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Superscreening by a retroreflected hole backflow in tomographic electron fluids
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Electron hydrodynamics gives rise to surprising correlated behaviors in which electrons cooperate to quench
dissipation and reduce the electric fields needed to sustain the flow. Such collective free flows are usually
expected at the hydrodynamic length scales exceeding the electron-electron scattering mean free path �ee.
Here we predict that in two-dimensional electron gases, the collective free flows actually occur at distances
much smaller than �ee, in a nominally ballistic regime. The sub-�ee free flows arise due to retroreflected holes
originating from head-on quasiparticle collisions; the holes retrace the paths of impinging electrons and cancel
out their potential. An exact solution, obtained in Corbino geometry, predicts potential strongly screened by the
hole backflow. The screened potential is described by a fractional power law r−5/3 over a wide range of r values,
from macroscales down to deep sub-�ee scales, and distinct non-Fermi-liquid temperature dependence.
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In clean systems, the prevalence of electron-electron col-
lisions can result in electronic behavior similar to viscous
fluids, known as electron hydrodynamics [1–3]. This field
has reemerged recently as a tool for understanding transport
in strongly interacting electron systems [4–16]. Its appeal
stems from the high sensitivity of hydrodynamics to mi-
croscopics even in fairly simple Fermi liquids, as well as
from anticipation that new kinds of exotic hydrodynamics
can arise for exotic quantum matter [17–26]. In this vein, it
was predicted recently that two-dimensional electron gases
exhibit tomographic hydrodynamics, a unique behavior that
originates from strong collinear scattering of quasiparticles
[27–30]. These collinear scattering processes endow electron
fluids with a long-time directional memory that creates an
exotic hydrodynamic behavior at large distances, pushing the
onset to the conventional Navier-Stokes hydrodynamics to the
length scales that greatly exceed the electron collision mean
free path �ee. Here we argue that the tomographic behavior
also dominates at ultrashort distances r � �ee, overriding the
conventional ballistic regime that normally occurs at such
length scales. The unusual behavior at sub-�ee distances arises
due to hole retroreflection. The backreflected holes retrace the
paths of impinging electrons, thereby allowing the informa-
tion about the ee collisions to propagate back into the sub-�ee

region. As a result, the tomographic dynamics and directional
memory effects dominate not only at the length scales r > �ee

but also at r < �ee, pushing the onset of the ballistic behavior
down to abnormally short length scales

r ∼ ξb � �ee, ξb/�ee ∼
√

T/TF � 1. (1)

This peculiar behavior can be understood as a nonclassical
quasiballistic dynamics of compound objects, the particle-

*Present address: Computer Science Department, Stanford
University, Stanford, California 94305, USA.

hole pairs composed of particles and holes propagating
opposite to each other, as illustrated in Fig. 1. In this regime
the electric current is transmitted by a highly coordinated
electron flow and a hole counterflow. The latter, being equal
and opposite to the electron flow, gives a contribution that
tends to double the current and cancel out the potential, as
illustrated in Fig. 1. Such restructuring of the flow leads to a
dramatic reduction (superscreening) of current-induced fields
and of Joule dissipation W ∼ jE, an effect occurring in a wide
range of length scales, from r � �ee down to r � �ee.

From an experimental viewpoint, probing tomographic
physics at sub-�ee length scales has distinct advantages since
it considerably softens the limitations that plagued previ-
ous searches for electron hydrodynamics. Indeed, the length
scales at which conventional viscous effects dominate over
the ohmic effects satisfy �ee < r <

√
�ee�p, where �p is the

mean free path for momentum-relaxing scattering processes.
The materials where the electron fluids are currently being
probed, such as graphene or GaAs quantum wells, feature
weak phonon and disorder scattering such that the length scale
�p can exceed �ee by as much as an order of magnitude. Yet,
the slow square root dependence in

