
PHYSICAL REVIEW B 109, 085140 (2024)

Interchange of Weyl points in the phonon bands of a half-metal alloy
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We demonstrate that the topological charge associated with nontrivial phononic Weyl points may be in-
terchanged between nonadjacent locations within the Brillouin zone of a strained crystal. This occurs in our
NiMnSb test case upon passing between tensile and compressive uniaxial strain through the higher-symmetry
unstrained geometry, and compensates for what would otherwise appear to be nonconservation of topological
charge. The phenomenon is dictated by the material’s crystallographic point group, and should be replicated in
other crystals of similar symmetry.
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I. INTRODUCTION

In both electronic and vibrational band structures of bulk
crystals, twofold band crossings have garnered much attention
over recent years [1,2]. These may arise through a simple
coincidence of symmetry, in which case their degeneracy may
be lifted by a suitably asymmetric deformation of the crystal,
but are sometimes associated with nontrivial topology that
renders them robust against asymmetric strain. Such Weyl
points (WPs), as these robust crossings are known, can be
characterized by a nonzero integer topological charge that is
conserved as the crystal is deformed. When multiple WPs
merge, their individual topological charges are summed, but
otherwise ought never to vary. Here, we reveal an apparent
exception that arises when the topological charges of two
nonadjacent WPs are interchanged upon deforming the crystal
through a structure with higher symmetry. To exemplify this,
we focus upon the vibrational band structure of an archetypal
semi-Heusler alloy, namely NiMnSb.

Among the semi-Heusler compounds, several possess half-
metallic electronic band structures, meaning that the bands
of one spin species cross the Fermi level while those of the
opposite do not. In principle, such materials could function as
perfect spin valves, naturally supporting the transport of only
one spin species through the crystal. In practice, phonon and
magnon excitations may well preclude half-metallicity even
at temperatures far below the ferromagnetic/paramagnetic
transition [3], but in a cryogenic context the ideal behavior
remains an attractive proposition. NiMnSb, crystallizing in the
C1b structure [4], was the first predicted half-metal [5], and
has been studied with some regularity over several decades
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[6,7]. One of us has published previously on the surface
properties of this material, noting the existence of Dirac cones
in bands associated with surface-localized minority-spin elec-
tronic states that may themselves present a further impediment
to the realization of functional devices based upon bulk half-
metallicity [8–10]. In the present paper, however, we discuss
instead the vibrational band structure of the bulk crystal, em-
phasizing the influence of uniaxial strain.

II. METHODOLOGY

First-principles density functional theory (DFT) calcu-
lations were carried out using the CASTEP computer code
(version 18.1) [11]. Electronic wave functions were expanded
in a basis set of plane waves, up to a kinetic energy cutoff at
700 eV, and exchange-correlation interactions were incorpo-
rated via the Perdew-Becke-Ernzerhof (PBE) functional [12].
Electron-ion interactions were included through the use of ul-
trasoft pseudopotentials [13] generated using CASTEP’s default
settings, with nominal valence configurations of [3d8, 4s2] for
Ni, [3s2, 3p6, 3d5, 4s2] for Mn, and [4d10, 5s2, 5p3] for Sb.

Initial optimization of unstrained NiMnSb was achieved
using its highest-symmetry primitive unit cell (spanned by
face-centered-cubic primitive lattice vectors) with the Bril-
louin zone sampled on a Monkhorst-Pack [14] mesh of
dimension 8 × 8 × 8. A theoretical cubic lattice constant of
5.916 Å was obtained, converged to within a stress tolerance
of 10−1 GPa and a change in total energy of no more than
2 × 10−5 eV per atom from one geometry-search iteration to
the next.

