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High Q-factor Fano resonances in coupled wire arrays with bulk structural asymmetry
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In this paper we characterize the macroscopic electromagnetic response of a nested wire metamaterial with
a high degree of bulk structural asymmetry. The unit cell of the considered metamaterial contains two sets
of metallic wires: one set consisting of an array of straight wires and another formed by a racemic array of
helical-shaped wires. We study the scattering of electromagnetic waves in a metamaterial slab and show that the
electromagnetic coupling between both arrays of wires can originate Fano resonances with narrow line shape.
The origin of the resonances is rooted in the formation of a subradiant mode in the metamaterial wherein the net
polarization vector vanishes. We envision that the proposed configuration, with sharp resonances whose quality
factor can be greatly enhanced by tuning the structural parameters of the wires, may have promising applications
in sensing and switching in a broad frequency range from the microwave regime up to terahertz frequencies.
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I. INTRODUCTION

The uniaxial wire medium consists of a set of thin infinitely
long wires oriented along the same direction and embedded
in a dielectric medium [1,2]. This class of metamaterials
has been extensively studied over the last two decades due
to their unique electromagnetic properties such as hyper-
bolic dispersion [3], nonlocal (spatially dispersive) response
[4–6], anomalously high density of photonic states [7,8],
amongst others [9]. Such remarkable properties pushed the
wire medium into the spotlight of metamaterials research, al-
lowing for numerous applications and exotic wave phenomena
from microwave regime to infrared and optical frequencies
[10–19].

Throughout the years, several proposals have emerged
aiming to extend the range of applications for the wire
medium configuration through various structural modifica-
tions. Among these modifications, perhaps the most well
known correspond to inserting metallic plates in the wires
[20–24], having multiple perpendicular arrays of connected
and nonconnected wires [25–29], or even by twisting the
wires so that they become helical shaped [30–37]. Quite in-
terestingly, a wire metamaterial formed by a racemic array
of helical-shaped wires can provide for unique opportunities
[36–38]. In particular, it was shown in [36] that a racemic
array of helical-shaped wires behaves as a hyperbolic material
with an indefinite electric local response that enables neg-
ative refraction and partial focusing for transverse magnetic
(TM) polarized waves. Furthermore, it was theoretically [37]
and experimentally [38] demonstrated that a racemic helical-
shaped wire metamaterial can behave as a magnetic analog of
the standard uniaxial wire medium, enabling the channeling of
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the subwavelength details of transverse electric (TE) polarized
waves.

On the other hand, in [39] we showed that by having two
straight wire arrays oriented parallel to each other in the same
unit cell can allow to further manipulate the scattering proper-
ties of the metamaterial. We named this metamaterial nested
wire medium and demonstrated that the scattering properties
of the metamaterial can have strong Fano-type resonances.
Fano resonances were discovered more than fifty years ago
by Ugo Fano [40] when studying the autoionizing states of
atoms. Resulting from the interference of a discrete (dark)
state with a broad (bright) band of continuum states [40,41],
Fano resonances have a characteristic narrow asymmetric
line shape. Fano resonances can have important applications
[42], namely, in the development of novel sensors and filters
[43–45], and can also be used in the context of optomechan-
ical interactions [46,47]. We demonstrated in [39] that the
interference of states in the nested wire metamaterial may be
achieved by introducing some sort of structural asymmetry in
the configuration. Fano resonances have also been previously
studied in several other plasmonic structures and metamateri-
als [41,48–52].

In this work we propose a nested wire metamaterial config-
uration with structural asymmetry to obtain Fano resonances.
In this metamaterial configuration both sets of wires are
made of the same material and are simply severed at the
interfaces. The asymmetry required to obtain Fano-type res-
onances is introduced in the bulk metamaterial. Specifically,
we consider one subarray of straight wires while the other
is formed by a racemic array of helical-shaped wires. Based
on the homogenization formalism put forward in [39], we
propose an effective medium model to characterize the re-
sponse of the bulk nested wire metamaterial. Using this
model and numerical simulations, we demonstrate that a slab
of the nested helical wire medium can exhibit sharp Fano
resonances with extremely high quality (Q) factors that are
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largely insensitive to the incidence angle of the excitation
waves.