√
�ee�p can make the

competing requirements on r challenging to fulfill.
The proliferation of tomographic hydrodynamics to the

deep sub-�ee length scales facilitates probing this physics in
experiments. As illustrated in Fig. 1 for the current flow-
ing radially in the Corbino geometry, the counterpropagating
electrons and holes comprising the current cancel out each
other’s charge; as a result the net potential is suppressed below
the values expected for collisionless electron flow. At tomo-
graphic length scales, the potential drops as a power law r−5/3,
and then even faster at the length scales where the Navier-
Stokes-like viscous regime sets in. Strikingly, this power-law
behavior, which is shown in Fig. 1, is identical on both
sides of the region r ∼ �ee, where the ballistic/hydrodynamic
crossover is usually expected to occur (the line k�ee = 1 in
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FIG. 1. (a) Schematic illustration of the spatial hierarchy of
the ballistic, tomographic, and hydrodynamic regimes for a ra-
dial flow. Red and blue lines represent electron trajectories and
back-propagating hole trajectories. The tomographic regime (yellow
panel) spans a wide range of length scales from r � �ee down to
deep sub-�ee length scales. (b) Current-induced potential distribution
around a point source: the exact result obtained from Eqs. (3) and
(2) (blue line) and the analytic result for the tomographic regime,
Eq. (25) (black line). Potential harmonics feature a scaling behavior
φk ∼ k−ζ with the exponents ζ = 0, 1/3, and 1 in the three regimes.
Dashed lines with these slopes are shown as a guide to the eye.
Vertical gray lines mark the boundaries of the tomographic regime
ξ−1

h < k < ξ−1
b . The conventional ballistic/hydrodynamic crossover,

expected at k�ee = 1 (dashed gray line), does not occur due to the
predominance of head-on scattering in 2D electron systems. Param-
eter values used are given beneath Eq. (8). Inset illustrates hole
backreflection in head-on scattering, a process that is immune to
averaging over scattering angles for the final states.

Fig. 1). The suppression of the current-induced potential and
the resulting quenching of dissipation upon raising temper-
ature, originating from particle-hole compensation, occur at
deep sub-�ee length scales accessible by the state-of-the-art
scanning techniques [23–26].

A quantity that plays the key role in our analysis, yielding
a closed-form solution valid in the entire range of relevant
spatial scales, is the continued fraction [31]

�(k) = γ2 + z2

γ3 + z2

γ4+ z2
γ5+···

, z ≡ kvF /2, (2)

where k is the wave number, related to the spatial scale as
k ∼ 1/r. The quantities γm are the eigenvalues of the collision
operator of 2D electrons, a set of numbers that represent a
“genetic code” of the 2D electron system giving the relaxation
rates for different angular harmonics of the perturbed Fermi

surface [27,29]. Unusual hydrodynamic behaviors are known
to emerge as a consequence of different relaxation rates for
different angular harmonics [30,32,33]. The infinite continued
fraction �(k), defined in the usual way as a limit of finite
continued fractions, is well behaved, since the quantities γm

are finite and positive at large m. The quantity �(k) captures
all the intricacies of the nonlocal response in the presence of
momentum-conserving scattering.

As a remark, other powerful approaches relying on contin-
ued fractions have been used recently to tackle various aspects
of many-body dynamics [34–37].

We present a detailed analysis of transport induced by
a point current injector, a simple arrangement that mimics
Corbino geometry with a rich behavior spanning a wide range
of length scales as shown in Fig. 1. Fully accounting for
the collinear electron scattering, a process that dominates in
2D systems where electron hydrodynamics is currently be-
ing probed, our analysis predicts a current-induced potential
distribution

φ(r) =
∫

d2k

(2π )2
eikrφk, φk = I

2νe2�(k)
, (3)

where I is the net injected current, ν is the density of
states, and e is carrier charge. This result, derived assum-
ing electroneutrality, is valid at distances greater than the
Thomas-Fermi screening length λTF.

