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Emergence of charge density wave and superconducting phase transitions
through Lorentz-invariant interactions in the Haldane-Hubbard model
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We derive Lorentz-invariant four-fermion interactions, including Nambu-Jona-Lasinio type and supercon-
ducting type, which are widely studied in high-energy physics, from the honeycomb lattice Hamiltonian with
Hubbard interaction. We investigate the phase transitions induced by these two interactions and consider the
effects of the chemical potential and magnetic flux (Haldane mass term) on these phase transitions. We find that
the charge density wave and superconductivity generated by the attractive interactions are mainly controlled
by the chemical potential, while the magnetic flux delimits the domain of phase transition. Our analysis
underscores the influence of the initial topological state on the phase transitions, a facet largely overlooked
in prior studies. We present experimental protocols using cold atoms to verify our theoretical results.
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I. INTRODUCTION

Two-dimensional Dirac materials have emerged as a hot
topic in the study of condensed matter physics. The electrons
in these materials display a linear dispersion spectrum on
the Fermi surface [1]. Despite their fundamentally nonrela-
tivistic nature, their low-energy excitations can be described
by the (2 + 1)-dimensional Dirac equation. This intrigu-
ing manifestation blurs the traditional boundaries between
relativistic and nonrelativistic realms in the microscopic
world, indicating a possible transformation and connection
through specific physical systems. However, the challenge
lies in effectively bridging these critical aspects of con-
densed matter models with theoretical models in high-energy
physics, thereby forging a pathway for relativistic stud-
ies in condensed matter physics. A particularly promising
platform to explore this linkage is the Haldane-Hubbard
model, setting the stage for the ensuing discussion in this
paper.

The Haldane model [2], a classical model of topological in-
sulators, has attracted substantial attention [3–7]. This model
describes a two-dimensional honeycomb lattice system with a
nonzero Chern number, the characteristics of which have been
experimentally verified over the past few years [8]. The Hal-
dane model with interaction has also been extensively studied
[9–18]. However, how to connect these essential, experi-
mentally realizable condensed matter models with theoretical
models in high-energy physics, and establish a bridge between
condensed matter physics and high energy physics, remains an
evolving field [19–23]. In high-energy physics, four-fermion
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interactions play a crucial role in describing the properties
of strongly interacting particles and understanding the low
energy limit of the standard model. For example, the Nambu-
Jona-Lasinio (NJL) model and Gross-Neveu (GN) model
[24–38], are used in the field of particle physics to study
meson spectra, color superconductivity, and heavy ion colli-
sion physics, etc. And the Thirring model [39–42] is used to
study dynamical symmetry breaking, and the phase diagram
of real quantum chromodynamics, etc. Most of these models
are phenomenological and lack experimental platforms. How-
ever, the unique properties of two-dimensional Dirac materials
provide us with a unique opportunity to use these materials
to simulate these models in high energy physics, particularly
those involving interactions that exhibit Lorentz invariance.
In this paper, we commence with the Haldane model featur-
ing Hubbard interactions and employ the van der Waerden
notation to introduce a mapping from the honeycomb lattice
Hamiltonian to a Lagrangian that encompasses two distinct
interaction types: NJL type and superconducting type. This
notation facilitates the transformation of the nonrelativistic
Hubbard interaction into relativistic four-fermion interactions,
thus enabling the construction of a fully Lorentz-invariant
Lagrangian. We subsequently investigate phase transitions in-
duced by these two interactions by calculating the effective
potential. Additionally, we explore the influence of chemical
potential and the Haldane mass term (magnetic flux) inherent
in the Haldane model on these phase transitions. The Haldane
mass term, as widely recognized, has gathered substantial
attention in the realm of condensed matter physics and holds
significance in high-energy physics. Scholarly studies, such
as those found in [12,14,18,43], have delved deeply into
the Haldane model in the context of repulsive Hubbard in-
teractions. Simultaneously, the field of high-energy physics,
including Refs. [44,45], has explored the connections between
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the Haldane mass term and Chern-Simons interactions. Our
research centers on elucidating the interplay between the topo-
logical aspects of the Haldane model and phase transitions
induced by weak Hubbard interactions. This area remains
relatively unexplored in the existing literature [38,46–49], and
our findings offer fresh insights. Notably, we have uncov-
ered that the system, under attractive interactions, can exhibit
superconducting and charge density wave (CDW) phases. Fur-
thermore, certain regions of these phase transitions exhibit
characteristics that are topologically protected. The pivotal
role of the Haldane mass term in influencing the topologi-
cal attributes of the model within this framework cannot be
overstated. Importantly, the Haldane mass term introduced in
our study is not an adhoc parameter but naturally emerges
from the effective theory of the Haldane model, originating
from a physically meaningful quantity associated with mag-
netic flux mo = 3

√
3t ′ sin φ. This guarantees the theoretical

consistency and practical applicability of our model, offer-
ing a fresh perspective on the direct relationship between
phase transitions and topology in complex interacting sys-
tems. Finally, in the Appendix E, we propose experimental
methods for probing these quantum phase transitions using
cold atoms.

The rest of the paper is organized as follows. Section II
introduces the mapping of the Haldane-Hubbard model to
its corresponding Lagrangian, which incorporates both SC-
type and NJL-type four-fermion interactions, utilizing van der
Waerden notation. Section III is dedicated to the derivation of
the system’s effective potential. The renormalization analysis
of this effective potential is the focus of Sec. IV, where we
also present the resultant phase diagram. In Sec. V, we explore
the role of the system’s initial topological states in modulating
interaction-induced phase transitions. Comprehensive deriva-
tions of equations cited in the main text can be found in the
Appendices.

II. CONSTRUCTING THE LORENTZ-INVARIANT
LAGRANGIAN

We study a honeycomb lattice system with nearest-
neighbor interactions, contributing to the following spinless
Haldane-Hubbard model:

H = H0 + HT + HS + HU , (1)

with partial Hamiltonian expressed as

H0 = −
∑
〈i, j〉

t (a†
i b j + H.c.), (2)

HT = −
∑
〈〈i, j〉〉

t ′(eiφa†
i a j + e−iφb†

i b j ), (3)

HS =
∑
i∈A

μa†
i ai −

∑
i∈B

μb†
i bi, (4)

HU = −
∑
〈i j〉

Ua†
i aib

†
jb j . (5)

Here the summation
∑

〈i, j〉 takes over all nearest-neighbor
(NN) sites, and

∑
〈〈i, j〉〉 takes over all next-nearest-neighbor

(NNN) sites. t and t ′ are real-valued NN and NNN hop-
ping amplitudes, and the latter contain additional phase ±φ

for different sublattices along the arrows shown in Fig. 1.

