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Two-dimensional electron gas (2DEG) bilayers provide suitable platforms for electronic phases and transitions
that are fundamental to both theoretical physics and practical applications in device technology. In bilayer
systems, the additional pseudospin, representing the layer degree of freedom, enables the emergence of interlayer
coherence, which is a direct consequence of the interlayer Coulomb interaction. This study presents a com-
prehensive Hartree-Fock (HF) mean-field investigation of the interlayer coherence in 2D bilayers, uncovering
ground-state behaviors and temperature-dependent phase transitions that are distinct from single-layer 2DEG.
This interlayer coherence signals a spontaneous breaking of the U(1) symmetry in layer pseudospin. We explore
the zero-temperature phase diagrams as a function of the electron density and interlayer separation within the HF
formalism. We also calculate the critical temperature (Tc) of the interlayer coherence onset by self-consistently
solving the HF gaplike equation. We contrast this interlayer coherent phase in electron-electron (e-e) bilayers
with the closely related excitonic superfluid phase in electron-hole (e-h) bilayers. Although both e-e and e-h
bilayers spontaneously break the pseudospin U(1) symmetry, e-h bilayers produce Bardeen-Cooper-Schrieffer–
Bose-Einstein condensates crossover intrinsic to the excitons acting as effective bosons or Cooper pairs, whereas
the symmetry-broken phase in e-e bilayers is akin to the XY or easy-plane pseudospin ferromagnetism. Using
the same system parameters and a similar theoretical framework, we find that Tc of the interlayer coherent phase
in e-e bilayers is about one-third of that in exciton condensates, suggesting a weaker interlayer coherence in
e-e bilayers. In addition, we examine the effect of a weak interlayer tunneling on the interlayer coherence order
parameter, drawing parallels with the influence of an effective in-plane magnetic field on the XY pseudospin
ferromagnetism. Our findings provide a comparative theoretical framework that bridges the gap between the
interlayer coherence physics in e-e and e-h bilayers, contributing to a unified understanding of phase transitions
in low-dimensional electron-hole systems and establishing in particular the same universality class for interlayer
phase coherence in both e-e and e-h bilayers.
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I. INTRODUCTION

During the last 50 years, the fabrication and exploration of
two-dimensional electron gas (2DEG) systems has been cru-
cial in expanding our understanding of quantum mechanical
phenomena in condensed matter physics [1,2]. These systems,
fundamental to the functionality of contemporary electronic
devices such as Si MOSFETs and GaAs HEMTs, exhibit
rich many-body quantum phases under various conditions, for
example, at low electron densities or in a strong magnetic field
where Coulomb interactions dominate. The most famous such
interacting phase is the fractional quantum Hall effect [2], but
many other correlation-induced phases, both in finite and zero
magnetic fields, have been predicted and sometimes observed,
such as the Wigner crystal [3], the Bloch ferromagnet [4],
spin/valley/charge density waves, etc.

The Bardeen-Cooper-Schrieffer (BCS) theory [5,6] de-
scribes the pairing of two electrons into a Cooper pair as a
result of effective attraction mediated by phonons. An anal-
ogous pairing mechanism, induced directly by the Coulomb
interaction, arises between an electron and a hole, giving rise
to the excitonic state in semimetals or semiconductors [7–11].
Even though the original concept of an exciton [12–14] de-
scribes the bound state of an electron and a hole, which

are generated optically in the conduction and valence bands
of homogeneous semiconductors, this kind of exciton is an
excited state. Excitons formed in e-h bilayers are, however,
the ground state of the bilayer system. We only consider such
electron-hole (e-h) bilayer excitons and the corresponding
excitonic ground states in this work. The nature of these
excitonic states is determined by the pairing strength. In the
weak pairing limit, excitons are loosely bound with radii
larger than the average distance between electrons and holes.
In this regime, the original semimetallic or semiconducting
phase is unstable for an arbitrarily weak e-h attraction, akin
to how the normal Fermi surface of a metal is susceptible to
the Cooper-pair formation under any weak e-e attraction in
the BCS theory. In the strong pairing limit, where excitons
are tightly bound with smaller radii, excitons behave like a
weakly repulsive dilute Bose gas, forming the Bose-Einstein
condensates (BEC) at low temperatures. In either limit, as
long as the electrons and holes remain spatially separated,
excitons condense into a ground state which is a BCS or BEC
superfluid. Such a superfluid is not a regular superconductor
since excitons are electrically neutral, thus, this ground state
is sometimes called the “excitonic insulator.” It also differs
from a regular insulator since this excitonic ground state con-
stitutes a neutral superfluid. We use the terminology “exciton
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condensates” for the T = 0 strongly bound BEC or weakly
bound BCS superfluid of 2D e-h bilayer excitons.

Advances in quantum well bilayers, such as InAs-GaSb
[15] and GaAs-AlGaAs [16–18] heterostructures, have en-
abled the spatial separation of electrons and holes, and
therefore the creation of more stable and controllable e-h
bilayers. These developments have facilitated the observations
of stable excitonic states in equilibrium [15,19–26]. In these
quantum well bilayers, particularly, exciton condensation has
been predicted and observed in a strong magnetic field per-
pendicular to the 2D layers [27–33]. The most stable exciton
condensates manifest at a total Landau-level filling factor
of ν = 1, where each layer’s lowest Landau level is half-
filled. The emergence of these exciton condensates has been
further reinforced by recent breakthroughs in 2D material
fabrications [34,35], including double-layer graphene [36,37],
double-bilayer graphene, and double-layer transition metal
dichalcogenides. Graphene double layers [37], in particular,
have demonstrated the potential for a BCS–BEC crossover
[15,38–49], a continuum between BCS-type weak coupling
and BEC-type strong coupling regimes, in condensed matter
systems.

In contrast to quantum Hall bilayers, exciton condensates
in e-h bilayers without an external magnetic field, hereafter
simply referred to as e-h bilayers, have remained elusive
[15] until the recent observation of enhanced interlayer tun-
neling anomaly in double-bilayer graphene heterostructures
[50], signaling the first indication of such condensates. Con-
siderable obstacles in experimental realization of e-h bilayer
exciton condensates have been the difficulties in eliminat-
ing impurities and in approaching the BEC limit. The latter
involves electrostatically doping carriers to a lower density,
minimizing interlayer tunneling and simultaneously reducing
the distance between layers. Regardless of the specific pairing
mechanism, these bilayer systems, with or without an external
magnetic field, doped with electrons or holes, share a common
core: the spontaneous interlayer coherence associated with an
excitonic superfluid arising from Coulomb interactions.

The relative stability of exciton BEC in quantum Hall
bilayers at ν = 1 can be attributed to the unique character-
istics of Landau levels. Electrons in Landau levels bypass the
cost of kinetic energies, thus enhancing interaction-dominated
symmetry-broken phases. Furthermore, the quantum Hall bi-
layer is distinguished by the exact particle-hole symmetry
inherent in the Landau level around the half-filling. At ν =
1, despite both layers being electron-doped and half-filling
the lowest Landau level, the exact particle-hole symmetry
transforms electrons into holes, and vice versa: quantum Hall
bilayers at ν = 1 can be equivalently considered as e-e, h-h,
or e-h bilayers, and thus equivalently describable as an XY
pseudospin ferromagnet in the e-e or h-h picture [51–59] or as
a BEC superfluid in the e-h picture [29,33]. However, the ab-
sence of exact particle-hole symmetry, due to differing energy
dispersions of electrons and holes, in e-h bilayers prevents
a direct mapping between BEC and pseudospin ferromag-
netism. This naturally raises an essential question: How do
the nature and characteristics of interlayer coherence differ
between e-h and e-e bilayers at zero magnetic field? Are they
the same or different in the absence of particle-hole symme-
try? In this paper, we address this question in depth using

the Hartree-Fock (HF) mean-field theory, which has also been
used extensively to study the quantum Hall bilayer exciton
condensation phenomena.

Although the comparison between BCS superconductiv-
ity and exciton condensates has a long history, there has
been no in-depth discussion comparing the pairings in e-h
and e-e bilayers. Closely related, e-e and e-h bilayers both
host spontaneous interlayer coherence as a result of repul-
sive Coulomb interactions between electrons (or attraction
between electrons and holes). In spite of the same Coulombic
nature, the interlayer coherence in these two systems exhibits
distinct properties. In e-h bilayers, the formation of exciton
condensates features a gap opening, while the interlayer co-
herence in e-e bilayers is more akin to an XY pseudospin
ferromagnetism [60]. As previously discussed in depth in
Refs. [61,62], the layer index introduces a pseudospin, of
which the z component maps to the classical layer index. The
pseudospin-ordered state underscores the quantum mechan-
ical subtleties of pseudospin-orientation-dependent energies:
the XY easy-plane pseudospin ferromagnetic state is energet-
ically favorable due to the absence of Hartree contribution. A
profound distinction arises between the symmetry properties
of spin and pseudospin. Whereas conventional spin system ex-
hibits SU(2) symmetry, ensuring energy invariance under any
rotation of spin orientation, the symmetry of the pseudospin-
ordered state in bilayer systems is reduced to U(1) [63,64]
which only guarantees energy invariance under rotations in
the plane perpendicular to the effective magnetic field. This
reduction in symmetry from SU(2) to U(1) reflects the under-
lying order imposed by the difference between the intralayer
and interlayer Coulomb interactions, which is unique to the
bilayer systems. This pseudospin U(1) symmetry captures the
essence of interlayer coherence, akin to the phase coherence
in BCS superconductors.

In this work we focus on the zero-field e-e bilayers,
which have been much less studied than the corresponding
well-studied e-h bilayers although both manifest similar U(1)
symmetry breaking associated with spontaneous interlayer
coherence, which physically implies the system developing
interaction-induced interlayer tunneling in spite of the ab-
sence of any single-particle interlayer tunneling. Specifically,
we consider a bilayer structure, composed of two 2DEG layers
confined in the xy plane and separated by a distance d in the
z direction. Such a bilayer structure introduces new physics
[65]: in addition to 2D carrier density in each layer, control-
ling the kinetic energy and the intralayer interaction strength,
the layer separation provides a length and interaction scale for
interlayer correlations. We study the interlayer coherence in
such an e-e bilayer using the HF theory and, for completeness,
we compare its finite-temperature properties with e-h bilayers
using the same system parameters. We pedagogically start in
Sec. II by introducing four distinct ground-state Ansätze: the
spin and pseudospin unpolarized phase S0, the spin-polarized
but pseudospin unpolarized phase S1, the spin-polarized and
interlayer coherent phase with pseudospin in the xy plane
S2, and the spin-polarized and interlayer coherent phase with
pseudospin in z direction S3. We focus exclusively on the
spin-polarized case in interlayer coherent phases, primarily
because spin plays no role in the XY pseudospin ferromag-
netic state if the density is lower than the critical value of the
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ferromagnetic instability (rs > 2) and the spin-orbit coupling
is absent: the system is effectively spinless. Therefore, our
findings regarding the interlayer coherence remain equally
applicable to spinless itinerant electrons, with the only differ-
ence being the absence of spin polarization in each layer. The
fact that a 2DEG has an exchange-driven spin-polarization
transition at low densty (for rs ∼ 2) [4] is well known, and
our spin-polarization transition results are for the sake of
completeness only.

In Sec. III, we study the interplay of kinetic, Hartree,
and exchange energies, by mapping out the zero-temperature
phase diagrams as a function of electron density and interlayer
separation. We partition the discussion into two subsections
to consider scenarios of equal layer densities (Sec. III B) and
unequal layer densities (Sec. III C), both conditions being
experimentally adjustable through the application of dual gate
voltages. Interestingly, within the S1 and S2 regimes in the
HF energy landscape, our findings suggest a ground state
that favors a pseudospin partially polarized phase: both pseu-
dospin up and pseudospin down are, unequally, occupied.
This contrasts with a fully polarized phase where pseudospin
alignment would be exclusively in the x direction [actually
any direction in the xy plane because of the U(1) symmetry].