As a function of r the potential φ(r) exhibits three different
regimes and a hierarchy of length scales illustrated in Fig. 1.
The tomographic hydrodynamics spans a wide range of scales
in between the conventional ballistic and viscous regimes:

ξb < r < ξh, ξb � �ee, ξh � �ee, (4)

pushing the ballistic regime down to deep sub-�ee scales r ∼
ξb and pushing the onset of Navier-Stokes hydrodynamics up
to unusually large distances r ∼ ξh � �ee [the values ξb and
ξh are estimated below; see Eqs. (9) and (11)]. We predict a
power-law behavior �(k) ∼ k1/3 in the tomographic regime,
which translates into a power-law dependence of the current-
induced potential [38]:

φ(r) ∝ Ir− 5
3 , ξb < r < ξh. (5)

It is a previously uncharted behavior that is manifested in
several surprising effects. One is that the small value ξb �
�ee indicates an expansion of the low-dissipation transport to
ultrashort distances. The origin of this striking behavior, illus-
trated in Fig. 1, is that the retroreflected holes compensate the
charge of the impinging electrons without current relaxation
(since the opposite-moving holes produce the same current as
the impinging electrons). As a result, the injected current will
flow without significantly perturbing the charge and potential
distribution in the system.

The large-r behavior is also unlike that of classical fluids,
where a point injector creates pressure gradients and an excess
dissipation confined to a thin layer r � �ee near the injector
and negligible at larger r [16,39]. Instead, tomographic hy-
drodynamics generates a power-law profile extending to much
larger distances r ∼ ξh � �ee.

The extinction of electric fields due to hole counterflow
resembles some aspects of Andreev hole retroreflection in
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superconducting–normal metal systems. In contrast, the be-
havior considered here is neither a low-temperature nor a
phase-coherent phenomenon, which superconductivity is. In
electron fluids it arises at elevated temperatures, becoming
prominent at the temperatures for which electron-electron
collisions dominate over other collision types. Still, in strong
resemblance to Andreev transport, superscreening arises from
retroreflected holes which retrace the ballistic paths of im-
pinging electrons.

A useful starting point for our analysis is the case when
all nonvanishing rates are equal, γm = γ , m �= 0,±1. While
it does not describe collinear scattering and tomographic
transport, the equal-rate model has been popular in the field
since it was introduced in Ref. [3]. In this case the continued
fraction is straightforward to evaluate, giving �(k) = 1

2 (γ +√
γ 2 + k2v2

F ). This gives a closed-form expression for the
potential distribution

φ(r) = I

2πνe2

∫ ∞

0
dk

kJ0(kr)

γ +
√

γ 2 + k2v2
F

. (6)

In the absence of scattering, γ = 0, using the identity∫ ∞
0 dxJ0(x) = 1, we recover the 1/r profile expected for a

radial flow of free particles: φ(r) = I
2πνe2vF r . In the presence

of scattering, γ > 0, the free-particle 1/r profile persists up
to r ≈ lee = vF /γ , dropping sharply to zero at larger r. Equa-
tion (6) predicts the dependence

φ(r) ≈ I

2πνe2vF r
e−λr/ξ , ξ = vF /2γ , (7)

with a dimensionless λ ≈ 1. The exponential falloff at r > ξ

marks the onset of the hydrodynamic flow.
In order to describe tomographic transport we must ac-

count for the effects of collinear collisions. In this case the
odd-m rates γm are much smaller than the even-m rates and
scale as m4 [29,30],

γm even = γ , γm odd = γ ′m4, m � m�. (8)

We assume that γ ′ � γ , which describes the regime of inter-
est T � εF (with γ ∼ T 2/εF , γ ′ ∼ T 4/ε3

F ). The odd-m rates
γm initially grow as m4, saturating at the even-m value γ at a
large m � m� = (γ /γ ′)1/4.

The current-induced potential, Eq. (3), is illustrated in
Fig. 1(b) for the ratio γ ′/γ = 5 × 10−8, with the wave num-
ber measured in units of �−1

ee = γ /vF (the details of evaluating
continued fractions are given in [31]). The value of γ ′/γ was
chosen to be extremely small to best illustrate the scaling
discussed below. The distinct behavior in the tomographic
regime will be observed as long as ξ−1

h � ξ−1
b , corresponding

to (γ ′/γ )
1
4 � 1. In practice, when γ ′/γ is small, one should

also be cautious of contribution of scattering off impurities to
the relaxation times of higher harmonics [40].

