < 0, respectively.
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FIG. 4. (a) limω→0 R++(0, 0), (b) limω→0 R−−(0, 0), (c) limω→0 R−+(0, 0), and (d) limω→0 R+−(0, 0) as functions of σ̃M . Solid and dashed
lines represent the cases of σ̃E = 1 and σ̃E = 10, respectively.

This is attributed to the chiral magnetic effects, as indicated
by σM that appears in the numerators of Eqs. (22) and (23)
for R++ and R−−. Such behavior is expected from the term
that represents the chiral magnetic effect within Maxwell’s
equations. The electric field is expressed as the superposition
of the two plane waves E1ei(k(1)·r−ωt ) + E2ei(k(2)·r−ωt ); there-
fore, the term that represents the chiral magnetic effect in the
Maxwell equation (6) becomes iμσM (k(1) × E1 + k(2) × E2).
This certainly shows that polarization mixing in the electric
fields E1 and E2 may occur, depending on the form of k(i).

The second feature is that R+− exceeds unity for any σM <

0 [29], while R−− also exceeds unity below a specific value of
σM that is given as

σM = −
c
(
σ 2

E + σ 2
H

)( − σH +
√

4σ 2
H − σ 2

E

)
3σ 2

H − σ 2
E

(26)

in regions where σM is negative. The physical origin of the
anomalous reflectance for σM < 0 at (θ, φ) = (0, 0) is clar-
ified in Ref. [29]. The dispersion relation kz(ω) given by
Eq. (17) has the negative real part for the finite range of ω

for σM < 0. For such frequencies, the electromagnetic wave
grows exponentially toward the direction of its propagation
as a result of the dynamical instability of the magnetic field,
referred to as the chiral magnetic instability [28,29,33]. Ac-
cordingly, the electromagnetic wave at z < 0 in the Weyl
semimetal anomalously grows toward the surface, which leads
to the reflectance that exceeds unity. We note that the chiral
magnetic instability occurs at nonequilibrium with chirality
imbalance and the amplification of reflected wave decreases
the chirality imbalance [29].

The anomalous reflection is expected for σE � σH ≈
|σM |/c [29] although the actual values of the current situa-
tion satisfies σM/c � σH � σE . To demonstrate the impact
of these different conditions, the reflectances are plotted by
rewriting them in terms of the dimensionless conductivities
σ̃E ≡ σE/σH and σ̃M ≡ σM/cσH . Figure 4 shows the re-
flectances for σ̃E = 1 and σ̃E = 10 as a function of σ̃M (−1 �
σ̃M � 2.5). In regions where σ̃M is negative, both R−− and
R+− are well above unity for σ̃E = 1, while R−− is less than
unity and R+− is slightly above unity for σ̃E = 10.

B. Anomalous emissivity

Emissivity is determined by reflectance, as indicated by
Eqs. (4) and (5); therefore, anomalous behavior of reflectance
is expected to have a significant influence on emissivity. To

demonstrate how anomalous reflectance affects thermal radia-
tion, an analytical expression for emissivity is derived, which
holds for both σM > and σM < 0:

lim
ω→0

η(0, 0) = 2σHσM
[
c
(
σ 2

E + σ 2
H

) − σHσM
]

(
σ 2

E + σ 2
H

)
[(cσH + σM )2 + (cσE )2]

. (27)

For far-field thermal radiation, emissivity takes the value
0 < η < 1. However, Eq. (27) clearly shows that emissivity
assumes negative values when σM < 0. This is ascribed to the
anomalous reflectance due to the chiral magnetic instability.

Furthermore, it is noted that emissivity can be negative,
even for σM > 0, when σHσM > c(σ 2

E + σ 2
H ). In this case,

the chiral magnetic instability is irrelevant to the negative
emissivity since σM > 0; rather, the negative emissivity is due
to the interconversion reflectance R++ being finite due to the
chiral magnetic effect.