In Sec. IV, we extend our study to finite temperatures,
focusing on bilayers with equal layer densities. We provide
an in-depth investigation of the critical temperature Tc for the
interlayer coherent phase (S2) in Sec. IV A, drawing compar-
isons to the exciton condensation in e-h bilayers with the same
system parameters in Sec. IV B. The trends of Tc, as a function
of density and interlayer separation, of e-e bilayers qualita-
tively deviate from that of e-h bilayers. The magnitude of Tc,
on the other hand, in e-e bilayers is approximately one-third of
that in e-h bilayers, suggesting a weaker interlayer coherence
in e-e bilayers. Both the XY ferromagnetism and the exci-
ton condensates undergo, in principle, a finite-temperature
Berezinskii-Kosterlitz-Thouless (BKT) transition, and belong
to the same universality class of phase transitions.

Section V investigates the influence of a weak interlayer
tunneling on the interlayer coherence order parameter. The
presence of any finite interlayer single-particle tunneling ex-
plicitly breaks the U(1) symmetry and pins the easy-plane
pseudospin ferromagnetism along the x direction. This anal-
ysis provides insights into the phase coherence and stability
under perturbations that mimic the influence of an external
magnetic field to physical spins.

Finally, we conclude with a discussion in Sec. VI. We
comment on possible experimental signatures of the interlayer
coherence in e-e bilayers and limitations of the HF mean-field
theory.

In addition, we provide in Appendix A some useful
summations and integrals that are used in our theory, in
Appendix B the HF energy plots of the four competing
ground states S0, S1, S2, S3, and in Appendix C the Tc of the
spin-polarized phases in single 2DEG and three-dimensional
electron gas (3DEG) systems for completeness.

II. GROUND-STATE ANSATZ

We start from the characterization of four distinct ground
states that emerge in the study of interlayer coherence in e-e

S0
S1

S2 S3

top

bottom

top

bottom

top

bottom

top

bottom

FIG. 1. Schematically shows the four competing ground states
we consider: the spin- and pseudospin-unpolarized phase S0, the
spin-polarized but pseudospin-unpolarized phase S1, the spin-
polarized interlayer coherent (pseudospin-polarized) phase with the
pseudospin in the xy plane S2 (the XY order) and with the pseudospin
in the z direction S3 (the Ising order). In the S3 phase, all electrons
spontaneously move to one layer creating a charge order. The inter-
layer coherence is indicated by the wiggle. (The Sξ phase mentioned
in the main text consists of both S2 and S3 phases.)

(or h-h) bilayers. We designate these states with concise labels
for ease of reference throughout our discussion:

(i) S0 phase: the spin- and pseudospin-unpolarized state.
(ii) S1 phase: the spin-polarized but pseudospin-

unpolarized state.
(iii) Sξ phase: the spin-polarized interlayer coherent

(pseudospin-polarized) states; the pseudospin polarization in
these states can be oriented differently:

(a) S2 phase: the pseudospin is oriented within the xy
plane (the XY order).

(b) S3 phase: the pseudospin is oriented in the z direc-
tion (the Ising order).
S2 and S3 phases both break the U(1) layer symmetry and

correspond to SP-SY and SP-MO phases in Refs. [61,62],
respectively. Figure 1 schematically illustrates these four com-
peting ground states.

III. ZERO-TEMPERATURE PHASE DIAGRAMS

In this section, we provide zero-temperature phase dia-
grams of e-e bilayers. We first show the HF Hamiltonian and
the formula of HF total energy, followed by explicit HF energy
expressions of S0, S1, S2, and S3 phases in Sec. III A. We then
present phase diagrams with respect to electron density (or
dimensionless interelectron distance rs) and interlayer separa-
tion d for equal layer densities [61,62] in Sec. III B and for
unequal layer densities in Sec. III C.

The Hamiltonian of a 2D bilayer consists of the kinetic part
Ĥ0 and the Coulomb interacting part V̂:

Ĥ = Ĥ0 + V̂ . (1)

Represented in the second quantization form,

Ĥ0 =
∑
k,l,σ

ε0,l (k)c†
lσkclσk, (2)
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where l = t, b label top and bottom layers and σ =↑,↓ label
spins. For free-electron gases, ε0,l (k) = h̄2k2/2m∗

l , and m∗
l is

the effective mass. For simplicity, we assume m∗
t = m∗

b = m∗
throughout the rest of the paper. It is straightforward to gen-
eralize the case to unequal effective masses m∗

t �= m∗
b , which

will only quantitatively change the results we present in this
paper. The interacting part is

V̂ = 1

2A

∑
k,k′,q

l,l ′,σ,σ ′

V ll ′
q c†

lσ,k+qc†
l ′σ ′,k′−qcl ′σ ′,k′clσ,k, (3)

where A = At = Ab is the system area. The 2D Coulomb
potentials are different for the electrons in the same layer and

in different layers,

V ll ′
q = V S

q δll ′ + V D
q (1 − δll ′ ), (4)

where

V S
q = 2πe2

εq
, V D

q = 2πe2

εq
e−qd , (5)

d is the layer separation, and ε is the averaged dielectric
constant of the surrounding medium. We note that the inter-
action is spin independent [i.e., SU(2) symmetric], but layer
dependent [i.e., U(1) symmetric in pseudospin layer index].

The HF mean-field form of the interacting part V̂ is

V̂HF =
∑
k,l,σ

[(
VH,l + V σσ

x,l (k)
)
c†

lσkclσk + V σ σ̄
x,l (k)c†

lσkclσ̄k
]− ∑

k,σ,σ ′
	σσ ′

k c†
tσkcbσ ′k − H.c. (6)

We have explicitly separated V̂HF into Hartree potentials VH,l , intralayer exchange potentials between the same spin V σσ
x,l (k),

intralayer exchange potentials between opposite spins V σ σ̄
x,l (k), and interlayer exchange potentials 	σσ ′

k .
In the matrix form with spinor basis (ct↑k ct↓k cb↑k cb↓k )T , the HF Hamiltonian ĤHF(k) = Ĥ0(k) + V̂HF(k) is given by

ĤHF(k) =

⎛
⎜⎜⎜⎜⎜⎝

ε0(k) + VH,t + V ↑↑
x,t (k) V ↑↓

x,t (k) −	
↑↑
k −	

↑↓
k

V ↓↑
x,t (k) ε0(k) + VH,t + V ↓↓

x,t (k) −	
↓↑
k −	

↓↓
k

−	
∗↑↑
k −	

∗↓↑
k ε0(k) + VH,b + V ↑↑

x,b (k) V ↑↓
x,b (k)

−	
∗↑↓
k −	

∗↓↓
k V ↓↑

x,b (k) ε0(k) + VH,b + V ↓↓
x,b (k)

⎞
⎟⎟⎟⎟⎟⎠. (7)

The electrostatic Hartree potentials are

VH,l = 2πe2d

ε
nl , (8)

where nl is the carrier density in layer l ,

nl = 1

A

∑
k,σ

ρσσ
ll (k), (9)

and ρ(k) is the density matrix with matrix elements

ρσσ ′
ll ′ (k) = 〈c†

l ′σ ′kclσk〉. (10)

The expectation is taken in the ground state. The intralayer
exchange potentials are

V σσ ′
x,l (k) = − 1

A

∑
k′

V S
k−k′ρ

σσ ′
ll (k′), (11)

and the interlayer exchange terms are

	σσ ′
k = 1

A

∑
k′

V D
k−k′ρ

σσ ′
tb (k′). (12)

The HF total energy is the sum of all contributions,

Etot =
∑
k,l,σ

(
ε0(k) + 1

2
VH,l

)
ρσσ

ll (k)

+ 1

2

∑
k,l,σ,σ ′

V σσ ′
x,l (k)ρσ ′σ

ll (k)

− 1

2

∑
k,σ,σ ′

[
	σσ ′

k ρσ ′σ
bt (k) + c.c.

]
. (13)

The first (noninteracting single-particle) term includes the
kinetic energy and electrostatic Hartree energy, the second
and the last (interacting) terms are intralayer and interlayer
exchange energies, respectively, arising from the Coulomb
coupling.

In subsequent analyses, we use the effective Bohr radius a∗
and the effective Rydberg Ry∗, defined as

a∗ = ε h̄2

m∗e2
, Ry∗ = e2

2a∗ε
= h̄2

2m∗(a∗)2
, (14)

as fundamental units of length and energy, respectively. In
the semiconductor double quantum well structure GaAs-
AlGaAs, ε = 12.5, m∗ = 0.07me [66], a∗ = 98.3 Å and
Ry∗ ≈ 5.5 meV. In a 2DEG, the average distance between
electrons is quantified by the dimensionless length scale rs,
which is related to the density n by

rsa
∗ = 1√

πn
. (15)

Our calculations are presented in terms of both dimension-
less quantities (rs, d̃ ), where d̃ = d/a∗, and experimentally
measurable parameters (n, d ) using GaAs quantum well
conduction band parameters. Some minor modifications are
necessary for graphene, where the kinetic energy term is lin-
early dispersing, but our results remain qualitatively valid.

A. HF energy

Based on Eqs. (8)–(13), we explicitly show HF energies
of the four competing ground states S0, S1, S2, and S3 in
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this subsection. An interlayer coherent state emerges from a
superposition of electron states residing in the top and bottom
layers. The eigenstates of this pseudospin polarization can be
represented as a linear combination:

|ξ 〉 = α|t〉 + β|b〉, |ξ̄〉 = β|t〉 − α|b〉, (16)

where α and β can be taken as real numbers without loss
of generality, and α2 + β2 = 1 satisfying the normaliza-
tion condition. The symmetric state |ξ 〉 and antisymmetric
state |ξ̄〉 correspond to the lower and higher eigenenergies,
respectively.

1. HF energy of the spin- and pseudospin-unpolarized state S0

The wave function of the spin- and pseudospin-unpolarized
state S0 can be written as

|S0〉 =
∏

k�kF

c†
ξ↑kc†

ξ↓kc†
ξ̄↑k

c†
ξ̄↓k

|0〉

=
∏

k�kF

c†
t↑kc†

t↓kc†
b↑kc†

b↓k|0〉, (17)

where |0〉 is the vacuum state. There are four equal Fermi
surfaces with Fermi momentum kF = √

πn. The densities and
HF potentials of S0 state are

nt = nb = n

2
,

ρσσ ′
ll ′ (k) = δll ′δσσ ′ fk,

VH,t = VH,b = πe2dn

ε
,

V σσ ′
x,l (k) = −δσσ ′

A

∑
k′�kF

2πe2

ε|k − k′| ,

	σσ ′
k = 0, (18)

where fk is the Fermi-Dirac distribution.
The kinetic energy Ekin, Hartree energy EH, exchange en-

ergy of the intralayer interaction E intra
x , and the interlayer

interaction E inter
x are, respectively,

Ekin = 4
∑
k�kF

h̄2k2

2m∗ = π h̄2A

4m∗ n2,

EH = 0,

E intra
x = − 2

A

∑
k,k′�kF

2πe2

ε|k − k′| = − 4e2A

3
√

πε
n3/2,

E inter
x = 0. (19)

We have used the analytical integrations over momenta k and
k′ summarized in Appendix A. The HF energy ES0

tot is the sum
of these contributions in Eq. (19). The HF energy per electron
ε

S0
tot = ES0

tot/nA, expressed in terms of n and rs, is

ε
S0
tot (n) = π h̄2

4m∗ n − 4e2

3
√

πε
n1/2,

ε
S0
tot (rs) =

[
1

r2
s

− 8
√

2

3πrs

]
Ry∗. (20)

rsa∗ = rs,t a∗ = rs,ba∗ = √
2/πn, here rs,t and rs,b are inter-

electron distance in the top and bottom layers, respectively.