To provide a reference for later uniaxially strained calcu-
lations, we also confirmed that comparable results would be
obtained when representing the unstrained structure using the
smallest conventional body-centered-tetragonal cell, sampled
on a mesh of dimension 8 × 8 × 6. This approach gave rise to
a theoretical lattice constant differing from the previous value
only in the seventh significant figure. Similarly, we also tested
the use of a conventional cubic cell (Fig. 1) sampled on a
mesh of dimension 6 × 6 × 6, obtaining a theoretical lattice
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FIG. 1. Conventional unit cell of NiMnSb, four times the volume
of its primitive unit cell. The material has a face-centered-cubic
(fcc) real-space lattice with a basis comprising Ni:(0.00,0.00,0.00),
Mn:(0.25,0.25,0.25), Sb:(0.75,0.75,0.75).

constant indistinguishable from the first to eight significant
figures. Clearly the numerical errors associated with differing
cell geometry and k-point sampling are very small indeed for
this system while using the stated parameters.

For ease of applying suitable constraints to the strained
geometries studied here, free lattice parameters in each case
were initially optimized within conventional unit cells prior
to conversion to primitive unit cells. For instance, when con-
sidering a 1% uniaxial stretch, we first set up a conventional
body-centered-tetragonal cell containing two NiMnSb struc-
tural units (i.e., six atoms in all) and increased the long side to
a length of 5.975 Å. Fixing the latter value, the short sides of
the cell relaxed to an optimal length of 4.170 Å. Results from
other uniaxially strained geometries are presented in Table I.

Knowing these various lattice constants, it was then possi-
ble to characterize fully the real-space and reciprocal lattices
of the strained systems, and hence to determine the exact
size and shape of the strained Brillouin zones, following

TABLE I. Side lengths of conventional body-centered-tetragonal
unit cells used in the present work for constrained structural opti-
mization. With the long side set to c = 5.916 Å and the short sides to
a = 4.183 Å, the structure is equivalent to face-centered-cubic with a
lattice parameter equal to a. In all other cases, the long side has been
set to a fixed percentage strain and the short sides allowed to relax.

�c a (Å) c (Å)

−1.0% 4.194 5.857
−0.1% 4.185 5.910
±0.0% 4.183 5.916
+0.1% 4.182 5.922
+0.5% 4.177 5.946
+1.0% 4.170 5.975
+1.5% 4.164 6.005
+2.0% 4.154 6.035

TABLE II. Lengths and angular separations of real-space lattice
vectors spanning primitive unit cells corresponding to the conven-
tional unit cells described in Table I.

�c |an| θ12 θ23 = θ31

−1.0% 4.168 90.721◦ 119.585◦

−0.1% 4.182 90.076◦ 119.956◦

±0.0% 4.183 90.000◦ 120.000◦

+0.1% 4.185 89.921◦ 120.046◦

+0.5% 4.191 89.620◦ 120.219◦

+1.0% 4.198 89.244◦ 120.437◦

+1.5% 4.205 88.874◦ 120.652◦

+2.0% 4.211 88.457◦ 120.895◦

conventions systematically laid out by Setyawan and Cur-
tarolo [15]. The lengths of three primitive real-space lattice
vectors, a1, a2, and a3, are provided in Table II, along with the
angles between them, θ12, θ23, and θ31. Equivalent information
for reciprocal lattice vectors b1, b2, and b3, and for their
angles, φ12, φ23, and φ31, may be found in Table III. These
are the geometric parameters with respect to which we report
coordinates of band crossings in the Supplemental Material
(SM) [16].

Calculations of dynamical matrices were carried out within
tetragonally strained near-cubic supercells (all side lengths
being approximately 11.832 Å) containing 32 NiMnSb struc-
tural units, using a Monkhorst-Pack mesh of dimension 2 ×
2 × 2. Prompted by comments in a recent publication from
Kendrick and Burnett [17] we not only set the real-space
integration “grid_scale” parameter to a value of 2.0, but also
set the “fine_grid_scale” parameter to 6.0, to ensure adequate
representation of low-frequency acoustic modes. Convergence
criteria for the electronic structure were set at 10−11 eV for
the total energy, 10−13 eV for individual eigenvalues, and
10−5 eV Å−1 for the calculated forces. Only with all three
criteria satisfied would the resulting structures be used for the
computation of vibrational properties.