FIG. 1. Haldane model on a honeycomb lattice with nearest-
neighbor interactions. The sublattices A and B are represented by
orange and blue sites, respectively, each with an energy offset
denoted by μ. The real isotropic values are characterized by nearest-
neighbor (NN) hopping terms t . The next-nearest-neighbor (NNN)
hopping t ′ is indicated by dashed lines with arrows, incorporating a
phase factor e±iφ . The interaction U is observed between adjacent
particles. The diagram in the right delineates the Brillouin zone,
featuring the Dirac points K and K ′.

The particle creation and annihilation operators are denoted
by a†

i (b†
i ) and ai(bi ) for A(B) sublattice. The energy off-

set μ between sites of A-B sublattices breaks inversion
symmetry. U denotes the NN interaction strength between
particles in different sublattices. In the following we explain
how the Haldane model can be associated with free dirac
fermion Lagrangian, and gives an exact mapping from the
Hubbard interaction to those Lorentz invariant four-fermion
interactions.

We focus on the NN hopping Hamiltonian H0. From the
dispersion relation for the noninteracting theory we obtain
six K points, and our choice of two inequivalent ones, which
we denote K±, these correspond to the K and K ′ points in
Fig. 1. Expanding around K±, the Hamiltonian H0 becomes
H0 =∫ d2 p

(2π )2 (ψ†
+(p)vF σ · pψ+(p)−vF ψ

†
−(p)(pxσx −

pyσy)ψ−(p)), where ψ±(p)= (a(K± + p), b(K± + p))ᵀ,
vF = 3td/2 (d is the lattice constant). And afterwards,
for convenience, we will denote a(K± + p) by a±, and
b(K± + p) by b±.

We encapsulate the Hamiltonian of point K and point K ′
inside a four-component spinor �ᵀ = (a+, b+, b−, a−). After
using the Legendre transformation we can obtain the La-
grangian of the system, L = �̄(iγ v∂v )�. where �̄ = �†γ 0,
v = 0, 1, 2 and we set vF = 1 for convenience. We use the ir-
reducible four-dimensional spinor representation, the gamma
matrices are γ μ = ( 0 σ̄ μ

σμ 0 ) and μ = 0, 1, 2, 3. There exist

one other matrix γ 5 = (1 0
0 −1), which anticommute with all

γ μ (see Appendix A). We now consider the NNN hopping
HT and the chemical potential term HS . The effective La-
grangian obtained by expanding HT + HS at the Dirac point
K, K ′ are Lm = ψ

†
±m±σzψ±. Where m± = μ ± 3

√
3t ′ sin φ.

For convenience, we set mo = 3
√

3t ′ sin φ, and it is actu-
ally the Haldane mass term [44,50,51]. Now, encapsulate it
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inside the four-component spinor, we can get the on-site and
Haldane mass terms respectively, μ�̄γ 3�, mo�̄γ 3γ 5� (see
Appendix C). Finally, we can get the free Dirac fermion
Lagrangian from the effective theory of Haldane model is
L = �̄(iγ v∂v + μγ 3 + moγ

3γ 5)�.
We now consider the Hubbard interaction HU in con-

tinue limit and ignore the interaction between K and K ′
[52,53]. We take into account the Hubbard interaction for
both K and K ′ point, i.e., HU ≈ Hint ≡ ∫

dr U (a†
+a+b†

+b+ +
a†

−a−b†
−b−). Following, we will use the van der Waerden

notation to map the Hint to the Lorentz invariant four-fermion
interactions, which contain NJL type and superconducting
type. Below we will demonstrate how to create this map-
ping. We note that � = (ψ+

σ1ψ−), and for convenience we define
χ = σ1ψ− and η = ψ+. Actually, η is the right-chiral Weyl
spinor, and the corresponding χ is the left-chiral spinor.
Thus, � is indeed a Dirac spinor containing two differ-
ent chiral Weyl spinors, i.e., � = (ηχ ). We introduce the
van der Waerden notation and since we are using the path
integral framework, the elements inside � are Grassman
numbers rather than operators. According to this nota-
tion [54–56], we have χ1 = b−, χ2 = a−, χa = εabχb, η̄1̇ =
a+, η̄2̇ = b+, η̄ȧ = ε ȧḃη̄ḃ, where ε12 = ε 1̇2̇ = 1 and ε12 =
ε1̇2̇ = −1. We use the notation χ · χ ≡ χaχa = χᵀ(−iσ2)χ
and χ̄ · χ̄ ≡ χ̄ȧχ̄

ȧ = χ†iσ2χ
†ᵀ, which are invariant under

Lorentz transformation. The Hamiltonian density of the Hub-
bard interaction can be expressed as 4a†

+a+b†
+b+ = (η · η)(η̄ ·

η̄). Similarly, 4a†
−a−b†

−b− = (χ̄ · χ̄ )(χ · χ ). We then intro-
duce a charge conjugate operator C = −iγ 2γ 0, which satisfies
C = −C−1 = −C†. So, the Hubbard interaction finally can
be mapped to the Lorentz invariant four-fermion interac-
tions: Hint = U

4 [(�ᵀC�)(�̄C�̄ᵀ)+(�̄�)2−(�̄iγ 5�)2] (see
Appendix C).

