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Localized basis set for plutonium
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The implementation of optimal strictly localized atomic orbitals basis for plutonium (Pu) using norm-
conserving pseudopotential density-functional theory (DFT) is presented. The basis set was applied to the α,
β, γ , δ, δ′, and ε phases of Pu, δ-Pu surface, and δ-PuGa alloys. The computed properties of the Pu phases and
δ-Pu surface were in good agreement with both available experimental data and prior DFT calculations based on
plane-wave methodologies. Results for the δ-PuGa alloys were also in good agreement with experimental data.
The reliability of the basis set was further demonstrated by using ab initio molecular dynamics to model the
diffusion coefficient and activation barrier for atomic diffusion in a δ-PuGa alloy.
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I. INTRODUCTION

Considerable amounts of theoretical and computational
efforts have been devoted to the study of the structural, elec-
tronic, elastic, and defect properties of plutonium (Pu) and its
compounds and alloys within the past two decades [1–33].
The primary motivations for these efforts are the interpretation
of experimental data and to gain understanding of the detailed
mechanisms that dictate unusual behaviors of Pu, such as
the unusually large volume expansion from alpha plutonium
to delta plutonium. Furthermore, Pu material problems such
as radiation damage, rapid oxidation, and toxicity make Pu
experiments difficult to carry out. Hence, theoretical efforts
are particularly important because they can provide predic-
tive models in areas in which experimental measurements are
lacking.

Pu has the following unique properties: (i) a very high boil-
ing point (∼3200◦ C); (ii) large specific heats; (iii) dramatic
variations in its mechanical properties; and (iv) simultaneous
oxidation states (+3, +4, +5, +6) in aqueous solution. In
addition, Pu is extremely sensitive to alloying; it is one of the
least conductive metals (i.e., has a high electrical resistivity) at
room temperature. These unique properties of Pu are believed
to emanate from its 5 f electronic behavior. Pu is located at
a special position among the actinides, with the elements to
its left in the periodic table (from Ac to Np) having itiner-
ant/bonding 5 f electrons and the elements to its right (from
Am to Lw) having localized–nonbonding 5 f electrons. Thus,
the Pu 5 f electrons possess dual itinerant and localized 5 f
electrons (the so-called fluctuating Pu 5 f valence), which is
believed to be the origin of its physical and chemical com-
plexities.

Pu metal has six crystalline allotropes between room tem-
perature and its unusually low melting point of 640◦ C: α, β,
γ , δ, δ′, and ε. α-Pu exists at room temperature; it is a hard,
brittle, low-symmetry monoclinic crystal with a high mass
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density of 19.8 g/cm3 [34]. The α → β phase transformation
occurs at 122◦ C, coupled with a 10% volume expansion and a
density of 17.8 g/cm3 [35]. At 206◦ C, β → γ phase change
occurs with a volume expansion of 3.5%. At 310 ◦C, the
γ → δ phase change occurs with the volume expanding by
7% (thus, δ-Pu expands by 25% relative to α-Pu). δ-Pu is the
least dense of the six allotropes (its density is 15.9 g/cm3) and
widely used in engineering applications due to its ductility,
malleability, and stabilization to room temperature with a few
atomic percent of gallium and aluminum [36–47]. At 451◦ C,
the δ → δ′ phase change occurs with a small volume con-
traction of 0.5%. The final phase transformation from δ′ to ε

commences at 476◦ C, coupled with a 3% volume contraction.
An interesting question on Pu relates to magnetism. Ex-

periments by Lashley et al. indicated the absence of ordered
or disordered local magnetic moments in elemental Pu at low
temperatures [48,49]. A recent neutron spectroscopy experi-
mental investigation of Pu by Janoschek et al. [50] yielded
a different conclusion of magnetism in Pu: magnetism in
Pu is not “missing” but dynamic, and is driven by virtual
valence fluctuations. Theoretical studies on Pu, based on
density-functional theory (DFT), predict the existence of mag-
netic moments. Furthermore, standard DFT implicitly treats
the Pu 5 f electron states as band states, and hence the so-
called itinerant-to-localized 5 f electronic behavior, which is
attributed to the anomalous volume expansion from the α

phase to the δ phase may not be fully captured by DFT, unless
the localization is explicitly enforced via, say, the Hubbard
U term for the 5 f states. We must mention the itinerant-to-
localized 5 f electronic behavior from the α phase to the δ

phase is somewhat speculative in nature because, to the best
of our knowledge, no model has successfully described the
α-Pu 5 f electrons as delocalized and the δ-Pu 5 f electrons
as localized. Photoelectron spectroscopy (PES) experiments
indicate that the α-Pu and δ-Pu 5 f electronic states display
temperature-independent, narrow bands near the Fermi level
with the δ-Pu band being slightly narrower than that of α-Pu
[51,52]. However, the narrow nature of the 5 f density of states
near the Fermi level, as measured in PES experiments, is not
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accurately captured by DFT. DFT plus dynamical mean-field
theory (DFT + DMFT), has been used to calculate the pho-
toemission spectra of δ-Pu, which was good agreement to
experiment [6,12,18,27,30,31]. Quite recently, Amadon [26]
employed DFT + DMFT to reproduce the energies, atomic
volumes, and bulk moduli of some of the Pu allotropes in-
voking a small U value of less than 1 eV. However, it was
not applied to the low-symmetry α- and β phases of Pu, due
perhaps to the computational cost involved.

Despite the aforementioned limitations of DFT, there are
numerous results which suggest that DFT adequately de-
scribes a significant number of Pu properties, such as the
structural, thermodynamical, and elastic properties (see, for
example, Söderlind et al. [4] and the references therein).
Specifically, the advantages of the application of DFT to
Pu far outweighs its limitations, and thus DFT can be quite
useful in the predictive modeling of Pu-based systems, es-
pecially for difficult material-science problems, such as Pu
aging and corrosion, that require significant large atomic
supercells.