2. HF energy of the spin-polarized but
pseudospin-unpolarized state S1

The wave function of the spin-polarized but pseudospin-
unpolarized state S1 is

|S1〉 =
∏

k�kF

c†
ξ↑kc†

ξ̄↑k
|0〉

=
∏

k�kF

c†
b↑kc†

t↑k|0〉. (21)

There are two equal Fermi surfaces with Fermi momentum
kF = √

2πn. The densities and HF potentials of S1 state are

nt = nb = n

2
,

ρσσ ′
ll ′ (k) = δll ′δσσ ′δ↑σ fk,

VH,t = VH,b = πe2dn

ε
,

V σσ ′
x,l (k) = −δσσ ′δ↑σ

A

∑
k′�kF

2πe2

ε|k − k′| ,

	σσ ′
k = 0. (22)

We have assumed the majority spin to be σ =↑. The energies
are

Ekin = 2
∑
k�kF

h̄2k2

2m∗ = π h̄2A

2m∗ n2,

EH = 0,

E intra
x = − 1

A

∑
k,k′�kF

2πe2

ε|k − k′| = −4
√

2e2A

3
√

πε
n3/2,

E inter
x = 0. (23)

The HF energy per electron

ε
S1
tot (n) = π h̄2

2m∗ n − 4
√

2e2

3
√

πε
n1/2,

ε
S1
tot (rs) =

[
2

r2
s

− 16

3πrs

]
Ry∗, (24)

and rsa∗ = rs,t a∗ = rs,ba∗ = √
2/πn.

3. HF energy of the spin-polarized interlayer coherent state Sξ

The wave function of the spin-polarized interlayer coherent
(pseudospin-polarized) state Sξ is

|Sξ 〉 =
∏

k�kF

c†
ξ↑k|0〉

=
∏

k�kF

(αc†
t↑k + βc†

b↑k )|0〉. (25)

The pseudospin is in a direction with polar angle θ =
2 arctan(α/β ) with a freedom of any azimuthal angle φ even
though we specifically choose α, β to be real. There is only
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one Fermi surface with Fermi momentum kF = √
4πn for

the pseudospin fully polarized state. The densities and HF
potentials of Sξ state are

nt = nα2, nb = nβ2,

ρσσ ′
ll ′ (k) = δσσ ′δ↑σ [δll ′δltα

2 + δll ′δlbβ
2 + (1 − δll ′ )αβ] fk,

VH,l = 2πe2dn

ε
[δll ′δltα

2 + δll ′δlbβ
2],

V σσ ′
x,l (k) = −[δll ′δltα

2 + δll ′δlbβ
2]

δσσ ′δ↑σ

A

∑
k′�kF

2πe2

ε|k′ − k| ,

	σσ ′
k = αβ

δσσ ′δ↑σ

A

∑
k′�kF

2πe2

ε|k′ − k|e−|k′−k|d . (26)

The energies are

Ekin =
∑
k�kF

h̄2k2

2m∗ = π h̄2A

m∗ n2,

EH = 1

2

∑
k�kF

2πe2dn

ε

(α2 − β2)2

2

= πe2d

2ε
n2A(α2 − β2)2,

E intra
x = − 1

2A

∑
k,k′�kF

2πe2

ε|k′ − k| (α4 + β4)

= − 8e2A

3
√

πε
n3/2(α4 + β4),

E inter
x = − 1

2A

∑
k,k′�kF

2πe2

ε|k − k′|2α2β2e−|k−k′ |d

= −2e2Aα2β2

√
πε

n3/2J (kF d ), (27)

where J (kF d ) is the triple integral

J (kF d ) =
∫ 1

0
dx x
∫ 1

0
dy y
∫ 2π

0
dθ

e−kF d
√

x2+y2−2xy cos θ√
x2 + y2 − 2xy cos θ

,

(28)

which should be evaluated numerically. The HF energy per
electron is

ε
Sξ

tot (n) = π h̄2

m∗ n + πe2d

2ε
n(α2 − β2)2

− 8e2

3
√

πε
n1/2

(
α4 + β4 + 3

4
J (kF d )α2β2

)
. (29)

Represented in dimensionless length using rs,l a∗ = 1/
√

πnl

and

π (nt + nb) = πn

=
(

1

r2
s,t

+ 1

r2
s,b

)
1

(a∗)2

≡ 1

(r̃sa∗)2
, (30)

the HF energy per electron is

ε
Sξ

tot (r̃s) =
[

2

r̃2
s

+ d

a∗r̃2
s

(α2 − β2)2

− 16

3π r̃s

(
α4 + β4 + 3

4
J (kF d )α2β2

)]
Ry∗. (31)

Note that r̃s ≡ r̃s(rs,t , rs,b).
In particular, the S3 phase, the spin-polarized interlayer co-

herent state with pseudospin polarized in the z direction (polar
angle θ = 0), is the case that all electrons are in one layer but
not the other, i.e., α = 1, β = 0, r̃s = rs,t , and rs,b → ∞. The
HF energy of S3 phase is

ε
S3
tot (n) = π h̄2

m∗ n + πe2

2ε
nd − 8e2

3
√

πε
n1/2,

ε
S3
tot (r̃s) =

[
2

r̃2
s

+ d

a∗r̃2
s

− 16

3π r̃s

]
Ry∗. (32)

The S2 phase, the spin-polarized interlayer coherent state
with pseudospin polarized in the xy plane (polar angle θ =
π/2), is the case of equal layer densities, i.e., α2 = β2 = 1

2 ,
rs = rs,t = rs,b = √

2r̃s. The HF energy per electron of S2

phase is

ε
S2
tot (n) = π h̄2

m∗ n − 4e2

3
√

πε
n1/2

(
1 + 3

8
J (kF d )

)
,

ε
S2
tot (rs) =

[
4

r2
s

− 8
√

2

3πrs

(
1 + 3

8
J (kF d )

)]
Ry∗,

ε
S2
tot (r̃s) =

[
2

r̃2
s

− 8

3π r̃s

(
1 + 3

8
J (kF d )

)]
Ry∗. (33)

The triple integral J (kF d ) defined in Eq. (28) has the prop-
erties that

0 � J (kF d ) � 8
3 ,

J (0) = 8
3 ,

lim
kF d�1

J (kF d ) → 0. (34)

As expected, for d = 0,

lim
d→0

ε
S2
tot (n) → π h̄2

m∗ n − 8e2

3
√

πε
n1/2,

lim
d→0

ε
S2
tot (rs) →

[
4

r2
s

− 16
√

2

3πrs

]
Ry∗, (35)

which recovers the energy of single 2DEG with one Fermi
surface.

For 0 < kF d � 1, J (kF d ) can be expanded in Taylor series

J (kF d ) = J (0) − π

2
kF d + 1

2
(kF d )2

∫ 1

0
dx x
∫ 1

0
dy y
∫ 2π

0
dθ

×
√

x2 + y2 − 2xy cos θ + · · · . (36)
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 (
cm

)
n

−
2

d̃

FIG. 2. The zero-temperature phase diagram with respect to rs

and d̃ , where d̃ = d/a∗. Dimensionless rs and d̃ are also converted
to density n in the unit of cm−2 and distance d in the unit of Å using
GaAs quantum well parameters. S0, S1, and S2 phases all have equal
layer densities, i.e., rsa∗ = rst a∗ = rsba∗ = √

2/πn.

B. Phase diagram for equal layer densities

The S2 phase with XY easy-plane pseudospin ordering
always has a lower energy than the Ising-ordered S3 phase
(with all electrons in one layer with pseudospin polarized
along z direction) because the density imbalance between the
layers in S3 pays an extra Hartree energy. This preference is
also inferred from Eqs. (32) and (33) by taking their energy
difference:

ε
S2
tot (n) − ε

S3
tot (n)

= − 4e2

3
√

πε
n1/2

(
3

8
J (kF d ) − 1

)
− πe2

2ε
nd

= −e2kF

4πε

[
J (kF d ) − 8

3
+ π

2
kF d

]
. (37)

The function J (z) monotonically decreases with z and inter-
sects with the line −πz/2 + 8

3 at z = 0, the slope of which
equals the derivative of J (z) at z = 0,

dJ (z)

dz

∣∣∣∣
z=0

= −π

2
. (38)

It follows that

ε
S2
tot − ε

S3
tot < 0 ∀ kF d > 0. (39)

This energetic hierarchy is shown by the computed HF ener-
gies as a function of layer separation d in Appendix B.

The zero-temperature phase diagram, determined by εG
tot =

min{εS0
tot, ε

S1
tot, ε

S2
tot}, with respect to rs and d̃ is shown in Fig. 2.

The interlayer coherent phase S2 manifests stability at larger
rs (lower electron density) and smaller interlayer distance d̃ .
Note that there is always a critical rs for the transition to
the interlayer coherent phase, which is stable only above a
specific d-dependent rs value, with the critical rs increasing
with increasing d .

C. Phase diagram for unequal layer densities

When the two layers have unequal densities, the spin polar-
ization of each layer individually depends on the layer density:
if the layer density is larger (smaller) than the critical value
corresponding to rs ∼ 2, the spin-unpolarized (spin-polarized)
phase is favored. The phase that the lower-density layer is
spin polarized and the higher-density layer is spin unpolarized
has been identified in a previous theoretical study [67] as the
three-component phase. In the rest of the paper, we assume
the density in each layer is lower than this critical value of
the ferromagnetic instability (rs ∼ 2) and therefore will only
consider the spin-polarized case because spin plays no role in
the interlayer coherence physics. For unequal layer densities,
we compare HF energies of the interlayer coherent phase Sξ in
Eq. (29) with the interlayer incoherent phase S′

1. The S′
1 phase

is the generalized case of S1 phase (defined in Sec. III A 2) but
with two unequal Fermi surfaces. It is straightforward to write
the HF energy per electron of S′

1 phase, represented in total
density n and layer polarization m = (nt − nb)/n:

ε
S′

1
tot (n, m) = π h̄2

2m∗ n(1 + m2) + πe2d

2ε
nm2

− 2
√

2e2

3
√

πε
n1/2[(1 + m)3/2 + (1 − m)3/2]. (40)

For a direct comparison, we represent the HF energy of Sξ

phase in Eq. (29) using n and m as well:

ε
Sξ

tot (n, m) = π h̄2

m∗ n + πe2d

2ε
nm2

− 4e2

3
√

πε
n1/2

[
1 + m2 + 3

8
J (kF d )(1 − m2)

]
.

(41)

For layer-unpolarized case m = 0, S′
1 phase is equivalent

to the pseudospin-unpolarized phase S1, ε
S′

1
tot (n, m = 0) =

ε
S1
tot (n). For the totally layer-polarized case m = 1, S′

1 phase
is equivalent to Sξ , there is only one Fermi surface and no
interlayer coherence because one layer is completely empty.