At this point it is important to highlight the main differ-
ences between the metamaterial proposed in this work and
the nested wire configuration studied in [39]. As previously
discussed, the metamaterial studied in [39] allowed to obtain
Fano resonances based on structural asymmetries, either by
having a slab terminated differently for each set of wires
(geometrical-type asymmetry), or by having each subarray of
wires made of different conducting materials (material-type
asymmetry). In the first case, the asymmetry was associated
with using metallic plates terminating only one set of wires.
Hence, such geometrical-type asymmetry was linked to a bro-
ken structural symmetry at the interfaces rather than in the
bulk, as in the configuration proposed in this work. Further-
more, the bulk structural asymmetry here is independent of
the conducting material used in the wire arrays, contrary to
the case of the material-type asymmetry discussed in [39].
For a material-type asymmetry the responses of the metallic
wires of each array must be sufficiently different for the Fano
resonances to emerge. However, finding conductive materi-
als with responses distinct enough may be quite challenging,
particularly in the microwave and millimeter wave frequency
range where the metals behave as perfect electric conductors
(PECs). The differences between the nested wire metamate-
rial studied in this work and the configurations in [39] may
also be explained using their equivalent circuits. A nested
wire metamaterial featuring two subarrays of wires can be
seen as a combination of two LC series circuits, with each
subarray corresponding to one LC series circuit (please refer
to Ref. [23] for further details), interconnected in a parallel
configuration. Fano resonances emerging from the interaction
between LC circuits have previously been discussed in [53]. In
the configurations explored in [39], the Fano resonances were
induced by altering the conducting material within one of the
subarrays of wires, which consequently modified the per unit
length inductance of the wires. Alternatively, these resonances
were also generated from an interface-based geometrical-type
asymmetry, in which a metallic patch introduced an additional
capacitance in the corresponding LC series circuit. In this
work, we combine an array of straight metallic wires with
another array of helical-shaped metallic wires to create a bulk
structural-type asymmetry. The helical-shaped wires enable
the simultaneous manipulation of wire inductance and capac-
itance, and thus may offer a more comprehensive approach
to achieve and control Fano resonances. In summary, in this
paper we propose a solution that utilizes a bulk geometrical-
type asymmetry which is not reliant on specific conducting
materials or specific terminations of the slab, making it po-
tentially more practical and applicable in certain frequency
ranges.

This paper is organized as follows. In Sec. II we propose
a homogenization model to study the effective response of
the bulk nested helical wire medium formed by one array
of straight wires and one racemic array of helical-shaped
wires. In Sec. III we present numerical simulations of the
scattering properties of a metamaterial slab that validate the
proposed effective medium model. The theoretical and numer-
ical calculations highlight the unique scattering properties of
the metamaterial, revealing the emergence of Fano resonances

resulting from the interaction between both sets of wires. We
also highlight that the quality factor of these resonances can
be greatly enhanced by the proper tuning of the structural
parameters. Finally, in Sec. IV the conclusions are drawn.

II. EFFECTIVE MEDIUM RESPONSE OF THE NESTED
WIRE METAMATERIAL

In this work we study the electromagnetic response of
the nested wire metamaterial formed by two different sets
of wires wherein in each square unit cell there is one set of
straight wires and another set formed by four helical-shaped
wires (two right-handed and two left-handed helical-shaped
wires) arranged in a checkerboard pattern (see Fig. 1). In what
follows we rely on effective medium theory to characterize the
electromagnetic response of the wire metamaterial structure
[6,29,39,54–57]. In particular, based on the ideas discussed in
previous works [29,39], the effective permittivity of a nested
wire metamaterial formed by l = 1, . . . , N subarrays of wires
can be determined from the response of each individual sub-
array provided all arrays are not strongly coupled in the near
field. In that case the influence of each subarray on the other
can be treated as a macroscopic excitation and its contribu-
tion to the macroscopic electric polarization vector P can be
expressed as

Pl =
[
εeff,l − εhε0I

]
· E, l = 1, . . . , N. (1)

Here ¯̄εeff,l is the effective dielectric function of each subarray

of wires, I is the identity matrix, εh is the relative permittiv-
ity of the host medium, and ε0 is the vacuum permittivity.
For conciseness, we identify the subarray corresponding to
the straight wires as subarray A, while the racemic array of
helical-shaped wires is identified as subarray B. To ensure that
the influence of each array on the others can be regarded as
a macroscopic excitation, so that their near-field interaction
is minimized, we consider a unit cell wherein the wires are
placed as far apart as possible. We consider that the straight

FIG. 1. Geometry of the wire metamaterial composed of two
subarrays of metallic wires arranged in a periodic square lattice with
period a: a standard wire medium formed by straight wires (green
wires denoted by subarray A) with radius rw , and a racemic array of
helical-shaped wires (red wires denoted by subarray B) with helices
with radius R and pitch |p|, formed by wires with radius rh. The wire
arrays are oriented along the z direction and embedded in a dielectric
host with relative permittivity εh.
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wire is placed in the center of the unit cell whereas the helical-
shaped wires are placed close to the corners of the unit cell,
as shown in Fig. 1. Moreover, as shown in Fig. 1, we consider
that both arrays are oriented along the z direction.