Herein, we show that DFT based on strictly localized
atomic orbitals basis and norm-conserving pseudopotentials
can be employed to adequately describe Pu and Pu-based
materials. The key advantage of this approach is the reduction
of computational cost of DFT calculations, while sufficiently
preserving computational accuracy. We will demonstrate the
reliability of the method by computing the structures, ener-
getics, and other properties of Pu allotropes, Pu surfaces, and
δ-PuGa alloys.

II. COMPUTATIONAL METHODOLOGY

All the calculations reported in this work were performed
using the DFT code SIESTA [53–56]. SIESTA is based on the
linear combination of atomic orbitals method together with
norm-conserving pseudopotentials for ion-electron interac-
tions, and a real-space grid for the representation of charge
density and potentials. However, the key distinction about
SIESTA is that it employs strictly localized numerical atomic
orbitals as basis (see Sec. II A below).

Throughout the remainder of this paper, scalar rel-
ativistic spin-polarized calculations were performed with
the Perdew-Burke-Ernzerhof parametrization of the GGA
exchange-correlation functional [57]. The valence electron
interactions with the atomic Pu core regions were approxi-
mated using norm-conserving Hamann pseudopotentials [58]
modified into a separable form, as suggested by Kleinman
and Bylander [59]. Seventy-eight electrons were treated in the
core region and the valence region was represented by the
6s2 6p6 5 f 5 6d1 7s2 configuration; the cutoff radii (in bohrs)
for the Pu s, p, d, and f states were 1.95, 1.95, 2.20, and
1.55, respectively. The Monkhorst-Pack method [60] was used
to generate the k-point grid for the Brillouin-zone integration
(the k-point grid density depends on the structure and will be
clearly stated in a latter section). The first-order Methfessel-
Paxton electronic smearing function [61] with a width of
kBTel, where Tel = 300 K is the electronic temperature, was
employed to speed up the convergence of the self-consistent
iterations.

A. Generation of optimal strictly localized basis set for Pu

Here, we give an overview of the procedure for generating
the optimal localized basis orbitals. Only the basal informa-
tion is provided; the reader should refer to Artacho et al. and
Junquera et al. [55,62,63] for the finer details. A basis orbital
as implemented in SIESTA is the product of a numerical radial
function ψIln and a spherical harmonic Ylm on atom I located
at position RI :

φIlmn(r) = ψIln(|rI |)Ylm(r̂I ), (1)

where rI = r − RI , with r being the electronic coordinate and
{n, l, m} being the usual quantum numbers. The numerical
radial function ψIln is localized such that it is strictly zero
beyond a certain orbital cutoff radius rc

l . The strict localization
of ψIln makes the SIESTA Hamiltonian and overlap matrices
sparse and speeds up the matrix manipulations. ψIln is the nu-
merical solution of radial Kohn-Sham equation of an isolated
pseudoatom in a soft confining potential V conf

l (r):[
h̄2

2m

1

r

(
− d2

dr2
r + l (l + 1)

r

)
+ V ps

l (r) + V conf
l (r)

]
ψIln(r)

= ElψIln(r), (2)

where V ps
l is the norm-conserving pseudopotential and the soft

confining potential V conf
l (r) takes the form

V conf
l (r) = v0

l

exp
[−(

rc
l − ri

l

)
/
(
r − ri

l

)]
rc

l − r
. (3)

Here, ri
l defines the onset of the confinement and rc

l is end
of the confinement (i.e., ψIln vanishes for r � rc

l ).
After carrying out preliminary studies by using basis sets

of different sizes with the goal of achieving a balance between
accuracy and efficiency, we settled on the following choice of
basis for Pu: one radial function each for the 6s shell (one
orbital), 6p shell (three orbitals), 6d shell (five orbitals), 5 f
shell (seven orbitals), 7s shell (one orbital), and 7p shell (three
orbitals). This results in a total of 20 basis functions per Pu
atom. We optimized the basis-set parameters by solving the
following minimization problem with δ-Pu as the reference
crystal system [62,63]:

min
{ψμ}

[E (ψμ) + PV (ψμ)], (4)

where ψμ ≡ ψμ(v0
μ, rc

μ, ri
μ) is the orbital labeled by index

μ, E (ψμ) is the total DFT energy of the reference system,
V (ψμ) ≡ 4

3π
∑
μ

(rc
μ)3 is the total volume of the orbitals, and P

is a fictitious pressure which serves to control the compactness
of the orbitals: choosing a small value of P results in large
orbital radii and low system energies; choosing a large value
of P results in small orbital radii and relatively high system
energies.

The basis-set optimization was carried out using the Sim-
plex method (see Fig. S1 in the Supplemental Material [64]).
The fictitious pressure P was set to 0.02 GPa. The pa-
rameters were generated using a 4-atom face-centered-cubic
conventional unit cell for δ-Pu with an antiferromagnetic spin
ordering used as the reference system. The optimal basis pa-
rameters of each of the valence shells are reported in Table I.
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TABLE I. Parameters defining the basis set for Pu.