In Figs. 3(a)–3(d) we plot the energy difference ε
S′

1
tot − ε

Sξ

tot
as a function of layer polarization m and interlayer separation
d̃ for several fixed total densities. The corresponding r̃s (de-
fined by the total density r̃sa∗ = √

1/πn) and r̄s (defined by
the average layer density r̄sa∗ = √

2/πn) are labeled in each
subplot. Similarly, Figs. 3(e)–3(h) plot ε

S′
1

tot − ε
Sξ

tot as a function
of r̃s and m for several fixed-layer separations. As m in-
creases, the phase boundary shifts to larger d̃ [Figs. 3(a)–3(d)]
and smaller r̃s [Figs. 3(e)–3(h)], indicating that the interlayer
coherent phase Sξ is more preferred than the interlayer inco-
herent phase S′

1 for larger m. We conclude from Fig. 3 that the
interlayer coherent phase Sξ is preferred for all m ∈ [0, 1).

For the two interlayer incoherent phases S1 and S′
1, their

energy difference depends on layer polarization m by

ε
S′

1
tot − ε

S1
tot = π h̄2

2m∗ nm2 + πe2d

2ε
nm2 − 2

√
2e2

3
√

πε

× n1/2[(1 + m)3/2 + (1 − m)3/2 − 2]. (42)
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FIG. 3. Energy difference ε
S′

1
tot − ε

Sξ

tot . (a)–(d) As a function of layer polarization m and d̃ for fixed total densities n = 2 × 1010 cm−2,
1010 cm−2, 5 × 109 cm−2, and 2 × 109 cm−2. The corresponding r̃s (defined by the total density r̃sa∗ = √

1/πn) and r̄s (defined by the
averaged layer density r̄sa∗ = √

2/πn) are labeled in each subplot. (e)–(h) As a function of r̃s and m for fixed d̃ = 0.1, 1, 2, and 5. The dotted
lines trace the phase boundaries. As m increases, the phase boundary tilts to larger d̃ and smaller r̃s, indicating that the interlayer coherent
phase Sξ is more preferred for larger m.

Expand in m,

ε
S′

1
tot − ε

S1
tot

Ry∗ = πa∗m2√n

[
(a∗ + d )

√
n −

√
2

π3/2

]
+ O(m4),

(43)

where ε
S′

1
tot − ε

S1
tot < 0 only for small n and small d .

In Fig. 4, we show phase diagrams as a function of m and d̃
for fixed total densities, chosen to be the same as in Figs. 3(a)–
3(d). The phase diagrams are determined by the lowest energy
min{εS1

tot, ε
S′

1
tot, ε

Sξ

tot}. In these phase diagrams, the S′
1 phase is

never the ground state, even for larger d̃ where S′
1 is lower

in energy than Sξ as in Figs. 3(a)–3(d). This is because the

critical d̃ for ε
S′

1
tot − ε

S1
tot < 0 is smaller than that of the phase

boundary in Figs. 3(a)–3(d).

For m → 1, the phase boundary in Fig. 4 can be understood
analytically by examining the energy difference between the
interlayer coherent phase Sξ and incoherent phase S1:

ε
Sξ

tot − ε
S1
tot

Ry∗ = πna∗[a∗ + d (α2 − β2)2]

+ n1/2a∗

π1/2

[
4α2β2

(
8

3
− J (kF d )

)
− 8(2 − √

2)

3

]

= πna∗[a∗ + dm2] + n1/2a∗

π1/2

×
[

(1 − m2)

(
8

3
− J (kF d )

)
− 8(2 − √

2)

3

]
.

(44)

(a) (b) (c) (d)

S1Sξ S1Sξ S1Sξ

S1

Sξ

4.2

6.0

2e+10 cm

r̃s =
r̄s =

n = −2

6.0

8.4

1e+10 cm

r̃s =
r̄s =

n = −2

8.4

12

5e+9 cm

r̃s =
r̄s =

n = −2

13.4

19

2e+9 cm

r̃s =
r̄s =
n = −2

d̃ d̃ d̃ d̃

FIG. 4. Phase diagrams as a function of layer polarization m and d̃ for fixed total densities n = 2 × 1010 cm−2, 1010 cm−2, 5 × 109 cm−2,

and 2 × 109 cm−2. The phase diagrams are determined by finding the lowest energy min{εS1
tot, ε

S′
1

tot, ε
Sξ

tot}. The corresponding r̃s (defined by the
total density r̃sa∗ = √

1/πn) and r̄s (defined by the averaged layer density r̄sa∗ = √
2/πn) are labeled in each subplot. The black dashed lines

plot the critical distance d̃c in Eq. (53), converging precisely to the phase transition boundary for m → 1 and for n → nmax as estimated in
Eq. (52).
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When m → 1,

lim
m→1

ε
Sξ

tot − ε
S1
tot

Ry∗ = πna∗(a∗ + d ) − n1/2a∗

π1/2

8(2 − √
2)

3
, (45)

setting it to zero, we find that

d̃c

∣∣
m=1 ≡ dc

a∗

∣∣∣∣
m=1

= 8(2 − √
2)

3

1

π3/2n1/2a∗ − 1, (46)

which only depends on total density n. The d̃c in Eq. (46) is
shown in black dashed lines in Fig. 4, they agree well with the
phase boundary when m → 1.

In fact, if we take a close look at the second line of Eq. (44),
setting it to zero gives

π3/2n1/2(a∗ + dcm2)

+
[

(1 − m2)

(
8

3
− J (kF dc)

)
− 8(2 − √

2)

3

]
= 0. (47)

The first term π3/2n1/2(a∗ + dcm2) is positive; the only way
that a dc exists is that the second term is negative, which
requires

J (kF dc) >
8

3
− 8(2 − √

2)

3(1 − m2)
. (48)

Given that J (kF dc) ∈ [0, 8
3 ] and it decays rapidly with kF dc,

i.e., with n1/2dc, the competition between the first and the
second terms in Eq. (47) in solving for a dc, if it exists,
ultimately requires kF dc to be small for large n, and validates
the approximation

J (kF d ) ≈ 8

3
− π

2
kF d, (49)

which are the first two terms in the expansion of Eq. (36).
Substituting Eq. (49) to (47), we have

d̃c|n→nmax = 8(2 − √
2)

3

1

π3/2n1/2a∗ − 1. (50)

The m dependence of dc vanishes for large densities, and this
critical distance dc equals the one for m → 1 case in Eq. (46).
Taking m → 0, Eq. (47) becomes

J (kF dc) = π3/2n1/2a∗ + 8(
√

2 − 1)

3
. (51)

Because J (kF dc) � 8
3 , we could find that the maximum den-

sity for a dc to exist is

nmax ∼ 8.8 × 1010 cm−2. (52)

From the discussion above, we find that the critical distance
d̃c at these two limits, m → 1 and n → nmax, turns out to be
the same value

d̃c|m=1 = d̃c|n→nmax

= 8(2 − √
2)

3

1

π3/2n1/2a∗ − 1. (53)

This explains the agreement between the phase boundary and
the black dashed lines in Fig. 4, when either the layer density
imbalance is large, as in Figs. 4(a)–4(d) at m → 1, or the total
density is close to nmax, as in Fig. 4(a).

In Fig. 4, the phase transition boundary d̃c decreases with
layer polarization m, revealing that a layer density imbalance
suppresses the interlayer coherent phase Sξ . This suppression
becomes weaker as total density n increases. When n ap-
proaches nmax, d̃c becomes almost independent of m. As long
as n remains below nmax, a d̃c exists and the interlayer coher-
ent phase survives even when the layer is almost completely
polarized.

The HF energy of the interlayer coherent phase Sξ mono-
tonically increases with layer polarization m. As seen by
taking the derivative of Eq. (41) with respect to m,

dε
Sξ

tot

dm
= e2n1/2m

ε
√

π

(
π3/2n1/2d + J (kF d ) − 8

3

)
, (54)

the term in the brackets is always positive for d > 0, which is
clear from the Taylor expansion in Eq. (36). Therefore,

dε
Sξ

tot

dm
� 0, ∀ n (55)

ε
Sξ

tot monotonically increases with layer polarization m for any
density n. Among interlayer coherent phases Sξ , the layer fully
polarized phase S3 always has the highest energy and the layer
equally occupied phase S2 has the lowest energy. If carriers in
the two layers are allowed to transfer, the system is always
stabilized to the pseudospin XY-ordered phase S2.

The layer polarization m can be interpreted as the pseu-
dospin response to an effective pseudospin magnetic field
applied in the z direction, which can be experimentally tuned
by gate voltages. The bilayer system is trivially pseudospin
polarized in the z direction by virtue of this effective mag-
netic field, which is zero for m = 0 and fully polarized in z
direction for m = 1. Figure 4 illustrates that even when there
is a strong effective pseudospin magnetic field polarizing the
pseudospin completely in the z direction, the exchange-driven
XY pseudospin ferromagnetic transition is little affected.

In Fig. 5, we fix rs,b and evaluate the phase diagram as
a function of (rs,t , d̃ ). Note that for rs,t � 2 in Fig. 5, the top
layer is spin unpolarized and the bottom layer is spin polarized
(because rs,b > 2 in all presented figures) in the ground state
[67]. In m → 1 limit, nt → n, nb → 0, and rs,t � rs,b,

d̃c|m=1 = 8(2 − √
2)

3

rs,t

π
− 1 (56)

which is linear in rs,t . In m → −1 limit, nt → 0, nb → n, and
rs,b � rs,t ,

d̃c|m=−1 = 8(2 − √
2)

3

rs,b

π
− 1 (57)

which is independent of rs,t . In Fig. 5, we plot d̃c in Eq. (46) in
black dashed lines and it agrees well with the phase boundary
when the density imbalance is large: linear in rs,t for rs,t �
rs,b and independent of rs,t for rs,b � rs,t .

To provide a comprehensive picture of the phase diagram,
we present 3D plots of the critical distance d̃c with respect
to (rs,t , rs,b) in Figs. 6(a)–6(c) and with respect to (r̄s, m)
in Figs. 6(d)–6(f). Particularly, we mark the line cuts of the
phase boundary, i.e., d̃c versus rs,t at rs,b = 10, 15, and 30
in Figs. 6(a)–6(c), which can be directly compared with the
phase transition boundary in Figs. 5(e)–6(g). Similarly, we
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FIG. 5. Phase diagrams with respect to (rs,t , d̃) for fixed rs,b ∈ [3, 50], corresponding to nb ∼∈ [4 × 1010, 1.4 × 108] cm−2 in GaAs
quantum wells. The black dashed lines plot the critical separation d̃c in Eq. (53), which agrees well with the phase boundary when either
the layer density imbalance is large or the total density is large: d̃c is linear in rs,t for rs,t � rs,b and independent of rs,t for rs,b � rs,t . Note that
for rs,t � 2, the top layer is spin unpolarized and the bottom layer is spin polarized (because rs,b > 2 in all presented figures) in the ground
state [67].

show the line cuts of the phase boundary d̃c versus m at r̄s =
8.4, 11.9, and 26.7 in Figs. 6(d)–6(f), as a direct comparison
with the phase transition boundary in Figs. 4(b)–6(d).

To clearly trace the evolution of d̃c with respect to tuning
parameters m and r̄s, we show in Fig. 7(a) d̃c versus m for six
values of r̄s ∈ [3.8, 30], in Fig. 7(b) d̃c versus r̄s for six values
of m ∈ [0, 1]. Figure 8 complements the trend of d̃c with four
additional plots that echo the configuration of Fig. 7(a), but
with a refined set of r̄s ∈ [4, 30]. In scenarios of high electron
density, corresponding to low r̄s as depicted in Fig. 8(a), we
observe that d̃c exhibits a negligible dependence on m. This
aligns with our previous analysis in Eq. (53). The inset of

Fig. 8(a) illustrates this trend that as n → nmax, d̃c is inde-
pendent of m and approaches zero.