In the following, we discuss the properties of the model in
a more general sense, i.e., using the following Lagrangian:

L =
∑

i

�̄i(iγ
v∂v + μγ 3 + moγ

3γ 5)�i

+ G1

N

[( ∑
i

�̄i�i

)2

−
( ∑

i

�̄iiγ
5�i

)2]

+ G2

N

(∑
i

�
ᵀ
i C�i

) ∑
j

(
�̄ jC�̄

ᵀ
j

)
. (6)

Here, we have adopted the large-N assumption that all
fermion fields �i(i = 1, . . . , N ) form a fundamental mul-
tiplet of the O(N ) group. This model is similar to those
investigated in Refs. [38,46–49], but we consider the ef-
fect of the Haldane mass term, an aspect not addressed in
these references. Our assumption G1 = G2 = U

4 are derived
from Hubbard interaction rather than a direct phenomeno-
logical parameter, and all the order parameters representing
phases that we discuss subsequently originate from genuine
condensed matter systems. It is worth mentioning that in
this paper, we adopt a distinct gamma matrix representation.
However, as we will demonstrate below, the physical results
are independent of the representation chosen for the gamma
matrices. And in the main text, we will only consider the

parts that are directly related to the Hubbard interaction, i.e.,
G1 = G2 = G.

III. EFFECTIVE POTENTIAL

We use the Hubbard-Stratonovich (HS) transformation to
decouple these four-fermion interactions and solve for the
thermodynamic potential (TDP). We focus on the case with
Hubbard interaction, where we set G1 = G2 = G and G =
U/4. Introducing the auxiliary fields �,π, σ , we have

L = �̄i(iγ
v∂v + μγ 3 + moγ

3γ 5 − σ − iγ 5π )�i

− N

4G
(σ 2 + π2) − N

4G
�∗�−�∗

2
�

ᵀ
i C�i − �

2
�̄iC�̄

ᵀ
i .

(7)

Using the Euler-Lagrange equations of motion for these
auxiliary fields, which take the form σ (x) = −2 G

N (�̄i�i ),
π (x) = −2 G

N (�̄iiγ 5�i ) and �(x) = −2 G
N (�ᵀ

i C�i ). The
ground state expectation values 〈�(x)〉, 〈π (x)〉, 〈σ (x)〉 of the
composite bosonic fields are determined by the saddle point
equations,

δSeff

δσ (x)
= 0,

δSeff

δ�(x)
= 0,

δSeff

δπ (x)
= 0. (8)

Where

exp (iSeff (σ,�,�∗)) =
∫ N∏

l=1

[dψ̄l ][dψl ] exp

(
i
∫

L d3x

)
.

(9)

For simplicity, throughout the paper we suppose that
the above-mentioned ground state expectation values do
not depend on space-time coordinates, 〈0|σ (x)|0〉 ≡ σ ,
〈0|π (x)|0〉 ≡ π , 〈0|�(x)|0〉 ≡ �. So, in the leading order
of the large-N expansion, after integrating out the fermionic
field, we can derive the TDP,

� = σ 2 + π2

4G
+ �2

4G
+ i

2

∑
i

∫
d3 p

(2π )3
lnλi(p), (10)

where � is a real number, λi(p)(i = 1, 2, 3, 4) is the four
roots of the four-by-four matrix D(p) = −�2I + D+D− (see
Appendix B). Without loss of generality, for chiral symme-
try breaking, we can always choose a direction such that
π = 0, σ 
= 0. In powers of p0, we can write

∏
i λi(p) =

P+(p0)P−(p0). According to the general theorem of algebra,
the polynomial Pβ (p0)(β = +,−) can be presented in the
form

Pβ (p0) = (
p0 − pβ

01

)(
p0 − pβ

02

)(
p0 − pβ

03

)(
p0 − pβ

04

)
. (11)

Then, the TDP is

� = σ 2

4G
+ �2

4G
+ i

2

∑
β

∫
d3 p

(2π )3
lnPβ (p0). (12)
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Using the general formula
∫ ∞
−∞ d p0 ln (p0 − R) = iπ |R|.

Where R is a real quantity, it is possible to reduce
the TDP to the following: � ≡ �un(�, σ ) = σ 2

4G + �2

4G −
1
4

∑
β,i

∫ d2 p
(2π )2 (|pβ

0i|).

IV. RENORMALIZATION AND PHASE DIAGRAM

First, we will obtain a finite (i.e., renormalized) ex-
pression for the TDP at mo = 0 and μ = 0. That is, in
vacuum,

V un(�, σ ) = σ 2

4G
+ �2

4G
−

∫
d2 p

(2π )2
(
√

p2 + (� + σ )2

+
√

p2 + (� − σ )2). (13)

Next, let us regularize the effective potential by cutting
momenta; we suppose that |p| < �. (Note here that we take
a spherical coordinate truncation instead of the square trun-
cation in Ref. [46], so there is a difference in the sense of
constants). As a result, we have the following regularized
expression, which is finite at finite values of �:

V un(�, σ ) = (σ 2 + �2)

(
1

4G
− �

2π

)
− �3

3π

+ 1

6π
(|� + σ |3 + |� − σ |3). (14)

We assume that the bare coupling constants G depend
on the cutoff parameter of � in the way that in the limit
� → ∞ yields a finite expression in square brackets (14).
Obviously, in order to satisfy this requirement, it is sufficient
to require that 1

4G ≡ 1
4G(�) = �

2π
+ 1

2πg . where g is finite and
�-independent model parameter with dimensionality of in-
verse mass. Ignore there an infinite σ - and �-independent
constant −�3

3π
, one obtains the following renormalization,

i.e., finite expression for the effective potential: V ren(�, σ ) =
lim�→∞{V un(�, σ )|G(�) + �3

3π
}. It should also be mentioned

that the V ren is a renormalization group invariant quantity.
Finally, we get

V ren(�, σ ) = σ 2

2πg
+ �2

2πg
+ 1

6π
(|� + σ |3 + |� − σ |3).

(15)

The coordinates of the global minimum point (�0, σ0)
of the effective potential V ren(�, σ ) define the ground-state
expectation values of auxiliary fields σ (x) and �(x), namely,
σ0 = 〈0|σ (x)|0〉 and �0 = 〈0|�(x)|0〉. The quantities σ0 and
�0 are usually called order parameters, or gaps. Moreover, the
gap σ0 is equal to the dynamical mass of one-fermionic excita-
tions of the ground state. That is, its appearance is associated
with chiral symmetry breaking. In this work, originating from
genuine condensed matter systems, the specific pairing of σ

arises from the particle-hole pairing located at two inequiva-
lent Dirac points, leading to the charge density wave (CDW)
(see Appendix C). The emergence of �0 is associated with the
onset of the superconducting phase transition. It is worth not-
ing that although the regularization scheme we adopt and the
representation of the gamma matrix are different from those
in Ref. [46], the final resulting effective potential is indeed

precisely the same, so does the phase portrait. This demon-
strates that the effective potential is indeed a renormalization
group invariant quantity, and it confirms that the physics of
the system is independent of the representation chosen for the
gamma matrices.