Topological analysis of the calculated vibrational band
structures was performed by evaluating the Berry phase [18]
via the Wilson loop [19] method (see SM [16] for technical
details). The Berry phase for an isolated band must be an
integer multiple of 2π , but in the vicinity of a WP the Berry
phases of its two crossing bands may interchange smoothly,

TABLE III. Lengths and angular separations of primitive re-
ciprocal lattice vectors derived from the real-space lattice vectors
defined in Table II. Coordinates listed in the SM [16] are expressed
as fractions of these basis vectors.

�c |b1| = |b2| |b3| φ12 φ23 = φ31

−1.0% 1.843 2.119 70.187◦ 54.906◦

−0.1% 1.840 2.123 70.493◦ 54.754◦

±0.0% 1.839 2.124 70.529◦ 54.736◦

+0.1% 1.839 2.125 70.566◦ 54.717◦

+0.5% 1.838 2.128 70.707◦ 54.646◦

+1.0% 1.837 2.131 70.883◦ 54.558◦

+1.5% 1.836 2.134 71.055◦ 54.472◦

+2.0% 1.836 2.139 71.248◦ 54.376◦
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FIG. 2. Calculated vibrational bands of unstrained NiMnSb, with isolated experimental [6] data points indicated in green. Also shown
is the Brillouin zone and its irreducible segment, with locations of twofold and threefold band crossings marked by circles and triangles,
respectively; the red shading indicates positive topological charge.

creating a topological feature that cannot simply be removed
by perturbation of the system. Here, we adopt the convention
that an increase in the Berry phase of the higher-frequency
branch, balanced by a decrease in that of the lower-frequency
branch, imbues the WP with positive topological charge; neg-
ative charge applies when the changes occur in the opposite
sense.

III. RESULTS

Examining the phonon dispersion curves of unstrained
NiMnSb (Fig. 2) we observe generally excellent agreement
with available experimental [6] and theoretical [7] data. A
small deviation from experimental modes near K/U and X
is, we believe, most likely attributable to temperature-induced
softening not incorporated in our model. We note also the
existence of 11 distinct band crossings within the irreducible
segment of the Brillouin zone, omitting spurious band cross-
ings that turn out to be anticrossing in nature upon detailed
inspection. Details of precise locations and frequencies of all
crossings referred to in this paper are provided in the SM [16].

Of the genuine band crossings, only four are visible in
the displayed band structure and none carry any topological
charge. We shall henceforth denote them with symbols such
as X �K

45 —the subscript indicating the involved bands (in this
case the fourth and fifth) and the superscript the location
within the zone (in this case along the �-K axis); the initial
X should be taken to imply a trivial two-band crossing that
is not a true WP. Three additional two-band crossings are not
visible in the displayed band structure, as they do not lie on
any of the high-symmetry directions. One of these crossings
is uncharged and lies on the triangle defined by the �, U , and
L points, so we denote it X �UL

45 . A further uncharged cross-
ing lies rather close to the X �U

45 crossing, but is nevertheless
properly recognized separately as X �UX

45 . The final two-band
crossing, in contrast, carries a topological charge of +1 and is
labeled W �W X

89 within our scheme, where the initial W implies
a true WP. The four remaining crossings each involve three

bands and so are best described as triply degenerate nodal
points (TDNPs) [20] and labeled accordingly with an initial
T . Their behavior under uniaxial strain is rather fascinating,
and will be outlined briefly before proceeding further.