6s 6p 6d 5 f 7s 7p

rc
μ (bohrs) 5.374 4.000 8.473 6.950 8.500 8.027

ri
μ (bohrs) 5.000 3.741 8.000 6.387 8.000 5.812

V 0
μ (Ry) 183.277 236.429 228.740 195.672 216.492 155.579

B. Calculations

Having obtained an optimized basis set described in the
previous section, we applied it to an array of systems: α, β,
γ , δ, δ′, and ε phases of Pu, δ-Pu(111) surface, O, H, O2,
and H2 adsorbates on the δ-Pu(111) surface at a low coverage

 = 1/16, and δ-Pu1-xGax alloys, where 0.9% � x � 8.3%.
Listed in Table II are the system sizes and the correspond-
ing Monkhorst-Pack k-point grid used for the Brillouin zone.
For each structure, 1k antiferromagnetic (AFM) spins (spins
along a coordinate axis), 2k AFM spins (spins lying in a
two-dimensional plane), or 3k AFM spins (spins lying in a
three-dimensional plane) were imposed on the Pu atoms to
determine the lowest energy structure. The atomic positions
of the unit cell, lattice parameters, and spin configuration for
each Pu structure are reported in the Supplemental Material
[64]. It should be noted that for the calculations on the phases
of elemental Pu, supercells were used to accommodate all
the possible spin configurations and to reduce the potential
influence of finite-size effects on the energies due to periodic
boundaries. For example, a 2 × 2 × 2 supercell of δ-Pu with
32 atoms was used in lieu of a 4-atom conventional face-
centered-cubic unit cell and a 2 × 2 × 2 supercell of ε-Pu
with 16 atoms was used in lieu of a 2-atom conventional
body-centered-cubic unit cell.

Regarding the structural relaxations, each system was fully
relaxed subject to the following criteria: the magnitude of the
maximum magnitude of the atomic force along each coordi-
nate direction was less than 0.001 eV/Å and the maximum
magnitude of the stress tensor element was less than 0.01 GPa.
For the phonon calculations, the small displacement method
was employed whereby the force-constant matrix was con-
structed by displacing one atom at a time along each of the
six Cartesian directions (±x, ±y, ±z) by 0.04 bohrs. The

dynamical matrix (mass-adjusted force-constant matrix) was
then diagonalized to obtain the squared phonon frequencies.

III. RESULTS AND DISCUSSION

A. Properties of Pu phases

Listed in Table III are the total energy, spin magnetic mo-
ment, optimized lattice parameters, and bulk moduli of the
phases of Pu. For the purposes of comparisons, the experimen-
tal parameters, and past theoretical results, where available,
are also listed. The equilibrium V0 and bulk modulus B0 were
obtained by fitting the energy-volume data for each system to
the Birch-Murnaghan equation of state [65,66].

A necessary condition for a DFT Hamiltonian to be cred-
ible or realistic is that it should yield the correct energetic
ordering for the different temperature-dependent phases of a
given material. Looking at the total energies of the different
allotropes in Table III, we observe that the SIESTA Hamiltonian
satisfies this criterion as E (α-Pu) < E (β-Pu) < E (γ -Pu) <

E (δ-Pu) < E (δ′-Pu) < E (ε-Pu). The energy difference per
atom between α-Pu and β-Pu is much higher in our calcu-
lations (5.59 mRy per atom) compared to that of Söderlind
et al. [3] (1.1 mRy per atom). However, the energy differences
of the γ , δ, and δ′ phases from the β phase are comparable in
both calculations. It must also be pointed out that the calcu-
lations by Söderlind et al. [3] included spin-orbit coupling,
whereas our calculations were performed at the scalar rela-
tivistic level. The small energy differences between the β, γ , δ
and δ−’ phases suggest that the thermodynamic factors which
drive the phase changes are very subtle. It would be interesting
to know the kinetic barriers and the associated transition states
between the phases; this would require large systems sizes
and constant-pressure ab initio molecular dynamics across
multiple temperature scales and will be addressed in a future
work.

The lattice parameters, their ratios, and atomic volumes
reported in Table III are in reasonable agreement with ex-
perimental data. The monoclinic angles for α-Pu and β-Pu
also agree well with experiment. The percent deviations of
the atomic volumes of the α, β, γ , δ, δ′, and ε phases from
the experimental values are −6, +5.1, +3.4, −0.1, −1.5,
and −8.5%, respectively. The volume contraction observed in
α-Pu (i.e., overbinding) is even more severe using plane-wave

TABLE II. Summary of the different systems on which calculations were performed. N is the total number of atoms.

System N k-point grid Calculation

α-Pu 16, 96a 6 × 10 × 4, 2 × 2 × 2a Relaxation, phononsa

β-Pu 34 6 × 4 × 8 Relaxation
γ -Pu 16 8 × 8 × 4 Relaxation
δ-Pu 32, 125a 6 × 6 × 6, 2 × 2 × 2a Relaxation, phononsa

δ′-Pu 16 8 × 8 × 6 Relaxation
ε-Pu 16 8 × 8 × 8 Relaxation
δ-Pu(111)-p(2 × 2) clean surface 8, 16, 24, 32 6 × 6 × 1 Relaxation
X-(4 × 4)/δ-Pu(111), X= O, H, O2, and H2 97, 98 3 × 3 × 1 Relaxation
δ-Pu1−xGax alloys (0.9% � x � 8.3%) 108 3 × 3 × 3 Relaxation
δ-Pu1−xGax , x = 4.6 at. % Ga 108 3 × 3 × 3 EXAFS
δ-Pu1−xGax , x = 3.2 at. % Ga 124 1 × 1 × 1 Ab initio molecular dynamics

aThe asterisk symbol denotes systems used for phonon calculations.
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TABLE III. Properties of Pu allotropes, where E is the total energy; S is the average magnitude of the spin magnetic moments; a, b, and c
are the lattice constants, V0 is the equilibrium atomic volume, and B0 is the zero-pressure bulk modulus.