We now study the influence of the Haldane mass term mo

and the chemical potential μ on the phase structure of the
model. We have (see Appendix B)

�ren(�, σ ) = σ 2

2πg
+ �2

2πg
+ 1

12π
(|� + mo +

√
μ2 + σ 2|3

+ |� + mo −
√

μ2 + σ 2|3 + |� − mo

+
√

μ2 + σ 2|3

+ |� − mo −
√

μ2 + σ 2|3). (16)

By solving the extreme points of the given TDP, we can
derive the system’s phase diagram, which is determined by
the interplay of three parameters (g, μ, mo). We find that in the
repulsive region (g > 0), no spontaneous symmetry breaking
occurs. Conversely, in the attractive region (g < 0), the sys-
tem undergoes spontaneous symmetry breaking, leading to
a transition from the CDW to superconductivity. Similar to
previous studies that have incorporated chemical potential ef-
fects in the context of attractive Hubbard interactions [57–59],
the chemical potential in our model also induces supercon-
ducting phase transitions. However, the region exhibiting
superconductivity in our model is quite peculiar, manifest-
ing only at the phase boundary. Furthermore, the chemical
potential μ plays a pivotal role in inducing transitions to
both the superconducting phase and the charge density wave
(CDW). Meanwhile, the Haldane mass term merely triggers
the system’s transition process from a symmetric phase to a
mixed phase. The corresponding phase diagrams are shown in
Fig. 2.

Next, we plotted the phase diagrams of the (g, mo)
and (g, μ) systems, where (μ = 0, mo = 0) correspond to
Figs. 2(b) and 2(c), and the equations of the corresponding
boundary curves of these two plots are g = − 1

|μ| and g =
− 1

2|mo| , respectively. We find that when μ = 0, under attrac-
tive interaction, tuning mo from negative to positive leads the
system to undergo phase transitions from symmetric phase
to mixed phase and back to symmetric phase. On the other
hand, at mo = 0, adjusting the chemical potential μ induces
the system to experience phase transitions from a symmetry
phase to a superconducting phase, followed by the emergence
of CDW (apart from the line at μ = 0, where the system is
in a mixed phase) and then back to symmetry. This suggests
that the chemical potential μ strongly induces the emergence
of CDW in the system, while the Haldane mass term merely
restricts the range of symmetry breaking. In the Appendix D,
we also draw the phase diagrams for (g, μ) and (g, mo) with mo

and μ not equal to 0, respectively. In order to compare with the
experiment, we also plotted the order parameters as a function
of magnetic flux and chemical potential, see Fig. 3, where
(a) and (b) is the thermal diagrams of σ0(g, μ) = √

1/g2 − μ2

and �0(g, μ) = −1/g+
√

1/g2−4μ2

2 , respectively (mo = 0 in this
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FIG. 2. The phase diagrams of the system under various fixed parameters. (a) The phase diagram in the (μ, mo) parameter space, where
the interaction strength g = −1. (b) The phase diagram in the (g, μ) parameter space, where the Haldane mass term mo = 0. (c) The phase
diagram in the (g, mo) parameter space, where the chemical potential μ = 0. In the diagrams, the white area denotes the system in a symmetry
(SYM) phase, the sky-blue area represents the system in a CDW phase, the red area indicates the system is in a superconductor (SC) phase,
and the blue area signifies the system is in a mixed (MIX) phase of CDW and superconductivity.

case). Figure 3(c) is the thermal diagrams of σ0(g, φ) =
�0(g, φ) = −1/g+

√
1/g2−4(3

√
3t sin φ)2

2 (where we have set t = 1
and μ = 0).

V. UNVEILING THE CORRELATION: INITIAL
TOPOLOGICAL STATES AND (g1, g2 )

INTERACTION-INDUCED PHASE TRANSITIONS

In this section, we undertake a comprehensive analysis of
the system’s phase diagram in the (g1, g2) parameter space,
we analyze the phase structure in the planes defined by the
parameters (g1, g2). Furthermore, we will investigate the re-
lationship between the initial topological state of the system
and the phase transitions induced by interactions. Remarkably,
this specific aspect remains unexplored in the existing litera-
ture. We recognize that the topology of the Haldane model
is determined by the Chern number: C = 1

2 (sgn(μ + mo) −
sgn(μ − mo)), which depends on the relative magnitude of the
chemical potential and the Haldane mass term. Specifically,
when μ > mo, C = 0 and the system resides in a topologically
trivial state; when μ < mo, C = 1 and the system becomes a
topological insulator. [Due to the symmetry of the thermody-
namic potential (16), i.e., it remains invariant when μ → −μ

and mo → −mo, we limit our discussion to the cases with
mo > 0, μ > 0, and C � 0.] We first discuss two extreme

scenarios: (1) mo 
= 0, μ = 0; (2) mo = 0, μ 
= 0. These cases
correspond to two distinct topological states (C = 1, 0). Using
Eq. (16), we derive the respective thermodynamic potentials
(TDP) as follows:

Vmo ≡ �ren(�, σ, mo)

= σ 2

2πg1
+ �2

2πg2
+ 1

12π
(|� + mo + σ |3

+ |� + mo − σ |3 + |� − mo + σ |3

+ |� − mo − σ |3),

Vμ ≡ �ren(�, σ,μ)

= σ 2

2πg1
+ �2

2πg2

+ 1

6π
(|� +

√
μ2 + σ 2|3 + |� −

√
μ2 + σ 2|3). (17)

Solving the system of equations,

{
∂Vi
∂�

= 0,

∂Vi
∂σ

= 0.
(i = mo, μ) , we

analytically determine the system’s order parameters and
the conditions for phase boundaries in these two extreme
scenarios. The corresponding phase diagrams are depicted
below.