The predicted dependence φk asymptotes to a constant
at small k and to 1/k at large k. This checks with φ(r)
falling off abruptly at large distances and behaving as 1/r at
short distances, similar to the conventional transport, Eq. (7).
A new, tomographic regime with a power-law scaling φk ∼
k−1/3 occurs at intermediate k values, reflecting the behavior
at the length scales where transport is governed by collinear

collisions. Importantly, the new regime extends to abnormally
large distances r � �ee and starts at ultrashort sub-ballistic
distances r � �ee. This is a signature of particle-hole com-
pensation due to hole retroreflection that tends to screen the
current-induced potential all the way back to the source.

To demystify the origin of the extremely short screening
length we note that the backreflection of the hole is misaligned
from the direction of the outgoing electron by a small angle
δθ ∼ m−1

∗ ∼ (T/εF )1/2 ∼ (γ ′/γ )1/4 [27]. After a collision,
the hole will return on average to a point in space offset by the
distance ξb ≈ �eeδθ ∼ �ee(γ ′/γ )1/4 from the electron source.
This is illustrated in the middle panel of Fig. 1(a): the holes
flow outside the circle r ≈ ξb. This estimate coincides with
the ballistic-tomographic crossover length ξb found below,
Eq. (11).

To gain insight into the scaling regimes pictured in Fig. 1,
we develop an analytic approach which yields a closed-form
result for φk and establishes the exact value of the scaling
exponent. This will be done through analyzing the behavior
of continued fractions �(k) vs k.

First, having in mind that k values and distances are related
as r ∼ 1/k, we expand Eq. (2) in small k. This gives �(k) =
γ2 + k2v2

F /4γ3 + O(k4). Equation (3) then predicts potential
decaying at large r as φ(r) ∼ r−1/2e−r/ξh with

ξh = vF

2
√

γ2γ3
∝ εF

T
�ee (9)

a length scale that can be identified with the onset of Navier-
Stokes hydrodynamics. As discussed above, the abnormally
large value ξh reflects proliferation of the tomographic regime
to large distances.

At large k, in contrast, one has to analyze the whole con-
tinued fraction, taking the limit γm � |z|. Despite this being a
subtle limit to take, the end result is easy to understand from
the self-consistent relation

�(k) = lim
γm�z

⎛
⎝γ2 + |z|2

γ3 + |z|2
γ4+···

⎞
⎠ = |z|2

�(k)
. (10)

This relation predicts �(k) = |z| = kvF
2 . Equation (3) then

yields the potential that matches our expectation for a ballistic
flow near the source:

φ(r) = I

2πνe2vF r
, r < ξb = 3

vF

γ

(
γ ′

γ

) 1
4

� �ee. (11)

A surprising finding here is the ultrashort range of distances
where the ballistic flow occurs. While a superficial inspection
of Eq. (10) might suggest that the scale ξb coincides with
�ee = vF /γ , a correct estimate which accounts for a large
number of terms in the continued fraction predicts abnormally
short values ξb � �ee. As discussed above, this indicates that
the ballistic behavior is largely overridden by the tomographic
effects.

To derive the scaling behavior in the tomographic regime,
we start with the following observation. In general, γm in
Eq. (13) depends on m, with large differences between succes-
sive even and odd m. To capture this behavior in a simplified
model, we set γm = γe for all even m and γo for all odd m,
ignoring the m dependence of γe and γo. In this case, �(k) can
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be evaluated exactly:

�(k) = 1

2

√
γe

γo

(√
γoγe +

√
γoγe + k2v2

F

)
. (12)

This motivates introducing “level-m” partial continued frac-
tions, defined as

�m(k) = γm + |z|2
γm+1 + |z|2

γm+2+···
. (13)

These quantities can be evaluated similarly, giving

�m(k) = bm

2

(√
γoγe +

√
γoγe + k2v2

F

)
, (14)

where bm = √
γe/γo for even m and bm = √

γo/γe for odd
m. When the even/odd parity separation of γm is significant,
γe � γo, the quantities �m are much larger for even m than
for odd m. However, despite this even/odd beating effect, �m

remains nearly constant for each individual parity of m.
Based on these observations, we expect that for a realistic

low-temperature model with γe(m) and γo(m) slowly varying
with m, �m for each individual parity will also be slowly
varying with m. It is then natural to analyze the dependence
�m vs m for a fixed parity. The quantity �(k) will then be
found by taking m = 2.