Lattice parameters

Method E (mRy per atom) S (μB per atom) a (Å) b/a c/a θ (◦ ) V0 (Å3 per atom) B0 (GPa)

α-Pu This work 0 2.65 6.090 0.7602 1.790 101.85 18.80 83.3

Past DFT works 0 [3], 0 [67] 0.75 [8] 1.79 [8] 101.5 [8] 20.2 [3], 19.3 [8], 18.5 [67], 17.8 [26] 57.4 [8], 101 [67], 141 [26]

Experiment 6.184 [34] 0.7801 [34] 1.774 [34] 101.8 [34] 20.0 [34], 19.5 [68] 72 [69], 70 [70], 70.9 [68]

β-Pu This work 5.59 5.21 9.188 1.203 0.859 91.34 23.58 47.0

Past DFT works 1.1 [3] 22.7 [3]

Experiment 9.284 [35] 1.1270 [35] 0.847 [35] 92.13 [35] 22.43 [35] 39.8 [69]

γ -Pu This work 5.68 5.32 3.140 1.881 3.289 23.94 39.1

Past DFT works 1.1 [3], 8.0 [67], 7.3 [26] 23.5 [3], 21.9 [67] 44.4 [67]

Experiment 3.159 [71] 1.826 [71] 3.217 [71] 23.14 30.3 [69], 40.6 [70]

δ-Pu This work 6.61 5.21 4.643 1 0.995 24.90 34.6

Past DFT works 1.5 [3], 9.0 [67], 15.4 [26] 25.2 [3], 24.7 [8], 23.4 [67] 41 [3], 39.1 [8], 54.8 [67]

Experiment 4.637 [72] 1 [72] 1 [72] 24.93 [72] 37.8 [69]

δ′-Pu This work 7.00 5.09 3.331 1 1.320 24.41 41.1

Past DFT works 1.8 [3], 8.8 [67] 25.1 [3], 23.1 [67] 25.1 [3], 44 [67]

Experiment 3.339 [72] 1 1.332 [72] 24.78 [72]

ε-Pu This work 10.55 4.71 3.532 1 1 22.03 55

8.1 [3], 12.9 [67], 14.0 [26] 24.6 [3], 21.2 [67] 20.9 [26] 23 [3], 47.2 [73], 34 [26]

Experiment 3.638 [72] 1 1 24.07 [72]

DFT without orbital polarization (∼10% contraction) [8]. The
ground-state structure of β-Pu shows a sizable expansion.
We found spin configurations for β-Pu that yielded atomic
volumes in near-perfect agreement with experiment; unfortu-
nately, such spin configurations violate the energetic ordering,
that is, E (β-Pu) > E (γ -Pu), and hence they were not fully
pursued. The volume of δ-Pu is particularly impressive be-
cause plane-wave DFT calculations normally yield a volume
deviation of 9% compared to experimental data due to a strong
tetragonal compression of c/a = 0.942 [8], whereas it is very
small in our calculations with c/a = 0.995. It must be stated
that the inclusion of spin-orbit coupling and orbital polariza-
tion in plane-wave DFT calculations eliminates the tetragonal
compression problem [8]. Rudin [28] has shown that the use
of noncollinear 3k antiferromagnetic (AFM) spin arrangement
for δ-Pu yields a perfect face-centered-cubic (fcc) geometry.
However, we found that the 3k AFM spin arrangement for
δ-Pu results in a higher energy structure compared to the usual
1k AFM spin arrangement. The computed bulk moduli of all
the phases are generally in good agreement with experimental
data, with the best agreement being that for δ-Pu.

α-Pu and β-Pu are monoclinic crystals with nonuniform
bond-distance distributions; α-Pu has a total of 8 distinct
atoms (with 16 atoms in its unit cell), while β-Pu has 7 distinct
atoms (with 34 atoms in its unit cell). To further characterize
the local internal structures of α-Pu and β-Pu, we computed
the volumes of the Voronoi cells around the various types of
atoms in each crystal. The Voronoi cell, VorS ( �R), around an
atom at position �R is defined as the set S of all points closest
to �R:

VorS ( �R) = {�r : �R ∈ arg min
�x∈S

‖�x − �r‖2}. (5)

Using this definition, we computed the Voronoi cell vol-
ume centered on each unique atom in α-Pu and β-Pu; this

is depicted in Fig. 1. From the figure, we see a consistent
trend between theory and experiment. This implies that the
local atomic arrangements are similar in the optimized struc-
tures and experimental structures. Certainly, the theoretical
Voronoi cell volumes for α-Pu are contracted relative to the
experimental volumes, which is consistent with the α-Pu
atomic volumes in Table III. The trend in α-Pu has been
observed in previous plane-wave DFT calculations by Sadigh
et al. [7]. Similarly, theoretical Voronoi cell volumes for β-Pu
are contracted relative to the experimental volumes, in agree-
ment with the β-Pu atomic volumes in Table III. It is worth
noting the Voronoi volume in α-Pu is largest at site 8, while
the volume is smallest at site 1. In fact, the volume at site 8
is 20% larger than that of site 1 because site 8 has the largest
number of long bonds and nearest neighbors (13 long bonds

FIG. 1. Voronoi cell volumes around the eight types of atoms in
α-Pu and seven types of atoms in β-Pu.
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FIG. 2. The 5 f electron density of states of the α, β, γ , δ, δ′, and
ε phases of Pu. The dashed vertical line is the Fermi level.

+3 short bonds, yielding 16 neighbors), while site 1 has the
least (7 long bonds +5 short bonds, yielding 12 neighbors).
For β-Pu, site 2 has the largest volume (11 long bonds + 3
short bonds, yielding 14 neighbors), while sites 1, 3, and 7
have notably small volumes (sites 1, 3, and 7 each have 12
nearest neighbors and 8, 9, and 7 short bonds respectively);
the volume of site 2 is ∼10% greater than sites 1, 3, and 7. The
implication of the Voronoi volume variations between sites in
α-Pu and β-Pu is that the 5 f electron states are localized at
the sites with large volumes (more long bonds) and itinerant
at sites with small volumes (more short bonds) [7,32].