FIG. 3. Thermal diagrams of order parameters vs interaction g and chemical potential μ or magnetic flux φ (Haldane mass mo), respectively.
[(a),(b)] Thermal diagrams of the order parameters σ0, �0 in the parameter space (g, μ), respectively. (c) Thermal diagrams of the order
parameters σ0, �0 in the parameter space (g, φ), where σ0 = �0.
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FIG. 4. The (g1, g2)-phase portrait of the model. The T point denotes the tricritical point, and the line labeled as L represents the phase
boundary in the third quadrant. (a) The (g1, g2)-phase portrait at (mo = 0.25, μ = 0). (b) The (g1, g2)-phase portrait at (mo = 0 and μ = 0.5).

Figure 4(a) presents the (g1, g2) phase diagram in the topo-
logical insulator state, where the analytically derived tricritical
point T is located at g1 = g2 = − 1

2|mo| . The superconducting

order parameter �0(mo) =
− 1

g2
+

√
1

g2
2
−4m2

o

2 and the CDW or-

der parameter σ0(mo) =
− 1

g1
+

√
1

g2
1
−4m2

o

2 . Figure 4(b) depicts the
(g1, g2) phase diagram in the topologically trivial state, with
the tricritical point T located at g1 = − 1

|μ| , g2 = − 1
2|μ| . The

superconducting order parameter �0(μ) =
− 1

g2
+

√
1

g2
2
−4μ2

2 and

the CDW order parameter σ0(μ) =
√

1
g2

1
− μ2.

Upon comparing Figs. 4(a) and 4(b), it is evident that the
expressions for the triple point T differ in these two extreme
scenarios. This observation leads us to pose a question: Is
the coordinate of the triple point T related to the topology of
the system? Specifically, when the initial system is in a topo-
logical state, is the coordinate of T topologically protected?
The answer is affirmative; the coordinate of the triple point T
is indeed topologically protected. We have demonstrated this
by numerically solving the phase diagram of the system when
both μ and mo are simultaneously nonzero, thereby proving
that the coordinate of the triple point T is topology-dependent.
The numerical phase diagram is presented in Figs. 5 and 6.

When the system initially resides in a topological insu-
lator state, i.e., μ < mo, the expression for the coordinates
of the triple point in the (g1, g2) plane remains constant
at (− 1

2|mo| , − 1
2|mo| ), irrespective of the value of the chem-

ical potential μ. Furthermore, the phase boundary L is a
straight line.

Conversely, when the system initially resides in a topo-
logically trivial state, i.e., μ > mo, the expression for the

TABLE I. Coordinates of the triple point T in the (g1, g2) plane
and geometry of the phase boundary L.

Chern Number C = 1 C = 0

Coordinates of T in
the (g1, g2) plane

(
− 1

2|mo| ,− 1
2|mo|

) (
−

√
1

μ2+2m2
o
, − 1

2|μ|

)
Geometry Of The
Phase Boundary L

The Line g2 = g1 Curve

coordinates of the triple point in the (g1, g2) plane becomes

(−
√

1
μ2+2m2

o
,− 1

2|μ| ), and the phase boundary L becomes a
curve.

Therefore, the topology of the system not only protects
the coordinates of the triple point T induced by interaction-
induced phase transitions but also preserves the geometric
shape of the phase boundary L. Our conclusions are summa-
rized in Table I.

VI. DISCUSSION AND CONCLUSIONS

We leverage the van der Waerden notation, widely used in
supersymmetric spinor calculations, to map the low-energy
effective Hamiltonian of the Haldane model with Hubbard
interaction onto a Lorentz-invariant Lagrangian featuring
four-fermion interactions. By solving this model, we un-
veil two distinct phases: superconducting phase and CDW
phase, both driven by the Hubbard interactions. Through
this mapping, we establish a connection between high-energy
and condensed matter physics, where bilinear quantities
and four-Fermi terms in the Lorentz-invariant Lagrangian
can be derived in real condensed matter systems, facilitat-
ing the emulation of high-energy phenomena in condensed
matter systems. For example, the term �̄iμγ 3�i originates
from the chemical potential added to sublattices A and
B in the honeycomb lattice, with ±μ, and �̄imoγ

3γ 5�i

(mo = 3
√

3t ′ sin φ) arises from next-nearest-neighbor inter-
actions and the magnetic flux. The interaction term: Hint =
U
4 [(�ᵀC�)(�̄C�̄ᵀ) + (�̄�)2 − (�̄iγ 5�)2] stems from the
Hubbard interaction. These mappings substantiate the phys-
ical significance of our Lagrangian and its parameters. Our
approach provides a methodology to simulate phenomena
of interest in high-energy physics within condensed mat-
ter systems, thereby fostering a two-way exchange of ideas
and techniques between these fields. Such cross fertilization
enriches both domains, offering insights into fundamen-
tal physical processes. Looking forward, there are several
promising avenues for future research. Investigating other
two-dimensional lattice models with topological properties
[60–70] and exploring their connection to high-energy physics
through similar mapping techniques would provide a broader
understanding of the interplay between topology and phase
transitions in various systems. Extending our approach to
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FIG. 5. The (g1, g2)-phase portrait for fixed chemical potential and Haldane mass term. Panels (a), (b), and (c) depict the phase diagrams
for the topological insulator state (C = 1), while panel (d) illustrates the phase diagram for the topologically trivial state. Each diagram is
generated by holding the magnitude of mo constant and progressively increasing the magnitude of μ. The coordinates of the tricritical point T,
computed numerically, are provided in the lower-left corner of each figure.

FIG. 6. The (g1, g2)-phase portrait for fixed chemical potential and Haldane mass term. Panels (a), (b), and (c) depict the phase diagrams
for the topological trivial state (C = 0), while panel (d) illustrates the phase diagram for the topologically insulator state. Each diagram is
generated by holding the magnitude of μ constant and progressively increasing the magnitude of mo.
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systems with more complex interactions such as long-range
couplings could shed light on the emergence of exotic phases
and help identify novel materials with unique properties for
potential applications in quantum information and nanotech-
nology.
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APPENDIX A: ALGEBRA OF THE γ MATRICES

Given that the two spinors in graphene, which are ex-
panded at two inequivalent Dirac points, correspond to
left- and right-handed fermions respectively, we adopt
the so-called Weyl representation for our gamma algebra
here [71,72],