We therefore proceed to construct a recursion relation that
connects �m and �m+2. Taking a difference and using Eq. (13)
yields

�m − �m+2 = γm − γm+1�
2
m+2

γm+1�m+2 + |z|2 . (15)

It turns out, perhaps surprisingly, that this nonlinear relation
is greatly simplified after the substitution

�m = |z|2
γm−1

(
um

um+2
− 1

)
, (16)

which transforms it into a linear relation

|z|2
γm+1

um+4 + |z|2
γm−1

um =
(

γm + |z|2
γm−1

+ |z|2
γm+1

)
um+2.

By regrouping the terms, the relation above can be cast into
the form resembling a discretized second-order ODE:

1

2

( |z|2
γm−1

+ |z|2
γm+1

)
(um+4 − 2um+2 + um)

− 1

2

( |z|2
γm−1

− |z|2
γm+1

)
(um+4 − um) = γmum+2. (17)

We emphasize that these relations are totally general. Indeed,
our starting point is a tridiagonal system of equations for the
amplitudes of different harmonics [31]. In this case there is
a natural bipartite structure (the off-diagonal couplings are
between harmonics of different parity). Eliminating variables
of one parity yields a tridiagonal problem describing the other
parity. Hereafter we take m values to be even.

Since �m and γm, when restricted to a fixed parity, are both
slowly varying with m, we take Eq. (17) to continuous domain
by replacing the differences with derivatives

4
|z|2
γo

d2u

dm2
− 4|z|2 dγ −1

o

dm

du

dm
= γeu,

where γe(m) = γm and γo(m) = γm+1. This simplifies to

u′′ − γ ′
o

γo
u′ − γoγe

4|z|2 u = 0. (18)

In the continuous domain, Eq. (16) now reads

�(m) = −2|z|2
γou

du

dm
. (19)

We assume that γo and γe both converge to a constant value
γ for high harmonics, m � m�; then the values �m for m �
m� are given by the solution of the one-rate model 1

2 (γ +√
γ 2 + k2v2

F ). Therefore, we can write the boundary condi-
tion for Eq. (18) as

−2|z|2
γ u

du

dm

∣∣∣∣
m=m�

= �(m�) =
γ +

√
γ 2 + k2v2

F

2
, (20)

and proceed to solve Eq. (18) on the interval 0 < m < m� to
obtain the value of �m=2.

From now on we focus on the m4 model, Eq. (8), wherein
γo = γ ′m4, γe = γ . Then Eq. (18) becomes

u′′ − 4

m
u′ −

√
γ γ ′

4|z|2 m4u = 0. (21)

This equation, after introducing a new variable g =
√

γ γ ′
6|z| m3

and replacing u with w = u/g5/6, is transformed into the
Bessel equation for w(g), yielding a general solution

u = g5/6[C1I5/6(g) + C2I−5/6(g)], (22)

where Iα (g) is the αth-order modified Bessel function of the
first kind.

From Eq. (19), we know that constant prefactor of u does
not affect �(m) values. Thus the only quantity that remains
to be determined is the ratio C2/C1. When m varies from 0 to
m� = (γ /γ ′)1/4, g varies from 0 to g� = γ 5/4/(6γ ′1/4|z|), and
the boundary condition for u(g) at the right end of the interval
is given by Eq. (20),

− m�γ

6g�u

du

dg

∣∣∣∣
g=g�

= �(m�) > 0. (23)

When k � γ 5/4

3vF γ ′1/4 ≡ ξ−1
b , Eq. (23) requires � > 0 for g� �

1. However, the large-argument asymptotic expansions for
Iα (g) are exponentially growing in exactly the same way for α

and −α. This results in a monotonically increasing u, produc-
ing unphysical values �(m�) < 0. The only way to resolve this
conflict is to pick C2  −C1; then all terms in the asymptotic
expansion cancel out.