D. Partially polarized pseudospin state

Previous subsections have been dedicated to examining
interlayer coherent phases when the pseudospin is fully po-
larized, in the direction with polar angle θ = 2 arctan(α/β ).
However, the assumption of complete pseudospin polarization
may not always hold, distinct from the sharp paramagnetic to
ferromagnetic phase transition in the Bloch transition. This

(a) (b) (c)

(d) (e) (f)

d̃c

0

5

10

d̃c
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 cm

r̄s =
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r̄s =
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r̄s =
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FIG. 6. 3D plots of the critical layer separation d̃c. (a)–(c) With respect to (rs,t , rs,b). The orange line cuts trace the phase boundary d̃c

versus rs,t at rs,b = 10, 15, and 30. These line cuts can be directly compared with the phase boundary in Figs. 5(e)–5(g). (d)–(f) With respect
to (r̄s, m), where r̄s is defined by the average layer density using r̄sa∗ = √

2/πn. The orange line cuts trace the phase boundary d̃c versus m at
r̄s = 8.4, 11.9, and 26.7. These line cuts can be directly compared with the phase boundary in Figs. 4(b)–4(d).
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subsection extends our investigation to the HF energies asso-
ciated with states of partial pseudospin polarization.

The HF Hamiltonian of the spin-polarized (majority spin
σ =↑) interlayer coherent state is

ĤSξ

HF(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0(k) + VH,t + V ↑↑
x,t (k) −	

↑↑
k 0 0

−(	↑↑
k )∗ ε0(k) + VH,b + V ↑↑

x,b (k) 0 0

0 0 ε0(k) + VH,t 0

0 0 0 ε0(k) + VH,b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

and its four eigenvalues are

ε1
k = ε0(k) + VH,t ,

ε2
k = ε0(k) + VH,b,

ε±
k = 1

2 (εtk + εbk ) ±
√

ξ 2
k + |	k|2, (59)

where

εtk = ε0(k) + VH,t + V ↑↑
x,t (k),

εbk = ε0(k) + VH,b + V ↑↑
x,b (k),

ξk = 1
2 (εtk − εbk ), (60)

and the HF potentials are in Eq. (26). The quasiparticle energy
spectra are illustrated for two representative parameter sets:
rs = 8, d̃ = 1 in Fig. 9(a) and rs = 4, d̃ = 2.8 in Fig. 9(b),
corresponding to the two points marked by stars in the overall
phase diagram in Fig. 9(c). In Figs. 9(a) and 9(b), the Fermi
momentum is denoted by the vertical dotted line and the
corresponding Fermi energy is denoted by the horizontal one.
Notably, in Fig. 9(b), both quasiparticle bands ε± are pop-
ulated, which signals a deviation from the pseudospin fully
polarized state, and we denote this phase as S′

2.
To crudely estimate the stability of this pseudospin

partially polarized state, we compare the energy at zero mo-
mentum for the upper band ε+

0 , with the energy at the Fermi
momentum for the lower band ε−

kF
, and show their difference

across the (rs, d̃) parameter space in Fig. 9(c). The red area
corresponds to ε+

0 > ε−
kF

, i.e., stable S2 phase [as in Fig. 9(a)],

(a) (b)

3.8r̄s =

9.0r̄s =

14.3r̄s =

19.5r̄s =
24.8r̄s = 30r̄s =

d̃ cd̃ c

FIG. 7. (a) d̃c versus layer polarization m for six values of r̄s ∈
[3.8, 30]. (b) d̃c versus r̄s for six values of m ∈ [0, 1]. r̄s is defined by
the average layer density using r̄sa∗ = √

2/πn.

and the blue area corresponds to ε+
0 < ε−

kF
, which we refer to

as S′
2 phase [the interlayer coherent phase characterized by

two populated Fermi surfaces, as in Fig. 9(b)]. Compared to
the previously obtained phase diagram in Fig. 2, the S′

2 phase
in Fig. 9(c) suggests that the interlayer coherent phase may
persist over a broader range in the phase diagram than initially
postulated when only fully polarized states were considered.
But, the most accurate phase diagram should be determined
by self-consistent HF calculations which will be discussed in
Sec. IV. To quantify the stability of this partially polarized
state, we extend our exploration of the HF energy to the S′

2
phase, in which both quasiparticle states |−, k〉 and |+, k〉 are
occupied. The generalization of the HF energy of the S2 phase
in Eqs. (27), (29), and (31) to the two-Fermi-surface case is
systematic and monotonic, as detailed below.

The kinetic, Hartree, and exchange energies of the S′
2 state,

expressed in both Fermi momenta and densities, are

Ekin = h̄2

2m∗
A

8π

(
k4

F− + k4
F+

)
= h̄2

2m∗
A

8π
16π2(n2

− + n2
+),

EH = e2dA

32επ
(α2 − β2)2

(
k2

F− − k2
F+

)2
= e2dA

32επ
(α2 − β2)216π2(n− − n+)2,

E intra
x = − e2A

επ2

[
1

3
(α4 + β4)

(
k3

F− + k3
F+

)

+ 1

4
α2β2

[
k3

F+J

(
0,

kF−

kF+

)
+ k3

F−J

(
0,

kF+

kF−

])]
,

E inter
x = −e2Aα2β2

4π2ε

{
k3

F−

[
J (kF−d, 1) − J

(
kF−d,

kF+

kF−

)]

+ k3
F+

[
J (kF+d, 1) − J

(
kF+d,

kF−

kF+

)]}
, (61)

where kF− and kF+ are Fermi momenta, n− and n+ are electron
densities of quasiparticle bands |−〉 and |+〉, respectively. The
HF energy per electron is

ε
S′

2
tot = 1

nA

(
Ekin + EH + E intra

x + E inter
x

)
. (62)
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FIG. 8. Same as Fig. 7(a) but with more fixed values of r̄s ∈ [4, 30]. The inset in (a) shows two smaller r̄s. At large density, corresponding
to small r̄s, d̃c exhibits a negligible dependence on m, as expected from our previous analysis in Eq. (53). As n → nmax in Eq. (52), d̃c is
independent of m and approaches zero. The black dashed lines in the inset of (a) plot the d̃c using Eq. (53).

Particularly, when n− = n+ = n/2, kF− = kF+ , the pseudospin
is unpolarized and the energies recover the ones of the S1 state
in Eq. (23).

In Fig. 10, we show ε
S′

2
tot as a function of pseudospin polar-

ization mξ , defined as the ratio of density difference between
|−〉 and |+〉 eigenstates,

mξ = n− − n+
n

. (63)

We specifically pick two points in (rs, d̃) parameter space:
one at rs = 8, d̃ = 1 in Fig. 10(a) where the ground state is
anticipated to be S2 (mξ = 1), and the other at rs = 8, d̃ = 2.8
in Fig. 10(b) where S1 state (mξ = 0) is expected from the
phase diagram Fig. 2. In both Figs. 10(a) and 10(b), however,
ε

S′
2

tot is minimized at an intermediate value of mξ . This optimal
polarization m∗

ξ , at which the energy is minimized, is depicted
in Fig. 10(c). m∗

ξ tends to be 1 for large rs and small d̃ , while
tends to be 0 for small rs and large d̃ .

In Fig. 11(b) we estimate the critical temperature Tc by
taking the difference between the ground-state energy εG

tot =
min{εS0

tot, ε
S1
tot, ε

S2
tot, ε

S′
2

tot (m
∗
ξ )}, and the second lowest energy.

Here ε
S′

2
tot (m

∗
ξ ) is the energy of the interlayer coherent state

at the optimal pseudospin polarization m∗
ξ . For reference,

ε
S′

2
tot (mξ = 1) = ε

S2
tot and ε

S′
2

tot (mξ = 0) = ε
S1
tot. As a comparison,

we show in Fig. 11(a) the Tc by taking the difference be-
tween the ground-state energy εG

tot = min{εS0
tot, ε

S1
tot, ε

S2
tot} and

the second lowest energy. The Tc phase diagram in Fig. 11(b),
incorporating pseudospin partially polarized states, yields a
higher Tc, up to threefold, than that in Fig. 11(a).

IV. FINITE-TEMPERATURE PHASE DIAGRAMS

In this section, we extend our study to the behavior of
interlayer coherence at finite temperatures, by solving for the
critical temperature Tc using self-consistent HF approach. We
focus on the case for equal layer densities. In Sec. IV A, Tc

is determined for the interlayer coherent phase S2. In the sub-
sequent Sec. IV B, we broaden the scope of our examination
to the exciton condensates in the e-h bilayer. By employing
the same range of parameters as those in the e-e bilayer case,
we facilitate a direct comparative analysis between the two
systems’ Tc phase diagrams. This comparative framework not
only highlights the unique characteristics of each system, but

FIG. 9. (a), (b) Interlayer coherent quasiparticle energies in Eq. (59) for equal layer densities. ε1,2
k are degenerate and represented by

black solid lines. ε−
k and ε+

k are pseudospin-polarized symmetric and antisymmetric states, respectively. (a) rs = 8, d̃ = 1, corresponding to
n = 1.1 × 1010 cm−2. (b) rs = 4, d̃ = 2.8, corresponding to n = 4.5 × 1010 cm−2. These two points are marked by stars in the phase diagram in
(c). In (a) and (b), the Fermi momentum is denoted by the vertical dotted line and the corresponding Fermi energy is denoted by the horizontal
one. We refer to case (a) as stable S2 phase because only |−〉 band is occupied, and to (b) as the S′

2 phase in which both quasiparticle bands |±〉
are populated. (c) The phase diagram determined by the energy difference ε+

0 − ε−
kF

as a function of rs and d̃ . The S2 phase in (c) encompasses
a more extensive portion of the parameter space compared to the previously obtained phase diagram in Fig. 2. The dashed line in (c) traces the
phase transition boundary.
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FIG. 10. (a), (b) ε
S′

2
tot as a function of the pseudospin polarization mξ , at (a) rs = 8, d̃ = 1 and (b) rs = 4, d̃ = 2.8. The horizontal dotted lines

mark the HF energies of the S1 phase, converging to the same value of ε
S′

2
tot at mξ = 0. In both (a) and (b), ε

S′
2

tot is minimized at an intermediate

mξ . (c) The phase diagram of m∗
ξ versus (rs, d̃), where m∗

ξ is the optimal polarization at which ε
S′

2
tot is minimized. m∗

ξ tends to be 1 for large rs

and small d̃ , while tends to be 0 for small rs and large d̃ .

also underscores the underlying different interacting nature
governing their phase transitions at elevated temperatures.