γ μ =
(

0 σ̄ μ

σμ 0

)
, (A1)

where μ = 0, 1, 2, 3 and σ̄ μ = σμ when μ = 0 and σ̄ μ =
−σμ when μ = 1, 2, 3 (where σ0 is the unit 2×2 matrix I).
These gamma matrix have the properties {γ μ, γ ν} = 2gμν ,
where gμν = gμν = diag(1,−1,−1,−1). There exist another
matrix γ 5, which anticommute with all γ μ,

γ 5 = iγ 0γ 1γ 2γ 3 =
(−I 0

0 I

)
. (A2)

Trace of γ matrices can be evaluated as follows:

tr(1) = 4,

tr( any odd γ ′s) = 0,

tr(γ μγ ν ) = 4gμν,

tr(γ μγ νγ ργ σ ) = 4(gμνgρσ − gμρgνσ + gμσ gνρ ),

tr(γ 5) = 0,

tr(γ μγ νγ 5) = 0,

tr(γ μγ νγ ργ σ γ 5) = −4iεμνρσ . (A3)

Contractions of γ matrices with each other simplify to

γ μγμ = 4,

γ μγ νγμ = −2γ ν,

γ μγ νγ ργμ = 4gνρ,

γ μγ νγ ργ σ γμ = −2γ σ γ ργ ν. (A4)

APPENDIX B: PERFORMING THE PATH INTEGRAL
OVER THE FERMION

Let us show here some of the details of the path integral
over the fermions and which leads to the effective ther-
modynamic potential. Adopting the procedure described in
Refs. [46,47], we assume two anticommuting four component

Dirac spinor fields q(x) and q̄(x). Then, we will calculate the
following path integral:

I =
∫

DqDq̄ ei
∫

d3x[q̄Dq− �∗
2 qᵀCq− �

2 q̄Cq̄ᵀ], (B1)

where D = iγμ∂ν + μγ 3 + moγ
3γ 5 − σ − iπγ 5 and C =

−iγ 2γ 0 is the charge conjugation matrix. Using the Gaussian
path integral identities∫

Dpei
∫

d3x[− 1
2 pᵀAp+ηᵀ p] = (det A)1/2e− i

2

∫
d3xηᵀA−1η, (B2)

and∫
Dp̄ei

∫
d3x[− 1

2 p̄Ap̄ᵀ+η p̄ᵀ] = (det A)1/2e− i
2

∫
d3xη̄A−1η̄ᵀ

, (B3)

and by also considering A = �C, q̄D = ηᵀ, Dᵀq̄ᵀ = η, one
finds, after integrating over q and q̄, the result

I =
∫

DqDq̄ ei
∫

d3x[q̄Dq− �∗
2 qᵀCq− �

2 q̄Cq̄ᵀ]

= [det(�2C2 + DC−1DᵀC)]
1
2 , (B4)

where we have assumed � = �∗ in the last step. Using the
relations C−1γ ᵀ

μ C = −γμ (μ = 0, 1, 2, 3) and ∂ᵀ
μ = −∂μ, one

finds that

I = [det(−�2 + D+D−)]1/2 = (det B)
1
2 , (B5)

with D± = iγμ∂ν + moγ
3γ 5 − σ − iπγ 5 ± μγ 3. Finally, us-

ing the identity det B = exp(Tr ln B) one finds

ln I = 1

2
Tr(ln B) =

∫
d3x

∑
i

∫
d3 p

(2π )3
ln λi(p), (B6)

where λi(p) are the eigenvalues of matrix B(p),

B(p) = −�2 + (pμγ μ + moγ
3γ 5 − σ − iγ 5π + μγ 3)

× (pμγ μ + moγ
3γ 5 − σ − iγ 5π − μγ 3)

= p2 − �2 + m2
o + σ 2 + μ2

− 2σ /p − 2σmoγ
3γ 5 + 2mo/pγ

3γ 5

− 2μ/pγ 3 − 2moμγ 5, (B7)

and /p = pμγμ. We first consider the integration over the fre-
quency component p0. The eigenvalues λi of the matrix B(p)
can be expressed as a polynomial in terms of p0 as follows:

λi(p) = p0 − λ̃i(p), (B8)

where

λ̃i(p) =

⎧⎪⎨⎪⎩
±

√
p2 + (� + mo + β

√
μ2 + σ 2)2,

±
√

p2 + (� − mo − β
√

μ2 + σ 2)2,

(B9)

and β = ±. This implies that p0 has a total of eight roots.
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To integrate the frequency part of Eq. (B6), we employ the
formula

∫ ∞
−∞ d p0 ln (p0 − R) = iπ |R|, yielding

ln I = i
∫

d3x
∑

β

∫
d2p

(2π )2

× (|
√

p2 + (� + mo + β
√

μ2 + σ 2)2|

+ |
√

p2 + (� − mo − β
√

μ2 + σ 2)2|). (B10)

From this, we can derive the unrenormalized thermody-
namic potential (TDP) as

� ≡ �un(�, σ ) = σ 2

4G
+ �2

4G
− 1

4

∑
β,i

∫
d2p

(2π )2
|pβ

0i|,

(B11)

where pβ

0,1 =
√

p2 + (� + mo + β
√

μ2 + σ 2)2 and pβ

0,2 =√
p2 + (� − mo − β

√
μ2 + σ 2)2.

To renormalize the TDP, we use the following formula:

�un(�, σ,μ, mo) = σ 2

4G
+ �2

4G
−

∫
d2p

(2π )2
(
√

p2 + (� + σ )2 +
√

p2 + (� − σ )2)

− 1

4

∑
β,i

∫
d2p

(2π )2

(∣∣pβ

0i

∣∣ − 4(
√

p2 + (� + σ )2 +
√

p2 + (� − σ )2)
)

=V un(�, σ ) − 1

4

∑
β,i

∫
d2p

(2π )2

(∣∣pβ

0i

∣∣ − 4(
√

p2 + (� + σ )2 +
√

p2 + (� − σ )2)
)
. (B12)

The second term on the right-hand side of the above equa-
tion is finite, so the renormalization of � depends only on the
renormalization of the first term. As we have derived in the
main text, the renormalized potential is given by V ren(�, σ ) =
σ 2

2πg + �2

2πg + 1
6π

(|� + σ |3 + |� − σ |3).
Finally, we can express the renormalized TDP as

�ren(�, σ ) = σ 2

2πg1
+ �2

2πg2
+ 1

12π
(|� + mo +

√
μ2 + σ 2|3

+ |� + mo −
√

μ2 + σ 2|3

+ |� − mo +
√

μ2 + σ 2|3

+ |� − mo −
√

μ2 + σ 2|3). (B13)