Upon application of up to 1.0% compressive strain along
[001], the twofold degeneracy of transverse modes along the
�-X direction is lifted, and T �X

456 splits into two WPs that we
shall denote W �X

45 and W �X
56 ; likewise, T �X

789 also splits into two
WPs denoted W �X

78 and W �X
89 (Fig. 3). Of these, W �X

45 carries a
topological charge of +1, while W �X

56 , W �X
78 , and W �X

89 each
carry a topological charge of −1. Note, however, that the
WP labeled W �X

89 apparently changes sign when compressive
strain is reduced from 0.5% to 0.1% (not shown in the figure,
but tabulated in the SM [16]), although we shall defer the
explanation of this phenomenon to later in this paper.

Considering up to 1.0% tensile strain along [001], the same
two TDNPs again split into pairs of WPs, but now with W �X

45
and W �X

89 each carrying a topological charge of −1, and with
W �X

56 and W �X
78 carrying a topological charge of +1. In other

words, the individual WPs pass through each other as one
traverses the special case of the unstrained crystal, with the
higher-frequency WP of the compressed case dropping to
become the lower-frequency WP of the stretched case and
vice versa, carrying their respective low-strain charges with
them. Notably, two further WPs appear along the �-X axis,
each carrying a topological charge of −1 and denoted W �X ′

45

and W �X ′
89 .

The separation between W �X
45 and W �X

56 (both in recipro-
cal space and in frequency) increases with increasing tensile
strain, while W �X ′

45 approaches W �X
45 (in both respects). Simi-

larly, W �X
89 and W �X

78 diverge further from one another, while
W �X ′

89 converges upon W �X
89 . One might, indeed, imagine that

each converging pair of WPs would eventually merge, form-
ing a single WP with a topological charge of −2 in each
instance. This is not, however, what actually happens. In fact,
upon increasing the tensile strain to 1.5%, the topological
charges of W �X ′

45 and W �X
89 both appear to change sign, so that

when the former collides with W �X
45 and the latter with W �X ′

89
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FIG. 3. Influence of uniaxial [001] strain on bands 4, 5, and 6 (left panels) and on bands 7, 8, and 9 (right panels) along the �-X direction.
WPs with positive and negative topological charges are indicated by red and cyan circles; TDNPs are marked with white triangles.

the resulting net charge in each case is zero and the associated
crossing no longer topologically protected. With the tensile
strain increased to 2.0%, therefore, the only remaining on-axis
WPs are W �X

56 and W �X
78 , both carrying a topological charge

of +1, the others having annihilated in pairwise fashion.
The mystery, of course, is how the topological charges of
W �X ′

45 and W �X
89 change sign, given our expectation of charge

conservation.
Fortunately, the answer to this conundrum is relatively

simple. Investigation of regions lying off the �-X axis reveals
a pair of positively charged WPs converging upon W �X ′

45 (and
another pair converging upon W �X

89 ) as the tensile strain is
increased from 0.1%, through 0.5%, to 1.0%. Under strain
approaching 1.5%, these pairs of WPs have simply merged
with the on-axis WPs to create an apparent change in sign

of the associated topological charge. A similar merger with
two countercharged WPs almost certainly accounts for the
apparent change in sign of W �X

89 upon reducing compres-
sive strain from 0.5% to 0.1%, as briefly alluded to above.
Taking the bigger picture into account, topological charge
is actually conserved precisely as expected in all of these
cases.

Before returning to the WPs of the unstrained system, it
may be wise to review the role of symmetry in dictating
the relationship between WPs at different locations within
the Brillouin zone. We begin by noting the importance of the
crystallographic point group formed from the space group of
the crystal by converting glide and screw operations into re-
flection and rotation operations respectively. The space group
of unstrained NiMnSb is F43m and its point group 43m.
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FIG. 4. Influence of uniaxial [001] strain on a band crossing and its mirror image, both formed by bands 4 and 5 (left panels) and by bands
8 and 9 (right panels). Details of the precise path taken through reciprocal space are provided in the SM [16]. Positive and negative topological
charges are indicated by red and cyan circles; white circles are uncharged.

When uniaxially strained in the [001] direction, the space
group reduces to I4m2, with point group 42m.