In Fig. 2, we depict the 5 f electronic density of states
(DOS) for each Pu allotrope. First, as expected, α-Pu has
the least intensity at the Fermi level. The intensity almost
doubles for β-Pu and increases slightly thereafter for the
remaining allotropes. Because α-Pu has the smallest atomic
volume, the 5 f bands overlap much more strongly, yielding
broad valence bands well below the Fermi level. With the
onset of the volume expansion to the β phase, the 5 f valence
bands begin to get narrow and shift towards the Fermi level.
The narrow feature in the bands continues into the γ , δ, δ′,
and ε, with the majority of δ and δ′ showing strong peaks
just below the Fermi level. The width and intensity of the
valence 5 f bands is generally associated with the degree of
the electron correlation. Electron correlations are stronger in
δ-Pu than in α-Pu so the 5 f DOS intensity of δ-Pu near the
Fermi level is expected to be slightly greater than that of α-Pu.
However, the δ-Pu 5 f DOS in Fig. 2 is much greater than that
of α-Pu when compared to photoemission experiments [51].
The overestimation of the δ-Pu intensity is attributed to the
absence of spin-orbit coupling and orbital polarization in our
calculations, both of which are necessary to capture important
electron-correlation effects in δ-Pu (see Soderlind et al. [4]
for a realistic comparison of the 5 f DOS of α-Pu and δ-Pu).
In addition, the crystal-structure distortion akin to a Peierls
distortion in α-Pu plays a role in reducing its 5 f DOS intensity
at the Fermi level.

Figure 3 shows the computed phonon-dispersion curves for
δ-Pu alongside experimental measurements by Wong et al.
[74] Our spectrum was calculated at 0 K, while the experimen-
tal spectrum was measured at 300 K on δ-Pu alloyed with 2

FIG. 3. Comparison of the computed phonon-dispersion curves
for δ-Pu with experiment measurements for δ-PuGa alloy (2 at. %
Ga) at 300 K from Wong et al. [74].

at. % Ga. Clearly the computed spectrum shows discrepancies
with the experimental data. This discrepancy with experiment
has been observed in previous calculations [11,12,22], possi-
bly due to the combined effects of temperature, the presence
of Ga, and self-irradiation damage in the experimental mea-
surements. Also, the computed spectrum is based solely on the
harmonic approximation and hence anharmonic effects are not
captured. Quite recently, Söderlind et al. [29] employed the
self-consistent ab initio lattice dynamics (SCAILD), which
goes beyond the harmonic approximation and takes anhar-
monic effects into account, to compute the phonon dispersion
for δ-Pu with a noncollinear 3k AFM spin configuration,
yielding the best match with experiment thus far, but even
SCAILD failed to capture the soft experimental longitudinal
transverse mode along the � → L direction, which could be
possibly due to the metastability of δ-Pu. As stated earlier,
the 3k AFM spin configuration yielded a higher energy for
δ-Pu than the 1k (and 2k) AFM structure, and hence 3k
AFM spins were not used in our analysis. As stated earlier,
spin-orbit coupling and orbital polarization capture important
electron-correlation effects in δ-Pu, and thus, their inclusion
in δ-Pu phonon calculations will result in a much-improved
description of the phonon dispersion [22,29] compared to
what is currently presented.

In Fig. 4, the phonon density of states for α-Pu is shown
alongside the data obtained from inelastic x-ray scattering
measurements by Manley et al. [75] Again, our spectrum

FIG. 4. Comparison of the computed phonon density of states
α-Pu with experimental data 300 K by Manley et al. [75].
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TABLE IV. Surface energy and work function of the (111) sur-
face of δ-Pu.

N γ (J/m2)  (eV)

2 1.08, 1.04 [77] 3.0, 3.3 [77]
4 1.10, 1.03 [77] 3.0, 3.4 [77]
6 1.11, 1.02 [77] 3.0, 3.4 [77]
8 1.09 3.0

was calculated at 0 K, while the experimental spectrum was
measured at 300 K. The match of theory with experiment
is good up to 13 meV. Beyond 13 meV, the theoretical vi-
brational frequencies are larger, with the discrepancy largely
due to the absence of thermal effects (and hence anharmonic
effects) in the theoretical calculations. A similar discrepancy
was observed in a recent calculation by Söderlind and Yang
[2]. Overall, the computed α-Pu phonon spectrum matches
the corresponding experimental data much better than δ-Pu,
which, perhaps, is due to the fact that α-Pu is weakly corre-
lated compared to δ-Pu.

B. Properties of the clean and absorbate-covered (111) Surface
of δ-Pu

Previous DFT studies have shown that the clean (111)
surface of δ-Pu is the most stable [76,77]; in fact the (111)
surface is the most stable surface of fcc metals [78]. We
thus decided to evaluate the performance of the basis on
the δ-Pu(111) surface by computing basic surface properties.
The surfaces were modeled by periodic slabs of N atomic
layers, where N = 2 − 8, plus a vacuum region of 30 Å. A
p(2 × 2) surface unit cell (4 Pu atoms per layer) was used. An
antiferromagnetic configuration of type 1k, which consists of
alternating layers of up- or down-spin atoms along the c axis,
was employed. The stability of a surface is characterized by
its surface energy, γ , which is computed as follows:

γ = 1

2A
(E (N ) − NEbulk ). (6)

In the definition of γ , A is area of the surface unit cell,
E (N ) is the total energy of a slab with N layers, and Ebulk is
the total energy per atom of the bulk δ-Pu. Another impor-
tant surface parameter is the work function , which is the
smallest energy required to liberate an electron from the bulk
location to a point in the vacuum outside the surface.  is
computed as

 = V (∞) − EF , (7)

where V (∞) is the Coulomb electrostatic potential in vacuum
and EF is the Fermi energy

In Table IV, the values of γ and  for the slabs are
reported. Also reported are the data from accurate pre-
vious full-potential relativistic DFT calculations of Gong
and Ray [77]. We observe that our reported values of γ

(1.08–1.11 J/m2) show very good agreement with the past
data (1.02–1.04 J/m2). Our work-function values, while in-
dependent of the slab thickness, show a near-constant shift of
∼0.4 eV from that of the full-potential results by Gong and
Ray [77]. This is because there are no localized basis sets to

describe the region away from the surface towards the vacuum
region (since the bases are atom centered), whereas in the
full-potential plane-wave method, that region is described by
plane waves (since the plane waves are delocalized throughout
the cell). The lack of a basis function in the region affects the
electrostatic potential and hence the work function.