APPENDIX C: USING VAN DER WAERDEN NOTATION
TO CONSTRUCT LORENTZ INVARIANTS

In this Appendix we show some of the details for the
derivation of bilinear and four fermion terms. In the main text,
we let � = (ηχ ). where η = (a+

b+), χ = (b−
a−) have the properties

of right-chiral and left-chiral Weyl spinor, respectively. So,
according to the van der Waerden notation, we use lower-
undotted indices to denote the component of the left-chiral
Weyl spinor, and use upper-dotted indices with a bar symbol
over spinors to denote the components of right-chiral spinors.
And we use the Levi-Civita symbol εi j, εi j to raise or lower
both dotted and undotted indices [54–56],

χ1 = b−, χ2 = a−, χa = εabχb,

η̄1̇ = a+, η̄2̇ = b+, η̄ȧ = ε ȧḃη̄ḃ,

χ̄ȧ = χ†
a , χ̄ ȧ = χa†

, η̄ȧ = η†
a, η̄ȧ = ηa†,

ε12 = −ε12 = 1. (C1)

Especially, for the right-chiral spinor η, we use η̄ to denote
that we will employ the dot/undot indices, and we use η† to

signify that we will utilize the true components of the Her-
mitian conjugate of η, i.e., η

†
1 = a†

+ and η̄1̇ = ε1̇2̇η̄
2̇ = −b+.

First, let us deal with the effective chemical potential, the
effective chemical potential is

Hμ = μA(a†
+a+ + a†

−a−) + μB(b†
+b+ + b†

−b−). (C2)

Using the van der Waerden notation, the first term can be
written as

μAa†
+a+ = μA

2

(
η1σ 3

11̇η̄
1̇ + η1σ 0

11̇η̄
1̇ + η2σ 3

22̇η̄
2̇ + η2σ 0

22̇η̄
2̇
)

= μA

2
(ησ 3η̄ + ησ 0η̄). (C3)

Similarly, the remaining three can be written as

μAa†
−a− = μA

2
(χ̄ σ̄ 3χ + χ̄ σ̄ 0χ ),

μBb†
+b+ = −μB

2
(ησ 3η̄ − ησ 0η̄),

μBb†
−b− = −μB

2
(χ̄ σ̄ 3χ − χ̄ σ̄ 0χ ).

(C4)

Hence, we obtain

Hμ = μA + μB

2
(ησ 0η̄ + χ̄ σ̄ 0χ )

+ μA − μB

2
(ησ 3η̄ + χ̄ σ̄ 3χ ). (C5)

We note that the components of the dirac spinors actually
is � = (η̄

ȧ

χa
), and �̄ = (χ̄ȧ, η

a). So we have ησμη̄ + χ̄ σ̄ μχ =
�̄γ μ�. Final, the effective chemical potential can be written
as

Hμ = μA + μB

2
�̄γ 0� + μA − μB

2
�̄γ 3�. (C6)
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FIG. 7. Phase diagrams in the (g, μ) and (g, mo) planes for nonzero mo and μ. (a) and (b) depict the (g, mo) phase diagrams for μ = 0.1
and μ = 0.5, respectively. (c) illustrates the (g, μ) phase diagram for mo = 0.5.

Second, we deal with the Haldane mass term, ψ
†
±m±σzψ±,

the sum of these two terms can be written as

Ho = ψ
†
+moσzψ+ + ψ

†
−(−mo)σzψ−

= mo
(
ηaσ 3

aḃη̄
ḃ − χ̄ȧσ̄

3ȧbχb
)

= mo�̄γ 3γ 5�. (C7)

Finally, we will derive the four-fermion interactions, which
are Lorentz invariant. In the main text, we obtain

Hint ≈
∫

dr U (a†
+a+b†

+b+ + a†
−a−b†

−b−)

=
∫

dr
U

4
[(η · η)(η̄ · η̄) + (χ̄ · χ̄ )(χ · χ )]. (C8)

We note �ᵀC� = (ηᵀ, χᵀ)(−iσ 2 0
0 iσ 2 )(

η

χ ) = η̄ · η̄ + χ · χ

and �̄� = (χ̄ȧ, η
a)(η̄

ȧ

χa
) = χ̄ · η̄ + η · χ . Therefore, we can

get

(η · η)(η̄ · η̄) + (χ̄ · χ̄ )(χ · χ )

= (η̄ · η̄ + χ · χ )(χ̄ · χ̄ + η · η)

− η̄ · η̄χ̄ · χ̄ − χ · χη · η

= (�ᵀC�)(�̄C�̄ᵀ) + 2(η · χ )2 + 2(η̄ · χ̄ )2

= (�ᵀC�)(�̄C�̄ᵀ) + (η · χ + η̄ · χ̄ )2

+ (η · χ − η̄ · χ̄ )2

= (�ᵀC�)(�̄C�̄ᵀ) + (�̄�)2 − (�̄iγ 5�)2. (C9)

By the way, if we consider the full effective Hub-
bard interactions: HF = ∫

dr U (a†
+a+b†

+b+ + a†
−a−b†

−b− +
a†

+a+b†
−b− + a†

−a−b†
+b+), we can map this into

H = (�̄γ 0�)2 − (�̄γ 3�)2. (C10)

Finally, we present the expressions for the charge density
wave (CDW) and superconducting (SC) order parameters as
derived in the main text,

〈σ 〉 = −2
G

N
〈�̄�〉 = −2

G

N
〈a†

+b− + a†
−b+ + b†

+a− + b†
−a+〉,

〈�〉 = −2
G

N
〈�ᵀC�〉 = −4

G

N
〈a+b+ + a−b−〉. (C11)

APPENDIX D: (g, μ), (g, mo) PHASE DIAGRAMS
WHEN mo �= 0 AND μ �= 0

This Appendix illustrates the phase diagrams of the system
in the (g, μ) and (g, mo) planes, as illustrated in Fig. 7, given
nonzero values of mo and μ, respectively. The (g, mo) phase
diagram reveals that even for infinitesimally small nonzero
chemical potential μ, the system transitions from the initial
MIX phase (as described in the main text) to the CDW phase.
This observation underscores the pivotal role of μ in driving
the system towards the CDW phase, while concurrently sup-
pressing the superconducting phase to a certain extent.