Let us proceed by denoting the mean atomic positions in
our system as Rm, where m is simply a numerical index.
Taking σ̂ to be an operation within the crystallographic point
group, its action upon Rm must amount to a mere reindexing
among the same set of positions. Then, letting εn(q) represent
the vibrational eigenfrequency of mode n at wave vector q,
with un(q, Rm) being the corresponding displacement am-
plitude for the atom that oscillates around Rm, it follows
that εn(σ̂q) = εn(q) and that un(σ̂q, Rm) = σ̂un(q, σ̂−1Rm).
Additionally, time-reversal symmetry allows us to state that
εn(−q) = εn(q) and that un(−q, Rm) = u∗

n (q, Rm) in all
cases.

Given these relationships, it further follows that if the
locations of two band crossings are related via a proper sym-
metry operation of the point group (identity or rotation) then
they must share the same topological charge, while if they
are related via an improper symmetry operation of the point
group (reflection or inversion) then they must have topological
charges of equal magnitude but opposite sign. One corollary
of this is that true WPs (having nonzero topological charge)
are possible only when the point group lacks inversion sym-
metry. A second is that any band crossing lying on a mirror
plane of the point group must necessarily be topologically
trivial, since it is related to itself both by a proper oper-
ation (identity) and by an improper operation (reflection).
In the present context, this means we could have predicted
that the six band crossings lying on high-symmetry directions
of the unstrained system would all turn out to be topologically
trivial since all do, indeed, lie upon mirror planes of the point

group. Our calculations, in this respect, merely bear out this
necessary fact.

Nevertheless, despite this unpromising conclusion, we find
that the two crossings denoted W �PY1

45 and W �PY1
89 (identifiers

for X �K
45 and X �K

89 adapted for the irreducible zones of the
strained systems) are actually robust upon the application of
tensile strain. Furthermore, in the 0.1% stretched case, both
are found to acquire a topological charge of +1, justifying our
labeling them with an initial W (Figs. 4 and 5). In the strained
system, however, they no longer lie on a high-symmetry di-
rection, and so are free to migrate within the �-P-Y1 plane as
the strain is increased. In fact, the pair of WPs comprising
W �PY1

45 and its image formed by twofold rotation about the
�-X axis turns out to be the very same pair responsible for
the apparent change in sign of W �X ′

45 noted above as tensile
strain is increased from 1.0% to 1.5%. The approximately
concurrent change in sign of W �X

89 , on the other hand, is
accounted for by the positively charged WP labeled W �PX

89
(and its similarly rotated image)—previously denoted W �W X

89
within the unstrained system.

Already, however, the situation appears problematic. How
can W �PY1

45 and W �PY1
89 carry nonzero topological charges in the

strained case that vanish when the strain is removed? Such an
observation appears to be at odds with our expectation that
topological charge must be conserved, and on this occasion
there are no additional WPs to be found in the vicinity that
could account for the discrepancy. What is missing from this
picture, of course, is the additional symmetry that pertains
to the unstrained case. Specifically, for each WP within the
irreducible segment of the strained Brillouin zone, an image
exists elsewhere within the full Brillouin zone that carries

085140-5



STEPHEN J. JENKINS AND G. P. SRIVASTAVA PHYSICAL REVIEW B 109, 085140 (2024)

FIG. 5. Locations of twofold (circles) and threefold (triangles) band crossings for NiMnSb in its unstrained geometry and under conditions
of 0.1% compressive or tensile strain along [001] (i.e., the �-Z direction). All are shown within the irreducible segment consistent with the
strained cases [15]. Red and cyan shadings indicate positive and negative topological charge, respectively, while unshaded points are uncharged.

the opposite charge, lying at a position related by mirror
symmetry to its partner (denoted with an overline in Fig. 4).
In the unstrained case, however, the original WP and its im-
age are also linked by threefold rotational symmetry, so that
they become indistinguishable and collapse to a trivial band
crossing. The change in apparent topological charge from
nonzero to zero is, indeed, due to the presence of a second
WP, albeit one that lies distant from the first. But what might
one predict about the topological charge as each WP passes
through its zero-charge unstrained instance and transforms
into the version consistent with compressive strain? Will its
topological charge revert to the same value as for the tensile
case, or might something more surprising happen?