A. Tc of interlayer coherent phase (S2)

We focus on the majority-spin subspace and ignore the
minority spin for the spin-polarized interlayer coherent phase
S2. To simplify notations, we will therefore ignore the spin
superscripts in the following part. With spinor basis (ctk cbk )T ,
the HF Hamiltonian is

ĤS2
HF(k) =

(
εtk −	k

−	∗
k εbk

)
, (64)

with eigenvectors(+, k
−, k

)
=
(

β −α

α β

)(
ct↑k
cb↑k

)
(65)

and quasiparticle energies

ε±
k = 1

2 (εtk + εbk ) ±
√

ξ 2
k + |	k|2, (66)

where

εtk = ε0(k) + VH,t + Vx,t (k),

εbk = ε0(k) + VH,b + Vx,b(k),

ξk = 1
2 (εtk − εbk ). (67)

At finite temperatures,

VH,t = 2πe2d

Aε

∑
k

[β2 f (ε+
k ) + α2 f (ε−

k )],

VH,b = 2πe2d

Aε

∑
k

[α2 f (ε+
k ) + β2 f (ε−

k )],

Vx,t (k) = − 1

A

∑
k′

V S
k′−k[β2 f (ε+

k′ ) + α2 f (ε−
k′ )],

Vx,b(k) = − 1

A

∑
k′

V S
k′−k[α2 f (ε+

k′ ) + β2 f (ε−
k′ )],

	k = 1

A

∑
k′

V D
k′−kαβ[ f (ε−

k′ ) − f (ε+
k′ )], (68)

TS2
c

 (K)Tc
0 1 2 3 4

TS1
c

d̃
1.0 1.5 2.0 2.5 3.00.0 0.5

(a)

d̃ d̃

 (K)Tc
0 2 6 84 10 12 0 10 155

 (K)Tc

(b) (c)

TS2
cTSξc

FIG. 11. Critical temperature Tc of the interlayer coherent phase. (a) Tc is calculated by taking the energy difference between the ground
state εG

tot = min{εS0
tot, ε

S1
tot, ε

S2
tot} and the second lowest-energy state in Sec. III B. (b) Tc is calculated by taking the energy difference between the

ground state εG
tot = min{εS0

tot, ε
S1
tot, ε

S2
tot, ε

S′
2

tot (m
∗
ξ )} and the second lowest-energy state in Sec. III D. (c) Tc is calculated by the finite-temperature

self-consistent HF using the gaplike equation (70).
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FIG. 12. Critical temperature of the S2 phase in the e-e bilayer, obtained by zero-temperature self-consistent HF calculations. T max
c gives the

upper-bound critical temperature, determined by kBT max
c = maxk�kc {	k}, where kc is the cutoff momentum and chosen to be kc = 2kF . (a) T max

c

as a function of d̃ for fixed rs values. (b) T max
c as a function of rs for fixed d̃ values. (c) The same as (a) but converted to the dimensionless

T max
c /TF , sharing the same legend as (a). (d) The same as (b) but converted to the dimensionless T max

c /TF , sharing the same legend as (b).

where f (εk ) = [e(εk−μ)/kBT + 1]−1 is the Fermi-Dirac distri-
bution and μ is the chemical potential determined by total
density. Both ξk and 	k , which are momentum-orientation
independent, should be solved self-consistently by

ξk = πe2

Aε

∑
k′

(
d − 1

|k′ − k|
)

× [(α2 − β2)[ f (ε−
k′ ) − f (ε+

k′ )]],

	k = 2πe2

Aε

∑
k′

e−d|k′−k|

|k′ − k| αβ[ f (ε−
k′ ) − f (ε+

k′ )]. (69)

For the S2 phase under our consideration, α = β = 1/
√

2, and
therefore ξk = 0. We just need to self-consistently solve the
gap equation

	k = πe2

Aε

∑
k′

e−d|k−k′ |

|k − k′| [ f (ε−
k′ ) − f (ε+

k′ )]. (70)

At T = 0, f (ε−
k ) − f (ε+

k ) = 1. We first show the critical
temperature obtained from zero-temperature self-consistent

HF calculations, which gives the upper bound T max
c by

kBT max
c = maxk�kc{	k}, where kc is the cutoff momentum and

chosen to be kc = 2kF in the following calculations. We plot
T max

c versus d̃ in Fig. 12(a) and T max
c versus rs in Fig. 12(b).

There is always a critical d̃c (rs,c) above (below) which the
interlayer coherence vanishes. We convert T max

c in Kelvin
(obtained for GaAs e-e bilayers) to dimensionless T max

c /TF

in Figs. 12(c) and 12(d), where TF characterizes the Fermi
energy kBTF = εF .

At finite temperatures, the critical temperature Tc is de-
termined by detecting the transition of 	k from 0 to a finite
value: for T > Tc, 	k = 0; for T < Tc, 	k > 0. The self-
consistently calculated Tc as a function of d̃ and rs are shown
in Fig. 13. As a function of d̃ , Tc at a large rs shows a
power-law decay, qualitatively agreeing with the pseudospin
stiffness behavior with respect to the interlayer separation
in the quantum Hall bilayer at ν = 1 [58]. Note that any
mean-field calculation is crude for large layer separations,
where the quantum fluctuations become important. Same as
the zero-temperature self-consistent HF calculations, there is
a critical d̃c (rs,c), above (below) which Tc drops to zero,
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FIG. 13. Critical temperature of the S2 phase in the e-e bilayer, obtained by finite-temperature self-consistent HF calculations. (a) Tc as a
function of d̃ for fixed rs values. (b) Tc as a function of rs for fixed d̃ values. (c) The same as (a) but converted to the dimensionless Tc/TF ,
sharing the same legend as (a). (d) The same as (b) but converted to the dimensionless Tc/TF , sharing the same legend as (b).

indicating the phase transition S2 → S1. As a function of rs

shown in Fig. 13(b), after entering the S2 phase, Tc initially
rises quickly then drops slowly with rs. The behavior of the
critical temperature becomes more apparent when expressed
in terms of the dimensionless ratio Tc/TF , which is depicted in
Figs. 13(c) and 13(d). Here Tc/TF decreases with d̃ following
a power law but increases almost linearly with rs.

The complete critical temperature phase diagram, deter-
mined by the finite-temperature self-consistent HF calcula-
tions, is shown in Fig. 11(c). As expected, Tc is maximized at
small d̃ and moderate rs values. Notably, the phase boundary
where Tc vanishes closely mirrors that obtained using the
zero-temperature HF energies in Fig. 11(a). Tc under finite-
temperature self-consistent HF in Fig. 11(c) is substantially
higher, by a factor of 5, compared to the zero-temperature
HF energy difference approach in Fig. 11(a). The magnitude
of Tc in Fig. 11(c), however, aligns quantitatively with the
estimation from zero-temperature HF energy difference ap-
proach when incorporating partially polarized pseudospins, in
Fig. 11(b). Note that in Fig. 11(c), Tc vanishes for small rs

and large d̃ because we restrict the self-consistent HF to the
S2 phase.

For comparative purposes, we show Tc for the spin-
polarized ferromagnetic phase S1 calculated via finite-
temperature self-consistent HF in Appendix C, Fig. 20(a). The
S1 phase is the bilayer 2DEG with two equal Fermi surfaces
with Fermi momentum kF = √

2πn. Therefore, the Tc of S1

phase is d independent. At d̃ = 0, the S2 phase [shown in the
black lines in Figs. 13(b) and 13(d)] is analogous to the S1

phase, albeit with a single Fermi surface of momentum kF =√
4πn. Therefore, the trends observed for Tc and Tc/TF at

d̃ = 0 in Figs. 13(b) and 13(d) share similar behaviors as those
of the S1 phase in Fig. 20(a), with differences attributable to
the number of Fermi surfaces.

B. Tc of exciton condensates in electron-hole bilayer

In this subsection we consider e-h bilayers, on an equal
footing with the above-described e-e bilayers, with electrons
in one layer and holes in the other layer, forming exciton
condensates. This architecture provides a direct comparison
with the S2 phase in e-e bilayers, facilitating a deeper and
broader understanding of interlayer coherence phenomena.
For an intuitive picture, we categorize the electrons as residing

085129-15



JIHANG ZHU AND SANKAR DAS SARMA PHYSICAL REVIEW B 109, 085129 (2024)

in the conduction band (top layer) and the holes in the valence
band (bottom layer). The spinless HF Hamiltonian is

ĤHF =
∑

k

(c†
ck c†

vk )

(
εck −	k

−	∗
k εvk

)(
cck
cvk

)

=
∑

k

(γ̄ †
k γ

†
k )

(
ε+

k 0
0 ε−

k

)(
γ̄k
γk

)
. (71)

The quasiparticle operators using the Bogoliubov transforma-
tion are (+, k

−, k

)
≡
(

γ̄k
γk

)
=
(

uk −vk
v∗

k u∗
k

)(
cck
cvk

)
, (72)

with quasiparticle energies

ε±
k = 1

2 (εck + εvk ) ±
√

ξ 2
k + |	k|2, (73)

where

εck = ε
(0)
ck + VH,c + Vx,c(k),

εvk = ε
(0)
vk + VH,v + Vx,v (k),

ε
(0)
ck = h̄k2

2m∗ ,

ε
(0)
vk = − h̄k2

2m∗
c

− Eg, (74)

and

ξk = 1

2
(εck − εvk ),

	k = 1

A

∑
k′

V D
k−k′ 〈c†

vk′cck′ 〉. (75)

Eg is the overlap between conduction and valence bands and
is determined by the initial setting of the electron density
ne. Note that we assign different effective masses to conduc-
tion and valence bands simply because the divergent negative
Fermi sea should be taken into account in m∗

v [68]. The va-
lence band effective mass is renormalized by the exchange
interactions of occupied remote band states:

− h̄2k2

2m∗
v

= − h̄2k2

2m∗ − 1

A

∑
k′

V S
k−k′ 〈c†

vk′cvk′ 〉0

= − h̄2k2

2m∗ − 1

A

∑
k′

V S
k−k′ρ

0
vv (k′), (76)

where ρ0
vv (k′) = 〈c†

vk′cvk′ 〉0 = 1 is the expectation value in the
reference state |�0〉 that all valence band states are occupied
and all conduction band states are empty. We should subtract
this reference state expectation in all ρvv (k) terms, and we
denote them as

ρ̃vv (k) = ρvv (k) − ρ0
vv (k). (77)

The Hartree terms in Eq. (75) are

VH,c = −VH,v

= πe2d

Aε

∑
k′

(ρcc(k′) − ρ̃vv (k′)). (78)

For equal electron and hole densities that we consider here,

VH,c = 2πe2dne

ε
, (79)

where

ne = 1

A

∑
k

ρcc(k) (80)

is the electron density. The exchange terms in Eq. (75) are

Vx,c = − 1

A

∑
k′

V S
k−k′ρcc(k′),

Vx,v = − 1

A

∑
k′

V S
k−k′ ρ̃vv (k′),

	k = 1

A

∑
k′

V D
k−k′ρcv (k′). (81)

At finite temperatures, the density matrix elements are

ρcc(k) = 〈c†
ckcck〉 = |vk|2 f (ε−

k ) + |uk|2 f (ε+
k ),

ρ̃vv (k) = 〈c†
vkcvk〉 − 1 = |uk|2 f (ε−

k ) + |vk|2 f (ε+
k ) − 1,

ρcv (k) = 〈c†
vkcck〉 = u∗

kvk[ f (ε−
k ) − f (ε+

k )]. (82)

We need to self-consistently solve for

ξk = 1

2

(
ε

(0)
ck −ε

(0)
vk

)+2πe2dne

ε
− πe2

Aε

∑
k′

1

|k − k′|

×

⎡
⎢⎣1 − ξk′√

ξ 2
k′ + |	k′ |2

tanh

(√ξ 2
k′ + |	k′ |2
2kBT

)⎤⎥⎦,

	k = πe2

Aε

∑
k′

e−d|k−k′|

|k − k′|
	k′√

ξ 2
k′+|	k′ |2

tanh

(√ξ 2
k′+|	k′ |2
2kBT

)
.