Similarly to reflectance, the conductivity dependence of
emissivity is examined by rewriting Eq. (27) using the dimen-
sionless conductivities. Figure 5 shows emissivity for σ̃E = 1
and σ̃E = 10 as a function of σ̃M . As anticipated, for σ̃E = 1,
the emissivity becomes negative when σ̃M < or σ̃M > σ̃ 2

E +
1(= 2). On the other hand, this anomalous behavior is largely
mitigated when σ̃E = 10.

FIG. 5. limω→0 η(0, 0) as a function of σ̃M . Solid and dashed
lines represent the cases of σ̃E = 1 and σ̃E = 10, respectively.
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FIG. 6. Frequency dependence of circular polarized reflectance (a) [(e)] R++(θ, φ), (b) [(f)] R−−(θ, φ), (c) [(g)] R−+(θ, φ), and (d) [(h)]
R+−(θ, φ) for σM > 0 (σM < 0). Solid, dashed, and dotted lines represent the cases of incident angles 0, π/6, and π/4, respectively. The
parameters are set to v = c/6, σH = 104 �−1 m−1, σE = σH , and σM = 2.5 × cσH (σM = −cσH ) for [(a)–(d)] [(e)–(h)].

C. Incident angle and frequency dependence

To further characterize the reflectance and emissivity in
detail, numerical results for (θ, φ) and ω dependence are then
presented.

Following Ref. [29], the numerical calculations are per-
formed at the level of order estimation under the condition
that satisfies σE � σH ≈ |σM |/c, where anomalous behavior
is most pronounced, although it is an unrealistic condition for
now. The anomalous Hall conductivity is first set to σH �
104 �−1m−1 ≡ σH0, which corresponds to |2b| = 109 m−1

[34,35]. To maximize the reflectance at zero frequency, σM =
2.5 × cσH0/μr for σM > 0 and σM = −cσH0/μr for σM < 0
are then selected. Finally, σE = σH0 is set so that the anoma-
lous behavior appears.

Figure 6 plots the frequency dependence of the reflectance
Ri j of circular polarized light for various incident angles of
θ = 0, π/6, and π/4 with φ = 0. The case of σM > 0 shown
in Figs. 6(a) to 6(d) is examined first. As discussed in the
analysis of Eqs. (22) to (25), the most important point is that
the chiral magnetic effect causes the interconversion reflection
with finite values of R++ for a broad range of frequency. The
case of σM < 0 shown in Figs. 6(e) to 6(h) is considered next.
When the incident wave is the left circular polarized wave
shown in Figs. 6(e) and 6(g), the reflectance does not exceed
unity at any frequency. On the other hand, in the case of
the right circular polarized incident wave shown in Figs. 6(f)
and 6(h), the reflectance exceeds unity when the frequency
is smaller than a certain value due to the chiral magnetic
instability. As demonstrated in Eqs. (23) and (25), the re-
flectance exceeds unity even for polarization interconversion
reflectance such as R−− as well as R+−.

Figure 7 plots the frequency dependence of the total emis-
sivity, the left circular polarized emissivity, and the right
circular polarized emissivity for different incident angles of
θ = 0, π/6, and π/4 with φ = 0. The case for σM > 0
shown in Figs. 7(a) to 7(c) is examined first. The crucial
point in this case is that, as shown in Fig. 7(b), the circular

polarized emissivity η+ becomes negative in the low-
frequency region. On the other hand, η− shown in Fig. 7(c)
is positive for any frequency. The difference arises because
the interconversion reflection occurs only for the incident
wave with the left circular polarization for σM > 0. As a
result, for the present parameters where σHσM > c(σ 2

E + σ 2
H )

holds, the total emissivity at (θ, φ) = (0, 0) shown in Fig. 7(a)
can be negative as discussed in the case of the zero fre-
quency limit (see Fig. 5). The case for σM < 0 shown in
Figs. 7(d) to 7(f) is considered next. Both circular polarized
emissivities η+ and η− shown in Figs. 7(e) and 7(f) take a
negative value when the frequency is smaller than a certain
value because R+− (R−−) in η+ (η−) exceeds unity due to
the chiral magnetic instability. Therefore, the total emissivity
shown in Fig. 7(d) also becomes negative in the low-frequency
region.