δ-Pu corrodes rapidly when exposed to environmental
gases, particularly hydrogen and oxygen. However, very little
is known about the pertinent surface mechanisms that drive
the corrosion of Pu via the formation of oxides and hydrides.
In this regard, the atomistic knowledge of the chemical reac-
tivity of O, H, O2, and H2 on the plutonium surfaces could
be beneficial to experiments. More specifically, studies on the
adsorptions of O, H, O2, and H2 on the plutonium surfaces are
very important because they provide some insights into the
precursors of corrosion. We thus computed the local adsorp-
tion geometry, adsorption energy, and electronic structure of
each of the species on the δ-Pu(111).

The adsorptions were simulated by placing a single adsor-
bate on the face of a six-layer slab with p(4 × 4) surface unit
cell (16 atoms per layer); this corresponds to an adsorbate
coverage of 1/16 monolayers. The p(4 × 4) surface unit cell
has a large enough area to avoid interactions between the
absorbate and its periodic image. Figure 5 depicts a clean
six-layer slab with p(4 × 4) surface unit cell and the four
adsorption sites. The adsorption sites are onefold-coordinated
top site T (adsorbate is placed at a position directly on top of
a Pu atom on the topmost layer); twofold-coordinated bridge
site B (adsorbate is placed at the midpoint of two neighbor-
ing Pu atoms on the topmost layer); threefold-coordinated
hollow-hexagonal close-packed (hcp) site H (adsorbate is
placed at a position directly on top of a Pu atom on the second
layer); and threefold-coordinated hollow-fcc site F (adsorbate
is placed at a position directly on top of a Pu atom on the
third layer). All the ionic positions were allowed to fully relax
with no geometry constraints so that the best minimum-energy
configuration could be obtained.

In adsorption calculations, the adsorption energy is com-
puted using either the atomic energy or molecular energy of
the adsorbate as the reference energy. Thus, for the purposes
of comparison, we computed the adsorption energy for each
adsorption configuration two ways: EA

ads is the adsorption
using the atomic energy of the adsorbate as the reference
and EM

ads is the adsorption using the molecular energy of the
adsorbate as the reference. The adsorption energy of a slab
with n units of the adsorbate is

EA
ads = 1

n
[E (slab + X ) − E (slab) − nE (X )], (8)

EM
ads = 1

n

[
E (slab + X ) − E (slab) − 1

2
nE (X2)

]
, (9)

where E (slab + X ) is the total energy of the adsorbate-slab
configuration, E (slab) is the total energy of the clean slab,
E (X ) is the total energy of atomic adsorbate X , and E (X2) is
the total energy of molecular adsorbate X2. E (X ) and E (X2)
were computed at the � k point by placing the atom or
molecule in a cubic box of length 60 Å.

The results of the adsorption calculations are presented in
Table V. All the adsorbates relaxed to the threefold H site
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FIG. 5. (a) Depiction of the side view of the slab model of the δ-Pu (111) with six layers of p(4 × 4) surface unit cells (ABCABC stacking).
(b) Top view depicting the top-site T (gold atom), bridge-site B (interstitial area), hollow-HCP site H (purple atom), and hollow-fcc site F
(silver atom).

or F site with degenerate energies, irrespective of the initial
adsorption site. The O and H adatoms obviously chemisorb
onto the surface, with chemisorption energies of −7.83 eV
(−5.04 eV) and −3.21 eV (−0.97 eV), respectively. The ener-
gies for O chemisorption are in good agreement with previous
DFT calculations by Atta-Fynn et al. [79] and Hernandez et al.
[80] While results for atomic H chemisorption agree with
those of Huda et al., some deviation is shown in the results
of Mullen et al. [81], with the reason possibly being that
the calculations by Mullen et al. were based on the DFT+U
methodology. The inclusion of U enhances the localization
of the Pu 5 f states and thus reduces the overlap between
the Pu 5 f states and H 1s state, leading to an increase in
the H chemisorption energy by Mullen et al. [81] relative to
our DFT chemisorption energy. Furthermore, Hernandez et al.
[82] obtained an adsorption energy of atomic H to be −0.79
eV but Ga atoms were present on the δ-Pu surface, whereas
our atomic H adsorption energy of −0.97 eV was computed
to be a pure δ-Pu surface. The O2 molecule dissociated sponta-
neously upon adsorption, with 1 O atom occupying a threefold
H site and the other occupying a threefold F site. This is not
surprising since experiments have shown that O2 is highly
reactive with δ-Pu, leading to the rapid formation of Pu oxides
[83]. The computed dissociative chemisorption energies agree
with the results by Huda et al. [84]. H2 physisorbs on the
surface with a weak binding energy of −0.20 eV, in good
agreement with the result of Goldman et al. [85].

The charge transfer from the substrate Pu atoms to each
adsorbate was also computed to ascertain the nature of the
chemical bonds formed between the adsorbate and surface

Pu atoms. Looking at �qads in Table V, we see a sizable
amount of charge donation from Pu to the adatoms, imply-
ing that the bonds have a strong ionic character. Obviously,
the charge transfer to O is larger as it is more electroneg-
ative than H. We further examined the influence of the Pu
5 f states on adsorbate-substrate interaction via the angular
momentum-resolved density of states shown in Fig. 6. The
following observations can be made from the figure: (i) there
is a strong overlap between the O 2p and H 1s with the Pu
6d and 7s states; this is a dominant factor in the adsorbate
stabilization on the surface as those Pu states readily donate
charge to adsorbates; and (ii) the Pu 5 f bands in the vicinity
of the Fermi level broaden after adsorption, indicating the
participation of those states in the adsorbate binding to the
surface. These observations agree with previous full-potential
linearized augmented plane-wave (FP-LAPW) calculations
[79,80].