(83)

We have used

|uk|2 = 1

2

⎛
⎜⎝1 + ξk√

ξ 2
k + |	k|2

⎞
⎟⎠, (84)

|vk|2 = 1

2

⎛
⎜⎝1 − ξk√

ξ 2
k + |	k|2

⎞
⎟⎠, (85)

u∗
kvk = 	k

2
√

ξ 2
k + |	k|2

, (86)

f (ε−
k ) − f (ε+

k ) = tanh

(√ξ 2
k + |	k|2
2kBT

)
. (87)

At T = 0, f (ε−
k ) − f (ε+

k ) = 1. We first show the critical
temperature obtained from zero-temperature self-consistent
HF calculations, which gives the upper bound T max

c by
kBT max

c = maxk�kc{	k}, where kc is the cutoff momentum
and chosen to be kc = 4 nm−1 in the following calculations.
In Fig. 14(a), we plot T max

c versus d̃ , observing an expo-
nential decay of T max

c with increasing d̃ . As a function of
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FIG. 14. Critical temperature of exciton condensates in the e-h bilayer. T max
c is estimated by zero-temperature self-consistent HF calcula-

tions, which gives the upper bound T max
c by kBT max

c = maxk�kc {	k}, where kc is the cutoff momentum and chosen to be kc = 4 nm−1. (a) T max
c

as a function of d̃ for fixed rs values. (b) T max
c as a function of rs for fixed d̃ values. (c) The same as (a) but converted to the dimensionless

T max
c /TF , sharing the same legend as (a). (d) The same as (b) but converted to the dimensionless T max

c /TF , sharing the same legend as (b).

rs in Fig. 14(b), T max
c first rises and then almost stabilizes

at higher rs values. The approximate invariance in T max
c at

large rs is attributed to the converged exciton pair density
and exciton binding energy [23]. We convert T max

c in Kelvin
(for GaAs bilayers) to dimensionless T max

c /TF in Figs. 14(c)
and 14(d).

Extending to finite temperatures, self-consistent HF calcu-
lations reveal Tc trends similar to those at zero temperature.
The Tc obtained from finite-temperature calculations are ap-
proximately half of those predicted by T max

c , as depicted in
Fig. 15, and is consistent with variational quantum Monte
Carlo calculations [69]. Note that quantitative detailed dif-
ferences between our mean-field study and the Monte Carlo
study are attributed to the screening effects absent in our
theory. The dashed line in Fig. 15(b) marks the critical temper-
ature of the BKT transition, T BKT

c ≈ 1.3h̄2n/2m∗, calculated
using the converged exciton pair density n at d̃ = 0.1. In the
BEC limit (large rs), T BKT

c becomes independent of rs due to
the converged exciton pair density.

In Fig. 16, we compare order parameters as a function of
temperature for e-e and e-h bilayers. Figures 16(a) and 16(d)
display the maximum value of 	k against the temperature T .
For the e-e bilayer, we observe a relatively sharp drop in the
order parameter as the temperature increases and approaches
the critical value, followed by a more gradual decrease to
zero with further temperature increase. In contrast, the e-h
bilayer exhibits a more gradual drop in the order parameter
with increasing temperature, transitioning abruptly to zero
as it approaches the critical temperature. This contrasting
behavior between e-e and e-h bilayers is further elucidated
in Figs. 16(b) and 16(e), where both the order parameter
and temperature are presented in dimensionless form. Here,
the fluctuations in the e-e bilayer are noticeably larger than
those in the e-h bilayer, reflecting a closer resemblance to
magnetic transition behaviors in the e-e bilayer. Additionally,
Figs. 16(c) and 16(f) trace the momentum k at which the
order parameter 	k reaches its maximum. In the e-e bilayer,
	k maximum consistently occurs at k = 0 for temperatures
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FIG. 15. Critical temperature Tc of exciton condensates in the e-h bilayer. Tc is determined by the finite-temperature self-consistent HF
calculations. (a) Tc as a function of d̃ for fixed rs values. (b) Tc as a function of rs for fixed d̃ values. (c) The same as (a) but converted to the
dimensionless Tc/TF , sharing the same legend as (a). (d) The same as (b) but converted to the dimensionless Tc/TF , sharing the same legend
as (b). The dashed line in (b) marks the critical temperature of the BKT transition, T BKT

c ≈ 1.3h̄2n/2m∗, at d̃ = 0.1, where n is the converged
exciton pair density.

below Tc, whereas in the e-h bilayer, 	k is maximized at a
finite momentum. Notably, this finite momentum diminishes
towards zero as rs increases [23,24].

We end our discussion with a side-by-side comparison
of the Tc behaviors in e-e and e-h bilayers in Fig. 17. The
main difference between XY pseudospin ferromagnetism in
e-e bilayers and exciton condensates in e-h bilayers lies in
their dependence of interlayer coherence on rs. The e-e bilayer
necessitates a minimum or critical rs for the existence of its
coherent phase, with U(1) symmetry breaking only manifest-
ing above a critical rs,c. By contrast, the e-h bilayer exhibits
exciton condensation for all rs values at zero temperature.
However, this difference is not practically significant as ex-
citon condensates in e-h bilayers exhibit exponentially low Tc

for small rs values, rendering them unobservable in this range.
Despite similarities in their gaplike equations [Eqs. (70) and
(83)], e-e and e-h bilayers differ in two key aspects. First,
e-h bilayers always include a Hartree term proportional to the
layer separation d , a term that is absent in e-e bilayers with

equal layer densities. Second, at charge neutrality in e-h bi-
layers, where electron and hole densities are equal, the Fermi
level invariably sits at the midpoint of the two quasiparticle
bands. This results in the tangent term in the gap equation.
In contrast, in e-e bilayers, the term (εtk + εbk ) in Eq. (66)
varies with k, meaning that f (ε−

k′ ) − f (ε+
k′ ) in Eq. (70) can-

not be simplified to the tangent function. This comparison
highlights the distinct thermal characteristics, underscoring
the differences in the formation of coherent phases in these
two analogous but distinct bilayer configurations.

V. EFFECTS OF INTERLAYER TUNNELING

We focus in this section on the impact of interlayer tun-
neling on the XY pseudospin ferromagnetic transition in e-e
bilayers, which is analogous to the influence of an in-plane
magnetic field in ferromagnetic spin systems.

The HF Hamiltonian (64) is slightly modified with an in-
terlayer tunneling t , acting as an effective magnetic field in the
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FIG. 16. A side-by-side comparison of the interlayer coherence order parameter max{	k} as a function of temperature in e-e (a)–(c) and
e-h (d)–(f) bilayers. (a), (d) The order parameter max{	k} versus temperature T . (b), (e) Same as (a) and (d) but both max{	k} and T are
converted to be dimensionless. The fluctuations in the e-e bilayer are larger than in the e-h bilayer because the e-e bilayer aligns more like the
magnetic transition. (c), (f) The momentum k, at which the order parameter 	k is the maximum, versus the temperature. For the e-e bilayer,
maximum 	k is always at k = 0 for T < Tc, while for the e-h bilayer, 	k is maximized at a finite momentum. This finite momentum decreases
to zero as rs increases [23,24].

x direction:

ĤS2
HF(k) =

(
εtk −	k + t

−	∗
k + t εbk

)
. (88)

The quasiparticle energies become

ε±
k = 1

2 (εtk + εbk ) ±
√

ξ 2
k + |	k − t |2, (89)

and the gap equation (68) is modified in terms of Fermi-Dirac
distribution.

We investigate the effects of a small interlayer tunneling
t on the averaged spontaneous gap 	̄k =∑k∈[0,kc] 	k/Nk ,
where Nk is the number of k points along k = kk̂x and k ∈
[0, kc], kc = 2kF is the cutoff momentum. Figure 18(a) plots
	̄k versus rs at fixed d̃ = 1 and temperature T = 1 K, and
Fig. 18(b) plots 	̄k versus d̃ at fixed rs = 4 and T = 1 K. The
jumps in 	̄k at critical rs and d̃ indicate the transition exactly
as what happens for a ferromagnetic transition in a magnetic
field. As expected, the interlayer tunneling indeed suppresses
the spontaneous ferromagnetic ordering. This manifests as a
shift in the critical rs to higher values and the critical d̃ to
lower values, indicating a trend towards requiring a stronger
coupling. In the presence of the interlayer tunneling t , the in-
terlayer coherence transition becomes a crossover as the U(1)
symmetry is explicitly broken by t , which in the pseudospin
language is simply an applied magnetic field in the easy-plane
defining the magnetization direction.

VI. CONCLUSION

In this paper, we carry out a comprehensive HF study of
XY pseudospin ferromagnetism in zero-field e-e bilayers, and
compare it with exciton condensation superfluid in zero-field
e-h bilayers, for parabolic bands and long-range Coulomb
interactions.

At zero temperature, the phase diagram of e-e bilayers
is determined by the HF energy. In e-e bilayers with equal
layer densities, the interlayer coherent phase with pseudospin
ordered in the xy plane is the stable ground state at lower elec-
tron densities (larger rs) and reduced interlayer separation d .
There is, however, always a critical rs value for the interlayer
coherence phase transition, and the system is a pseudospin
paramagnet below this d-dependent critical rs. When layer
densities are unequal, we find that the critical layer separation
dc, beyond which interlayer coherence vanishes, decreases
with increasing layer density imbalance, but remains present
even under complete layer polarization. This layer polariza-
tion can be conceptualized as a pseudospin response to an
effective magnetic field applied along the z direction. Our
results illustrate that, despite a strong effective magnetic field
polarizing the pseudospin completely in the z direction, the
exchange-driven XY pseudospin ferromagnetic transition re-
mains little affected.

At finite temperatures, we calculate the critical temperature
Tc using self-consistent HF theory. We find that Tc for XY
pseudospin ferromagnetism in e-e bilayers is approximately
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FIG. 17. A side-by-side comparison of the Tc behaviors in e-e (a)–(c) and e-h bilayer (d)–(f) systems. The main difference between the
e-e bilayer (XY pseudospin ferromagnet) and the e-h bilayer (exciton condensates) is that the former necessitates a minimum rs value for its
existence with the U(1) symmetry being broken only above a critical rs,c, while the latter occurs for all rs at T = 0. This is, however, not a
practical difference because the e-h bilayer exciton condensates have exponentially low Tc for small rs and, therefore, it is unobservable for
small rs any way.

(a) (b)

d̃rs

 (cm )n −2

1 KT =1 KT =

1d̃ = 4rs =

FIG. 18. Effects of interlayer tunneling t on the averaged spontaneous order parameter 	̄k =∑k∈[0,kc] 	k/Nk , where Nk is the number of k

points along k = kk̂x and k ∈ [0, kc], kc = 2kF is the cutoff momentum. Note that even 	̄k = 0, two layers are still coherent, even though not
spontaneously, because of the finite tunneling t . (a) 	̄k versus rs at fixed d̃ = 1 and T = 1 K. (b) 	̄k versus d̃ at fixed rs = 4 and T = 1 K.
The jumps in 	̄k at critical rs and d̃ indicate the transition exactly as what happens for a ferromagnetic transition in a magnetic field. In the
presence of the interlayer tunneling t , the interlayer coherence transition becomes a crossover as the U(1) symmetry is explicitly broken by t ,
which in the pseudospin language is simply an applied magnetic field in the easy-plane defining the magnetization direction.
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one-third of that for exciton condensates in e-h bilayers, in-
dicating a comparatively weaker interlayer coherence in e-e
bilayers. Fluctuations are larger in e-e bilayers because the
phase transition aligns more closely to the magnetic transition.

Additionally, we evaluate the influence of weak interlayer
tunneling on the interlayer coherence order parameter in
e-e bilayers, mimicking the effects of an in-plane magnetic
field on XY pseudospin ferromagnetism. In the presence of
interlayer tunneling t , the interlayer coherence transition in
e-e bilayers becomes a crossover, as the U(1) symmetry is
explicitly broken by t .