APPENDIX E: REALIZATION PROPOSAL
USING ULTRACOLD ATOMS

In a realistic experiment, we note that the realization
of the Haldane-Hubbard model is already attainable in
cold atoms, and it is possible now to study the quan-
tum phase transitions discussed here. To be specific, we
can use a polarized ultracold Fermi gas of 40K atoms,
here we choose the hyperfine state |F, mF 〉 = |9/2,−7/2〉
by applying certain magnetic fields [73,74], and tunable
p-wave interactions have been well implemented utilizing
this species of atom in experiments [75–77]. We load the
atoms into the honeycomb optical lattice at a wavelength
of λ = 826 nm with potential V (x, y) = −Vx1 sin2(kLx) −
Vx2 cos2(kLx) − Vy cos2(kLy) − 2

√
Vx2Vy cos(kx ) cos(ky). Here

Vx1 = 5.0ER,Vx2 = 0.46ER are the lattice depths of two
collinear beams along x to create a standing wave, Vy = 2.2ER

is the lattice depth of the perpendicular beam along y to create
a spacing honeycomb lattice, and kL = 2π/λ. The recoil en-
ergy of such an optical lattice is ER = h2/(2mλ2) ≈ 7.26 kHz.
The frequency detuning between the x1 and x2 beams should
be set as π , whereas the same frequency for x2 and y beams,
to control the energy offset μ between A-B sublattices. And
the phase difference of beams along x and y can control the
imaginary part of NNN hopping. Using a Wannier function
calculation [78], we extract the amplitude of the NN hopping
t ≈ 530 Hz, and the NNN hopping t ′ ≈ 15 Hz.

Using the technique of p-wave Feshbach resonance, we
can obtain Hubbard interaction U as mentioned. The quantum
phase transitions here are signaled by the several quasipar-
ticle gaps, which would have dramatic effects on dynamic
structure factor that can be measured by Bragg spectroscopy
[79–81]. We expect that the charge density wave gap σ and
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superconductor gap � can be distinguished by different char-
acteristics by spectroscopy measurement.

APPENDIX F: HIGHER-ORDER CORRECTIONS
TO THE EFFECTIVE POTENTIAL

To illustrate the efficacy of the mean-field approximation
within the large-N framework, we will calculate higher-order
corrections to the effective potential. This approach follows
the methodology established in [82], which have meticulously
explored quantum fluctuations under similar conditions. We
aim to prove that quantum fluctuations at zero temperature
do not invalidate the saddle-point solutions derived from the
mean-field calculations. Specifically, we need to show that the
symmetry phase (� = 0, σ = 0) is not disrupted by quantum
fluctuations. For clarity, we will discuss this using the CDW
phase as an example.

The Lagrangian we consider is given by

L = �̄i(iγ
v∂v + μγ 3 + moγ

3γ 5 − σ )�i − N

4G
σ 2. (F1)

Upon integrating out the fermionic fields, we obtain the
effective action

Seff[σ ] =
∫

d3x

(
− N

4G
σ 2

)
− iN ln Det[D[σ ]] (F2)

where Det[D[σ ]] = [σ 2 + μ2 − m2
o − p2]2 − 4m2

o p2, and
p2 = p2

0 − p2
1 − p2

2.
Correspondingly, the effective potential is

�eff(σ ) = 1

4G
σ 2 + i

∫
d3 p

(2π )3

× ln
(
[σ 2 + μ2 − m2

o − p2]2 − 4m2
o p2

)
. (F3)

Our objective is to demonstrate that the symmetry phase
is robust against fluctuations. As μ and mo serve primarily as
parameters to control the phase boundaries, for simplicity, we
set them to zero and discuss in Euclidean space. The effective
potential then becomes

�eff(σ ) = 1

4G
σ 2 − 2

∫
d2k

(2π )2

∫
dω

2π
ln(ω2 + k2 + σ 2).

(F4)

Now let us think about fluctuations. The fluctuations are
represented as σ → σ + η. Integrating out these fluctuations

η, we obtain the modified effective action

S̃eff[σ ] = Seff[σ ] − Tr lnA[σ ], (F5)

where A[σ ] is defined as

A[σ ] =
(

δ2S
δσδσ ∗

δ2S
δσ 2

δ2S
δσ ∗2

δ2S
δσ ∗δσ

)
[σ ]. (F6)

The corresponding fluctuation-considered effective poten-
tial is given by

�̃eff(σ ) = �eff(σ ) + � f (σ ), (F7)

where �eff(σ ) is provided by Eq. (F3), and � f (σ ) is expressed
as

� f (σ ) = −
∫

d2k

(2π )2

∫
dω

2π

[
ln

(
1

4G
− α(ω, k)

)
+ ln

(
1

4G
− α(ω, k) + 2σ 2β(ω, k)

)]
, (F8)

with α(ω, k, σ ) and β(ω, k, σ ) = − ∂α
∂σ 2 defined as

α(ω, k, σ ) =
∫

d2q

(2π )2

∫
dθ

2π

× 2

[|q| + iθ ][|q + k| − i(θ + ω)] + σ 2
. (F9)

It is observed that

�′
f = |σ |V (|σ |), (F10)

with V (0) being a finite constant, indicating that σ = 0 is
a solution to the gap equation �̃′

eff(σ ) = 0 with fluctuations
considered. The second derivative of the effective potential
�̃′′

eff(σ ) is given by

�̃′′
eff(σ ) = �′′

eff(σ ) + �′′
f (σ ), (F11)

Notably, in our calculations for convenience, we set h̄ = 1.

However, in reality,
�′′

f

�′′
eff

∝ h̄2. Thus, �′′
f (σ = 0) is signifi-

cantly smaller than �′′
eff(σ = 0), implying that �̃′′

eff(σ = 0)
and �′′

eff(σ = 0) have the same sign. Therefore, even consid-
ering fluctuations, σ = 0 is indeed a minimum. Similarly, the
charge density wave (CDW) solution σ 
= 0 in the mean-field
approach is not nullified by quantum fluctuations, indicating
that our zero-temperature phase diagram derived from the
mean-field is robust against fluctuations.
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