C. δ-Pu1−xGax alloys: Atomic volumes, formation energies, and
extended x-ray absorption fine structure

δ-Pu is malleable, making it convenient for nuclear engi-
neering applications [46]. However, much of the engineering
applications occur at room temperature; hence, it is necessary
to reduce the temperature of δ-Pu from 310 − 451◦ C to room
temperature. This can be made possible by alloying with ele-
ments such as Al, Ga, In, and Th, with the alloy concentration
being in the 1–10 at. % range [36–47,87]. Ga is the most
commonly used alloying impurity and experiments indicate
that Ga occupies substitutional sites in the δ-Pu lattice, with
the alloy volume decreasing with increasing Ga concentra-

TABLE V. Computed adsorption energies defined in Eqs. (7) and (8) for EA
ads and EM

ads, respectively; charge transfer from Pu to the adsorbate
�qads, and the average distance of the adsorbate from the nearest-neighbor Pu atoms RPu-absorbate.

Configuration EA
ads (eV) EM

ads (eV) �qads (e per atom) RPu-absorbate (Å)

O-(4 × 4)/δ-Pu(111) −7.83, −8.03 [79] −5.04, −5.13 [80] +0.689 2.23
H-(4 × 4)/δ-Pu(111) −3.21, −3.45 [86], −2.69 [81] −0.97, −0.79 [82] +0.232 2.40
O2-(4 × 4)/δ-Pu(111) −7.72, −7.90 [84] −4.94 +0.676 2.20
H2-(4 × 4)/δ-Pu(111) −2.44 −0.20, −0.16 [85] +0.029 3.2
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FIG. 6. Projected electronic density of states (DOS) for the clean
δ-Pu (111) surface (top panel), O adsorbed on the surface (middle
panel), and H adsorbed on the surface (bottom panel). The dashed
vertical line is the Fermi level.

tion [38,41,88]. The ability to model DFT Hamiltonians to
correctly determine the basal structural and dynamic proper-
ties of Pu alloys, and more specifically δ-Pu1−xGax alloys, is
necessary because it gives credence to the ability of DFT to
be able to predict properties that have not yet been measured
by experiments. To this end, we computed δ-Pu1−xGax alloy
atomic volumes and alloy formation energies with respect to
varying Ga concentrations. We also computed Ga K-edge and
Pu L3-edge EXAFS spectra and compared to recent experi-
mental data by Olive et al. [89].

In Fig. 7, the plot of the alloy atomic volume is shown,
where the Ga at. % concentrations are 0.93, 1.85, 2.78, 3.70,
4.63, 5.56, 6.48, 7.41, and 8.33. Our results are compared
to experimental measurements by Ellinger et al. [38], exact
muffin tin orbital (EMTO) DFT calculations [90], and re-
cent DFT calculations [91] based on the projector-augmented
plane-wave (PAW) method as implemented in the DFT elec-
tronic structure code VASP [92–95]. Our SIESTA results show

FIG. 7. Variation of the alloy crystal volume per atom as a func-
tion Ga content. The experimental data were taken from Ref. [38],
the EMTO data were taken from Ref. [90], and the PAW data were
taken from Ref. [91].

FIG. 8. Variation of the alloy formation energy with respect to
Ga content. The projector-augmented plane-wave (PAW) results are
from Barman et al. [91], while full-potential linearized-augmented
plane-wave plus local orbitals (FP-LAPW+lo) results are from Her-
nandez et al. [96].

a good agreement with experimental values. The EMTO
method predicts volumes about 2% greater than experiments
for pure δ-Pu but the trend in the volume dependence on Ga
concentration is consistent with the experimental trend. The
PAW results show a sizable contraction from experimental
results due to the use of plane-wave basis with only AFM
spin configuration. As shown by Sadigh et al. [8], the in-
clusion of spin-orbit coupling and orbital polarization in the
PAW calculations yields a volume for δ-Pu in agreement with
the experimental volume, and thus these inclusions in PAW
calulations for Pu-Ga alloys might yield a better match of the
alloy volumes with experimental data. Similar results on the
alloy volume contraction with increasing Ga content has been
observed elsewhere [7,96]. The volume contraction is a conse-
quence of contracted Pu–Ga bonds (local volume contractions
around Ga centers) due to strong hybridizations between the
Pu 6d and 5 f states with the Ga 4p states.

The formation energy of an alloy with NPu Pu atoms and
NGa Ga atoms is computed as: Eformation(NPu, NGa ) = Ealloy −
NPuEδ-Pu − NGaEα-Ga, where Ealloy is total DFT energy of
the alloys, Eδ-Pu is the total DFT energy per atom of δ-Pu,
and Eα−Ga is the total DFT energy per atom of α-Ga [in
this definition the atomic fraction of Ga in the alloy is x =
NGa/(NGa + NPu) ]. Eδ−Pu was computed using a 108-atom
δ-Pu crystal with a 3 × 3 × 3 k-point mesh, while Eα-Ga was
computed using an optimized 144-atom α-Ga crystal using
a 3 × 3 × 3 k-point mesh. The alloy formation is stable if
Eformation < 0 and unstable otherwise. The evolution of the
alloy formation energy, Eformation as a function of Ga concen-
tration is shown in Fig. 8, together with previous PAW-DFT
results [91] and full potential linearized-augmented plane-
wave plus local orbitals (FP-LAPW+lo) results [96]. It clearly
follows from Fig. 8 that the stability of the alloy is enhanced
with increasing Ga content, with the relationship between
Eformation and Ga content being strongly linear. While the past
DFT results show a similar strong linear trend, a shift between
our formation energies and the past results can be seen. The
obvious culprit is the differences in the representation of the
basis set (localized in our case versus extended in the past
calculations). Unfortunately, the experimental formation en-
ergies of the alloys are unknown so it is difficult to make a
judgment on the accuracy of the formation energies.
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FIG. 9. EXAFS Fourier transform magnitudes at the Pu L3 edge
and Ga K edge. The experimental data are from Olive et al. [89] and
were collected at 15 K. The theoretical spectra were computed from
a 15 K ab initio molecular dynamics simulation trajectory.