As observed from the incident angle (θ ) dependence,
vertical incidence shows the most pronounced anomalous re-
flection. The anomalous behavior of emissivity is thus also
more pronounced for smaller incident angles.

IV. DISCUSSION

Now consider the physical consequence of a negative emis-
sivity. Spectral heat flux from an object at temperature T
into the environment (vacuum) at temperature Te (T > Te) is
given by

dHη = η(θ, φ)[Ib(ω, T ) − Ib(ω, Te)] cos θdωd�. (28)

The total thermal radiation, as described in Eq. (3), is ob-
tained by integrating Eq. (28) over all angles and frequencies,
with the environmental temperature, Te, set to zero. For cases
where the emissivity is positive [η(θ, φ) > 0], Eq. (28) in-
dicates that dHη > 0, signifying that the spectral heat flux
is directed from the object to the environment. Conversely,
when the emissivity is negative (η(θ, φ) < 0), Eq. (28) leads
to dHη < 0, implying that the spectral heat flux may flow
from the environment to the object. Therefore, when the
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FIG. 7. Frequency dependence of (a) [(d)] η(θ, φ), (b) [(e)] η+(θ, φ), and (c) [(f)] η−(θ, φ) for σM > 0 (σM < 0). Solid, dashed, and dotted
lines represent the cases of incident angles 0, π/6, and π/4, respectively. The parameters are set to v = c/6, σH = 104 �−1 m−1, σE = σH ,
and σM = 2.5 × cσH (σM = −cσH ) for [(a)–(c)] [(d)–(f)].

temperature of the Weyl semimetal is T and the temper-
ature of the environment is Te with T > Te, energy flows
from the environment with lower temperature to the Weyl
semimetal with higher temperature. It should be noted that the
observed behavior might appear to contravene the second law
of thermodynamics if the system were in thermal equilibrium.
However, this is not the case for a Weyl semimetal with a finite
chiral chemical potential, i.e., μ5 	= 0, as it inherently exists in
a nonequilibrium state.

Furthermore, emissivity is negative only within a specific
low-frequency region, whereas it turns positive at higher
frequencies. Consequently, when considering thermal radia-
tion integrated over frequency, the net effect should result in
a positive emissivity, ensuring that overall thermal radiation
still flows from hot to cold objects. This is corroborated by

FIG. 8. Temperature dependence of the total emissivity inte-
grated over all angles and frequencies.

the result that the total emissivity, defined as Hη/Hb [with Hb

representing black body radiation, obtained by setting η = 1
in Eq. (3)], remains positive, as demonstrated in Fig. 8. It has
been theoretically shown that negative emissivity can occur
in nonlinear materials, although the underlying mechanism is
entirely different [36].

V. SUMMARY

In summary, we conducted a theoretical exploration of
the chiral magnetic effect on the thermal radiation properties
of Weyl semimetals. This effect causes circularly polarized
reflectance to exceed unity, indicating possible anomalies
in emissivity. To investigate this, we analytically calculated
the circularly polarized reflectance and emissivity at zero
frequency and normal incidence and carried out numerical
calculations at finite frequencies and various incident angles.
A key discovery is that emissivity can become negative when
chiral magnetic conductivity is negative—a sign of chiral
magnetic instability. Additionally, we identified conditions
where emissivity turns negative independently of such insta-
bility, attributed to interconversion reflection caused by the
chiral magnetic effect. Negative emissivity suggests that en-
ergy could flow from colder to hotter regions. This distinct
emissivity behavior opens up innovative ways to harness ra-
diant thermal energy, presenting new possibilities for thermal
engineering with Weyl semimetals.
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