We therefore arrive at Eq. (22) with C1 = −C2. The quan-
tity of interest, �(k), corresponds to g|m=2 = 4

3

√
γ γ ′
|z| . Since for

k � ξ−1
h ∼

√
γ γ ′
vF

, the latter quantity is small, g|m=2 � 1, and
we can expand u in g � 1 [41]:

u = − 2
5
6

�
(

1
6

) + 2
5
6

�
(

11
6

)( g

2

)5/3
− 1

2
1
6 �

(
7
6

)( g

2

)2
+ · · · . (24)
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Plugging it in Eq. (19) gives the dependence

�(k) = �
(

1
6

)
3

2
3 2

4
3 �

(
5
6

) γ

(γ γ ′)
1
6

|z| 1
3 − 2− 2

3 γ , (25)

valid provided ξ−1
h � k � ξ−1

b , which is exactly the condi-
tion for the tomographic regime. For such k the first term in
Eq. (25) dominates, giving the power-law dependence �m=2 ∝
k1/3. This dependence, combined with Eq. (3), yields a r−5/3

scaling for the current-induced potential profile, Eq. (5).
When the separation between the length scales ξb and

ξh becomes smaller (i.e., γ ′/γ becomes larger), the second
(subleading) term in Eq. (25) cannot be neglected anymore,
producing a change in the apparent scaling exponent values,
�(k) ∝ kα and φ(r) ∝ r−2+α , α > 1/3.

Conveniently, the crossover to the ballistic dependence oc-
curs at abnormally short sub-�ee distances, where the r−5/3

potential is strong, lending tomographic behavior amenable
to state-of-the-art scanning probe techniques [23–26,42].
Besides the short length scales, detection of tomographic
transport is facilitated by the unique temperature dependence.
Indeed, the e-e collision rate responsible for the backflow
of holes will grow with temperature and, accordingly, po-
tential in the system will diminish; the temperature-induced
suppression will occur over a wide range of length scales,
including sub-�ee length scales. Simultaneously the length
scale ξb where the tomographic behavior sets in will become
shorter as temperature grows, providing a clear experimental
signature of superscreening.

We thank E. I. Rashba for insightful discussions of the
Thomas-Fermi screening effects in an out-of-equilibrium
current-carrying state of the Fermi gas. This work was sup-
ported by the Science and Technology Center for Integrated
Quantum Materials, NSF Grant No. DMR-1231319; Army
Research Office, Grant No. W911NF-18-1-0116; and a Bose
Foundation research fellowship.

APPENDIX A: CONTINUED FRACTION FORMALISM
FOR A POINT SOURCE

1. Transport equation

To model the behavior of space charge in the presence
of quasiparticle scattering, we will assume a weak deviation
from equilibrium and use the linearized transport equa-
tion with the collision term Iee describing two-body scattering:

(∂t + v · ∇r − Iee )δ f (p, r) + eE · v
∂ feq

∂ε
= sp,r. (A1)

The source term sp,r = s0δ(r)(−∂ feq/∂ε) represents an injec-
tor, here without loss of generality placed at the origin. The
electric field is due to the space charge induced by the flow,
E(r) = −∇δφ(r), with the space-charge potential

δφ(r) =
∫

d2r′ eδn(r′)
κ|r − r′| , δn(r) =

∑
p

δ f (p, r), (A2)

where κ is the effective dielectric constant. The solution of
this problem will describe restructuring of the flow, ballistic
near the source and tomographic at larger distances (Fig. 1).
It will also account for the nonlocal field-charge response,

Eq. (A2), through the change in E due to a current-induced
deviation in the carrier distribution from equilibrium, as well
as the Thomas-Fermi screening.

It will be convenient to transform our problem to an
auxiliary easier-to-solve problem for a fictitious free-particle
distribution f̃ (p, r) obtained by self-consistently shifting the
local chemical potential by an amount that depends on the lo-
cal carrier depletion. The new problem, described by Eq. (A1)
with E = 0, will then be solved in a closed form in the Fourier
representation.