To further validate the atomic structure of the alloys,
we computed the Pu L3-edge and Ga K-edge extended x-
ray absorption fine structure (EXAFS) spectra and compared
the results to the experimental results by Olive et al. [89].
The theoretical spectra correspond to 4.63 at. % Ga, while
the experimental spectra corresponds to 4.3 at. % Ga. The
experimental data were collected at a temperature of 15 K,
and therefore we thermalized our structure by performing a
constant temperature ab initio molecular dynamics simulation
on our structure at 15 K for approximately 3 ps. The clusters
of radius 8 Å centered on Pu and Ga absorbers were carved
out and the thermalized structure used as input coordinates for
the EXAFS calculations using the ab initio multiple scattering
code FEFF [97]. For a given edge (L3 edge for Pu and K
edge for Ga), the average spectrum (averaged over all ab-
sorbers) was used as the representative computed spectrum.
Figure 9 shows the real-space representation of the EXAFS
spectra [magnitude of the Fourier transform of k3 χ (k) ]. The
computed spectra match well with the experimental spectra,
further indicating that the alloy structure is well represented
by the SIESTA Hamiltonian.

D. Ab initio molecular dynamics of Pu self-diffusion
in δ-Pu1−xGax alloy (x = 3.2 at. %)

Thus far, we have presented results based on 0 K DFT
calculations. We decided to further validate the integrity
of the basis set by employing it in calculations within the
finite-temperature regime. In this regard, ab initio molecular
dynamics was employed to model the diffusion of Pu in a
PuGa alloy. Simulations within the canonical ensemble were
performed at temperatures T= 640, 670, 700, 730, and 790 K
using a time step of 2 fs. The Nosé thermostat was used to con-
trol the temperature. The system was equilibrated for about
t = 5 ps at each of the five temperatures. After equilibration,
each system was allowed to evolve in the microcanonical
ensemble for about 18 ps. The atomic coordinates along the

FIG. 10. Plots of Pu mean-square displacements vs time at
different temperatures for the δ-PuGa alloy with 3.2 at. % Ga
concentration.

microcanonical trajectory were used to compute the Pu self-
diffusion coefficient D for each temperature T:

D(T ) = 1

6

d〈�r2(t, T )〉
dt

, (10)

where

〈�r2(t, T )〉 = 1

N

N∑
i=1

|ri(t, T ) − ri(0, T )|2, (11)

with 〈�r2(t, T )〉 being the mean-squared displacement at time
t and temperature T . The data were fitted to the Arrhenius
equation:

D(T ) = D0 exp [−EA/(RT )], (12)

to obtain the infinite temperature limit diffusion constant D0

and the activation energy of diffusion EA.
The plots for Eqs. (11) and (12) are shown in Figs. 10 and

11, respectively. From Fig. 11, we observe that the diffusivity
of Pu is enhanced above 700 K. The computed value of D0

was 67 cm2/s, which compares well with the experimental
data value of 76 cm2/s for δ-PuGa with 3.3 at. % Ga [98].
The computed activation energy to diffusion (slope of line in
Fig. 11 scaled by the gas constant R) was 1.0 eV, which is
smaller than the experimental value of 1.57 eV [98]. Hernan-
dez et al. [33] obtained a diffusion barrier of 1.2 eV using
the nudged elastic band method at 0 K, which is in good
agreement with the current results. Regarding the diffusion of
Ga, it was quite slow compared to the simulation timescale

FIG. 11. Arrhenius plot depicting the relationship between the
diffusion coefficient and the temperature.
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(implying that Ga has a much larger activation barrier to
diffusion compared to Pu); a much longer simulation will be
required to compute the diffusion parameters for Ga in δ-Pu.

IV. CONCLUDING REMARKS

A strictly localized atomic-like basis set of modest size
within the framework of scalar relativistic density-functional
theory was developed for Pu. The performance of the basis
set was evaluated by applying it to the six solid-state phases
of elemental Pu, the (111) surface of δ-Pu, and a variety
of δ-PuxGa1−x alloys. The results for the lattice parameters,
bulk modulus, phonon, and electronic properties results for
elemental Pu are in good agreement with past theoretical
data and available experimental data. The surface properties
of the clean and absorbate-covered δ-Pu (111) surface also
agreed well with previous DFT calculations from previous
work. In addition, the structural properties and energetics of
the δ-PuGa alloys, together with diffusion parameters from
finite-temperature ab initio molecular dynamics simulations,
were in good agreement with experimental data. Overall, the
basis set performed well, and we are highly confident that it
can be used to carry out accurate calculations on Pu-based
systems.

The major advantage of this method is the ability to tackle
problems which require large system sizes, while sufficiently
maintaining the computational accuracy (e.g., large-scale di-
rect ab initio molecular simulation studies of oxide formation
of Pu metal exposed to environmental gases and the va-
cancy formation energies in a δ-Pu supercell with 1000+
atoms using CPUs). With the advent of GPUs, simulations
with thousands of atoms will become routine. While the
computational speedup in our ab initio molecular dynamics
(MD) simulations is good by DFT standards, it is certainly

slower than the speeds of MD calculations based on classical–
empirical potentials for Pu such as the modified embedded
atom model [99]. We would like to mention that this method
works well for other actinide systems, especially the light
actinides. We have, for example, developed a similar basis set
for uranium which performs to a high standard of accuracy.
The results presented in this work did not include spin-orbit
coupling effects. However, work is underway on extending
the methodology to include on-site spin-orbit interactions
[100], the results of which will be published in the near
future.
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