In fact, our calculations under 0.1% compressive strain
indicate topological charges for W �PY1

45 and W �PY1
89 of −1.

Their individual topological charges reverse sign, therefore,
when passing from the stretched to the compressed case, as
if WPs of opposing charge have interchanged their locations
within the Brillouin zone. Topological charge continues to
be conserved, but only if we accept that WPs can, in effect,
“teleport” (i.e., travel without passing through intermediate
locations) from one irreducible segment of the Brillouin zone
to another when the system passes through a high-symmetry
intermediate structure. That this can be reconciled with the
symmetry of our system may be demonstrated as follows.

Starting with the unstrained system, consider the effect of
uniaxial strain along a general axis s causing an uncharged
band crossing located at some point q to acquire a certain
topological charge. If the strain were instead applied along
an axis σ̂ s, then an equivalent band crossing located at σ̂q
would acquire either the same topological charge (if σ̂ is a
proper operation) or the opposite (if σ̂ is improper). Combin-
ing the reflection and threefold rotation symmetries of the 43m
point group, one may demonstrate that the topological charges
associated with W �PY1

45 and W �PY1
89 under the imposition of

compressive strain along the [001] axis must be opposite to
the topological charges associated with the same WPs under
the imposition of compressive strain along the [010] axis.
It is, however, possible to continuously deform the system

from the latter condition into one of tensile strain applied
along the [001] axis, passing through a series of interme-
diate orthorhombic geometries. Since this does not involve
passing through any higher-symmetry structures, it follows
that W �PY1

45 and W �PY1
89 cannot change their signs while we

do so. Accordingly, we have demonstrated through symmetry
alone that the topological charges of these particular WPs
while under tensile strain along [001] must be equal and
opposite to their charges under compressive strain along the
same axis.

An exactly similar argument may now be applied to the
WP labeled W �XN

45 , which carries a charge of +1 under com-
pressive strain and of −1 under tensile strain, passing through
an uncharged condition (X �UL

45 ) in the unstrained case. Con-
versely, the crossing denoted X �U

45 in the unstrained system is
simply not robust under either compressive or tensile strain,
while that labeled X �U

89 acquires a charge of +1 when rela-
beled W �PY

89 under tensile strain but annihilates with a mirror
image when crossing over to the compressed scenario. Both
behaviors are again entirely consistent with the respective
symmetries of the strained and unstrained crystals. Finally,
note that the charge on W �XP

89 (the relabeled counterpart of un-
strained W �W X

89 ) is conserved throughout, because it does not
pass through a higher-symmetry condition in moving between
tensile and compressive conditions.

IV. CONCLUSIONS

In summary, we have investigated the topology of twofold
crossings within the vibrational band structure of NiMnSb,
showing that imposition of strain along [001] causes two
uncharged TDNPs to split into pairs of nontrivial WPs. We
describe four further band crossings that carry no topolog-
ical charge in the unstrained case but that acquire nonzero
topological charge (becoming true WPs) in certain strained
cases, demonstrating that these topological charges change
sign in switching between tensile and compressive strain. In
effect, these WPs teleport from one irreducible segment of the
Brillouin zone to another when passing through the unstrained
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case, explaining both the interchange of sign and intermediate
cancellation of topological charge. Where a true WP is already
present in the unstrained case, however, no teleportation is
possible and its charge must straightforwardly be conserved.
Such behaviors are implied by the point group of the un-
strained crystal, and should be apparent in the vibrational
and/or electronic topologies of other systems having similar
symmetry.

Computer code and data supporting this paper are openly
available from Apollo, the University of Cambridge data
repository [21].
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