We first rewrite Eq. (A1) by taking the perturbed distribu-
tion and its potential to be a plane wave

δ f (p, r) = δ fk(p)eikr−iωt , δφ(r) = δφkeikr−iωt , (A3)

to obtain

(−iω + ik · v − Iee )δ fk(p) − ik · veδφk
∂ feq

∂ε
= sp,r, (A4)

where eδφk = U (k)δnk are harmonics of the current-induced
space-charge potential, with U (k) = 2πe2

κk the 2D Coulomb
potential form factor.

In the regime of interest, T � EF , the perturbed distri-
bution δ f is concentrated near the Fermi level and can be
represented by angular harmonics describing the Fermi sur-
face modulation evolving in space and time,

δ fk(p) = −∂ feq(p)

∂ε

∞∑
m=−∞

δ fmeimθ , (A5)

where θ is the angle parameter on the Fermi surface. For
conciseness, we will suppress the dependence of the harmon-
ics δ fm on the wave number k, Eq. (A3), restoring it at the
end. The factorization into the radial and angular dependence
described by − ∂ feq (p)

∂ε
and the sum of harmonics δ fmeimθ , re-

spectively, is an approximation that captures the behavior of
the low-lying excitations in a Fermi gas at T � EF .

Because of the cylindrical symmetry, the collision operator
is diagonal in the eimθ basis,

Ieeeimθ = −γmeimθ , (A6)

with the eigenvalues γm describing the relaxation rates for
different angular harmonics of the perturbed distribution. Dif-
ferent values γm account for different scattering processes in
the system. Here we analyze the two-rate model [29,30] in
which the odd-m rates γm are much smaller than the even-m
rates at small enough m, and scale as m4. As m grows the odd-
m and even-m rates eventually become equal. The dependence
γm vs m can be described as

γm even = γ , γm odd = 1
1

γ ′m4 + 1
γ

. (A7)

The parameter values of interest at temperatures T � εF cor-
respond to γ ′ ∼ T 4/ε3

F much smaller than γ ∼ T 2/εF and,
in addition, γm=0 = γm=±1 = 0 for the zero-mode harmonics.
The crossover value m above which the even-m and odd-m
rates become approximately equal,

m = m� = (γ /γ ′)1/4, (A8)

grows as
√

εF /T with temperature decreasing, T � εF .
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2. Computing the response function

A transformation to an auxiliary problem for a fictitious
free-particle distribution can now be achieved as follows. We
first note that the field term in Eq. (A4) is a product of the
p harmonic ikv and an angle-independent function δφk

∂ feq

∂ε

that depends on the injected current. This structure can be
exploited to absorb the field term into the streaming term
ikvδ fk(p) by introducing an auxiliary distribution function δ f̃
for which the m = 0 harmonic is rescaled by the dielectric
function

εk = 1 + νU (k) (A9)

with ν the density of states at the Fermi level, whereas other
harmonics remain unchanged:

δ f̃m=0 = εkδ fm=0, δ f̃m �=0 = δ fm �=0. (A10)

The new distribution δ f̃ obeys Eq. (A4) with δφk = 0; the
potential of the space charge is given in terms of δ f̃ by the
relation

φ(r) =
∑

k

eikr U (k)

εk
νδ f̃m=0(k), (A11)

where the density of states arises in the usual manner by
approximating the sum over the states near the Fermi level as∑

p − ∂ feq (p)
∂ε

= ν. The fictitious particle distribution δ f̃ obeys
the transport equation, Eq. (A4), in which the space charge
potential is suppressed:

(−iω + ik · v − Iee )δ f̃k(p) = −s0
∂ feq(p)

∂ε
. (A12)

A general solution of Eq. (A12) can be given in terms of
continued fractions. For that we exploit the structure of the
streaming term ivkδ f in Eq. (A12) which, in the angular
harmonics basis, represents a nearest-neighbor “hopping” that
couples harmonics m and m ± 1. This observation allows us
to rewrite Eq. (A12) as a system of coupled algebraic equa-
tions for the Fourier coefficients δ f̃m as follows:

(γm − iω)δ f̃m + izδ f̃m+1 + iz̄δ f̃m−1 = s0δm,0. (A13)

Here we defined a complex parameter z = v
2 (kx + iky), and

used the identity kv = ze−iθ + z̄eiθ .
The coupled equations in Eq. (A13) can be solved recur-

sively as follows. For m > 0 we define the quantities αm =
iδ f̃m+1/δ f̃m; in terms of αm the m > 0 equations read

γm + zαm − z̄

αm−1
= 0, (A14)

where from now on, for brevity, we suppress iω. These re-
lations can be transformed to a recursion relation αm−1 =

z̄
γm+zαm

and iterated over m + 1, m + 2, ..., to obtain

αm−1 = z̄

γm + |z|2
γm+1+ |z|2

γm+2+···

. (A15)

Similarly, for m < 0 we define the quantities βm =
iδ f̃m−1/δ f̃m; in terms of βm the m < 0 equations read

γm − z

βm+1
+ z̄βm = 0. (A16)

In this case, expressing βm+1 through βm as βm+1 = z
γm+z̄βm

and iterating over m − 1, m − 2, . . ., yields

βm+1 = z

γm + |z|2
γm−1+ |z|2

γm−2+···

. (A17)

We can now find the harmonic δ f̃0 from the m = 0 equation in
which we set γ0 = 0,

izδ f̃1 + iz̄δ f̃−1 = s0. (A18)

Writing δ f̃1 = −iδ f̃0α0 and δ f̃−1 = −iδ f̃0β0, substituting the
continued fraction representation for α0 and β0, and setting
γ1 = γ−1 = 0 yields a relation for the zeroth harmonic which
describes the space charge density:

δ f̃0 = s0

2�(k)
, �(k) = γ2 + |z|2

γ3 + |z|2
γ4+···

. (A19)

The continued fraction �(k) is well behaved at ω = 0, since
the quantities γm are finite and positive at large m. The ω de-
pendence, which can be obtained by an analytic continuation
from small ω values, will be discussed elsewhere.

Using the relation between the physical and fictitious m =
0 harmonics, δ f0 = 1

εk
δ f̃0 = 1

1+νU (k)δ f̃0, U (k) = 2πe2

κk , we can
write a closed-form expression for the harmonics of the po-
tential

φ(k) = νU (k)

1 + νU (k)
δ f̃0. (A20)

Combining this relation with the above result for δ f̃0 and
linking the source term value to the injected current,

s0 = I

eν
, (A21)

yields the representation of the current-induced potential in
terms of the continued fraction �(k), Eqs. (3) and (2), which
is exploited in the main text.

In agreement with the charge neutrality requirement, this
nonlocal relation turns into a local relation at distances
larger than the Thomas-Fermi screening length, r > λTF =
κ/2πe2ν, giving

φ(r) = δ f̃m=0(r). (A22)

This transformation, which replaces the actual distribution
f with a fictitious distribution f̃ obeying the free-particle
problem, provides a general recipe to analyze the space charge
buildup induced by currents in a nonequilibrium system. In-
deed, the net space charge density can be expressed through
the m = 0 harmonic as

δnk = νeδ fm=0 = νe

εk
δ f̃m=0. (A23)

This relation between the actual current-induced density
change and the fictitious free-particle density buildup can
be viewed as an extension of the Thomas-Fermi mean-field
screening theory to a nonequilibrium transport problem; as
such it is valid at first order in current.

The behavior of the potential is illustrated in Fig. 1(b). The
ratio of γ ′/γ that was used is 5 × 10−8 and the wave number
is measured in units of �ee. The infinite continued fraction is
computed by setting a large threshold value of m after which
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γm odd = γm even = γ and the rest of the continued fraction is
given by the explicit expression for the one-rate model. A very
small value of γ ′/γ was chosen to enlarge the range of length

scales spanned by the tomographic regime—more than four
decades in Fig. 1(b)—and exhibit the small deviations from
scaling discussed in the main text.
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