A notable distinction between XY pseudospin ferromag-
netism in e-e bilayers and exciton condensates in e-h bilayers
is that the former requires a minimum rs value for its ex-
istence, with U(1) symmetry breaking only above a critical
rs while the latter forms for any rs at zero temperature.
Practically, however, this difference is irrelevant because of
the exponentially low Tc for exciton condensates at small rs

values, rendering them unobservable at high densities (i.e.,
the resultant Tc is exponentially small although finite). The
fact that there is no critical density or equivalently no criti-
cal layer separation for the exciton condensation in bilayers
was revealed in a quantum Hall bilayer experiment with the
finding that strong interlayer e-h correlations exist even above
the putative transition point showing the transition might be
a fast BEC-BCS crossover and not a phase transition [70].
Both XY ferromagnetism and exciton condensates undergo
finite-temperature BKT transitions and fall into the same uni-
versality class of phase transitions. We emphasize that, unlike
in quantum Hall bilayers with the Landau-level filling being 1

2
in each layer, the interlayer coherence phenomenon is physi-
cally very different in the zero-field e-e and e-h bilayers. In the
former case, the phenomenon is an XY pseudospin ferromag-
netism problem whereas in the latter case, it is an interlayer
excitonic condensation superfluid problem. It just so happens
that for quantum Hall bilayers, with the exact particle-hole
symmetry for half-filled Landau levels, these two descriptions
are precisely equivalent, but no such equivalence applies to
the zero-field cases considered in this work, where the exact
particle-hole symmetry does not apply. For quantum Hall
bilayers, the existence or not of an interlayer separation tuned
quantum phase transition between interlayer coherent (small
separation) and incoherent (large separation) phases has been
much discussed in the literature for more than 30 years using
many different theoretical approaches [52,71–75]. We believe,
based on our current work, that there is no zero-temperature
quantum phase transition in quantum Hall bilayers between
interlayer coherent and incoherent phases as a function of
layer separation (except at the trivial limit of infinite sepa-
ration), and there is only a crossover between the strongly
coupled BEC excitonic condensate at small separation to a
weakly coupled BCS excitonic condensate at large separation.
Of course, the Tc for the BCS phase being exponentially small
and the system behaves like as if there is a phase transition
around the crossover regime.

We mention that for very large rs, each individual 2D layer
would undergo a transition to a Wigner crystal phase (which
is beyond the scope of our HF theory) breaking the trans-
lational invariance in each layer, but maintaining interlayer
coherence, and such an interlayer-coherent intralayer Wigner

crystal breaks both interlayer U(1) symmetry and intralayer
translational symmetry, and is therefore a supersolid. Similar
physics applies also for the e-h bilayers, where the large rs

intralayer translational invariance breaking phase is an exciton
crystal with the two layers being interlayer coherent breaking
the interlayer U(1) symmetry, leading to an excitonic super-
solid [36,65,76].

Although this work lays the groundwork in understanding
the differences in interlayer coherence between e-e and e-h
bilayers by studying the simple 2DEG model, more complex
2D materials may exhibit richer phenomena. The interlayer
coherence physics in these complex systems could be further
altered by the band structure, topology, and screening effects.
The study of exciton condensates has been extensive in vari-
ous bilayer systems, including recent graphene-based [50] and
transition-metal-dichalcogenide-based bilayers [26], as well
as in double-moiré superlattices. There is growing interest
in exploring e-e pairing in these systems and its interplay
with superconductivity. We will leave these investigations
for future study. We just mention in the passing that the
well-established phenomena of canted antiferromagnetism in
quantum Hall bilayer systems is an example of the interplay
among interlayer coherence, spin physics, and interlayer tun-
neling in filled Landau levels [77–87].

Finally, we briefly discuss the experimental implications
of interlayer coherence in zero-field e-h and e-e bilayers. It
has been relatively clear that exciton BEC in quantum Hall
bilayers is identifiable through specific transport measure-
ments, such as quantized Hall drag resistance in the Coulomb
drag geometry, vanishing longitudinal and Hall resistances
in the counterflow geometry [31,32,37,88–90], and interlayer
tunneling conductance anomalies [91–95]. Identifying exciton
condensates in zero-field e-h bilayers remains challenging,
though some experiments have come close [15,26,50,96,97].
Transport signatures for a diagnostic of exciton condensates
in e-h bilayers include the Coulomb drag and counterflow re-
sistances, and the in-plane Josephson effect. For e-e bilayers,
probing the XY pseudospin ferromagnetic metal might be fea-
sible through transport measurements like interlayer tunneling
in the presence of an in-plane magnetic field [98–100] and the
pseudospin transfer torque [101]. In particular, we predict a
giant interaction-induced enhancement of the interlayer tun-
neling conductance peak in the interlayer coherent phase of
e-e bilayers even if the noninteracting system has vanishing
interlayer tunneling amplitude. This giant interlayer tunnel
resonance would be tunable by changing the layer density
and will vanish above a critical density since the interlayer
coherence in e-e bilayers can only happen above a critical rs

value. In addition, another experimental approach to observe
the spontaneous symmetry-broken interlayer coherent phase
could be studying the collective modes of the system, which
should manifest the Goldstone mode in the symmetry-broken
phase [60], and only regular plasmons in the normal bilay-
ers. Thus, the collective modes of the system should differ
for T < Tc and T > Tc, with the former showing only one
Goldstone mode, but the latter showing both acoustic and
optical plasmons of bilayers [102,103]. One issue here is that
the Goldstone mode is likely to have a q1/2 long-wavelength
dispersion (rather than being linear in momentum) because of
the 2D analog of the Anderson-Higgs mechanism [104].
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Our specific predictions in this work on the dependence of
the interlayer coherent phase on the layer density imbalance
and/or weak interlayer tunneling should be a useful guide for
experimental explorations of the predicted bilayer coherence.
The fact that the corresponding transition has been exten-
sively experimentally studied in quantum Hall bilayers, where
the XY pseudospin ferromagnet and the exciton superfluid
become the same, gives considerable hope that both XY pseu-
dospin ferromagnetism and exciton superfluid condensation
will soon be experimentally observed at zero magnetic field
in high-quality bilayer systems.

Lastly, we comment on the limitations of the HF mean-field
theory. Because of its lack of dynamical screening effects and
fluctuations, the HF theory is not a quantitatively accurate
method to predict the symmetry-broken ground state, and it
overestimates Tc of the phase transition at finite temperatures.
However, the HF approximation should always provide a
qualitatively accurate phase diagram since it is a mean-field
theory using realistic (i.e., Coulomb in our case) interactions.
The HF mean-field theory is used extensively in the literature
to obtain the quantum phase diagram of electronic materials
and is always the first theory to provide a guide to experi-
ments. In addition, our HF theory in predicting the pseudospin
phase transitions is proved to be accurate on the mean-field
level, as demonstrated in a parallel study using a mean-field
self-consistent iterative approach [105]. In the single-layer
2DEG, the spontaneous spin polarization actually occurs at a
much larger critical rs value than the Bloch transition rs,B ∼ 2
if correlations, which are absent in the HF theory, are in-
cluded. Given that the pseudospin-polarized (or pseudospin
ferromagnetic) phase predicted in our work is a direct result of
the interlayer exchange interaction, the pseudospin-polarized
phase will also be suppressed by correlations. Therefore, we
should expect all the pseudospin phase transitions predicted
in our phase diagrams occur at larger rs and smaller d . But,
we see no reason for our calculated phase diagram to be
qualitatively incorrect although the symmetry-broken phases
are often overestimated in the HF theory.

Finally, we mention that our work is directly applicable to
2D GaAs bilayers (as emphasized by all our figures showing
results for GaAs system parameters) where the 2D Fermi
surface is not multiply connected, and is in general isotropic
and parabolic. For more complicated 2D Fermi surfaces (e.g.,
transition metal dichalcogenide layers, moiré materials, multi-
layer graphene systems), our work would remain qualitatively,
but not quantitatively, valid since symmetry-breaking transi-
tions are driven by exchange interactions which always dom-
inate the kinetic energy at low enough densities in Coulomb
coupled systems independent of the Fermi-surface details.
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APPENDIX A: SUMMARY OF USEFUL SUMMATIONS
AND INTEGRALS

We summarize some useful summations and integrals
which are frequently used in the equations in the main

text: ∑
k�kF

= A
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F , (A1)
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F , (A2)

∑
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FIG. 19. HF energies as a function of layer distance d̃ for (a) rs = √
2, (b) rs = 4, (c) rs = 8, and (d) rs = 53. Dimensionless rs and d̃ are

also converted to density n in units of cm−2 and d in units of Å, using GaAs quantum well parameters.

where
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K (x) and E (x) are the complete elliptic integral of the first
and the second kind, respectively. E (x) can be expressed as a
power series

E (x) = π
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x2n
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The triple integral J (kF d ),

J (kF d ) =
∫ 1

0
dx x
∫ 1

0
dy y
∫

0

2πdθ
e−kF d

√
x2+y2−2xy cos θ√
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and the integral

I (x, kF d ) =
∫ 1

0
dy y
∫ 2π

0
dθ

e−kF d
√

x2+y2−2xy cos θ√
x2 + y2 − 2xy cos θ
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should be evaluated numerically.

APPENDIX B: HF ENERGIES OF THE FOUR
COMPETING STATES

In Fig. 19, we show HF energies for competing ground
states S0, S1, S2, and S3 as a function of layer distance d̃ for
specific rs values. The S2 phase always has a lower energy
than the S3 phase except at d̃ = 0.

APPENDIX C: Tc OF THE SPIN-POLARIZED BUT
PSEUDOSPIN-UNPOLARIZED PHASE (S1)

To compare with the Tc of bilayer 2DEG S1 phase in
Sec. III A 2 and in Figs. 13(e) and 13(f), we show Tc of the
spin-polarized phase in single 2DEG and single 3DEG.

1. 2DEG

For the spin-polarized phase, the eigenenergy of the major-
ity spin is

εk = ε0(k) + Vx(k), (C1)

where

ε0(k) = h̄2k2

2m
,

Vx(k) = − 1

A

∑
k′

2πe2

ε|k − k′| f (εk′ ). (C2)

The occupied minority-spin state has energy ε0(k). At T = 0,
the Fermi-Dirac distribution f (εk ) is the step function, and

Vx(k) = −4a∗

π
kF E

(
k

kF

)
, (C3)

where Fermi momentum kF = √
2πn. Tc of the 2DEG spin-

polarized state, calculated by finite-temperature SCHF, is
shown in Fig. 20(b).

2. 3DEG

For the 3DEG, the eigenenergy of the majority spin is

εk = ε0(k) + Vx(k), (C4)

where

ε0(k) = h̄2k2

2m
,

Vx(k) = − 1

L3

∑
k′

4πe2

ε|k − k′|2 f (εk′ ), (C5)

and the Fermi momentum kF = (6π2n)1/3. The dimensionless
distance

rsa
∗ =
(

3

4πn

)1/3

. (C6)

At T = 0, the exchange potential

Vx(k) = − 1

L3

∑
k′�kF

4πe2

ε|k − k′|2

= −
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(a)

3DEGbilayer 2DEG ( )S1

 (cm )n −2  (cm )n −3

2DEG

 (cm )n −2

(c)(b)

FIG. 20. Tc of the spin-polarized state, calculated by finite-temperature self-consistent HF. (a) For bilayer 2DEG, i.e., the S1 phase in
Sec. III A 2. Note that Tc of the S1 phase is d independent. (b) For single 2DEG. (c) For single 3DEG.
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where x = k′/kF , y = k/kF , and
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At finite T , the exchange potential is evaluated numerically:

Vx(k) = −
∫

k′�kF

d3k′

(2π )3

4πe2

ε|k − k′|2 f (εk′ )

= − e2

πε
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dz
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0
dk′ (k′)2

(k′)2 + k2 − 2k′kz
f (εk′ ).

(C9)

Tc of 3DEG spin-polarized state, calculated by finite-
temperature SCHF, is shown in Fig. 20(c).
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