To begin with, we determine the effective permittivity of
the nested wire metamaterial. The effective dielectric function
¯̄εeff,A+B

(
ω,−i d

dz

)
describes the response of the total polariza-

tion vector to the macroscopic electric field, which in our case
is given by P = PA + PB. The dependence of the effective
permittivity on the wave vector kz ↔ −id/dz accounts for
the spatially dispersive (nonlocal) response of the wire arrays
[4,5,36,37]. Hence, it follows that the effective permittivity of
the bulk metamaterial ¯̄εeff,A+B

(
ω,−i d

dz

)
must be equal to

¯̄εeff,A+B = ¯̄εeff,A+ ¯̄εeff,B − εhε0I. (2)

In what follows, we briefly review the effective medium
response of each subarray of wires. The standard wire medium
configuration, which corresponds to the subarray of wires A,
consists of straight metallic wires with radius rw that are ori-
ented parallel to each other and arranged in a periodic square
lattice with period a (see Fig. 1). To simplify our analysis,
in this work we assume that the wires can be represented
as PECs. This approximation holds well when the radius of
the rods is several times greater than the skin depth of the
metal [58]. When the wires are made of a PEC, the effective
permittivity tensor that characterizes the response of the bulk
medium may be written as [4,5]

εeff,A

(
ω,−i

d

dz

)
= ε0εh(ûxûx + ûyûy + εzz,Aûzûz ), (3)

where εzz,A = 1 − k2
p

k2
0εh−k2

z
is the permittivity of the homoge-

nized medium along the direction of the wires and k0 = ω/c
is the free space wave number, with ω being the angular
frequency and c the light speed in free space. Moreover, the
operation ûiûi, with i = x, y, z, stands for the tensor (outer)
product of the two vectors. The parameter kp may be under-
stood as the plasma wave number of the effective medium
which depends on the geometry of the structure. Within a

thin-wire approximation [23] (kpa)2 = 2π
[
ln

(
a2

4rw (a−rw )

)]−1
.

On the other hand, the subarray of wires B consists of a
racemic array of helical-shaped metallic wires periodic along
the x and y directions and infinitely long along z, as illus-
trated in Fig. 1. The wires are arranged in a square unit cell
that contains four helical-shaped wires: two right-handed he-
lices and two left-handed helices, arranged in a checkerboard
pattern. This sort of arrangement ensures that there are no
bianisotropic effects in the response of the material. As a
result, the spatially dispersive effective permittivity of the bulk
metamaterial may be written as [36,37]

εeff,B

(
ω,−i

d

dz

)
= εhε0(εtûxûx + εtûyûy + εzz,Bûzûz ), (4)

with

εzz,B = 1 − 1
k2

0εh

k2
p1

− k2
z

k2
p2

+ A2k2
0εh(

1 + A2k2
0εh

k2
0 εh
k2

p1
− k2

z
k2

p2

)(
k2

0εh

k2
p1

− k2
z

k2
p2

)2
(5)

and

εt = 1 + (2πR)2

Vcell

1

C1
. (6)

Here A = πR2/p, for helical-shaped wires with radius R and
pitch p (see Fig. 1), and Vcell = a2|p| is the volume of the unit
cell. The parameters kp1 and kp2 are wave number parameters

given by kp1 = 4π

√
p2

C0 p2Vcell+8C1π2R2Vcell
and kp2 = 4π

√
1

C0Vcell
,

that only depend on the specific geometry of the helical-
shaped wire array. Moreover, C0 and C1 are geometrical
parameters with units of m−1 whose definitions can be found
in [59].

Thus, the effective permittivity of the proposed wire meta-
material is obtained inserting the effective permittivity of each
subarray of wires, given by Eqs. (3) and (4), into Eq. (2).
It is important to mention that the effective medium model
of the individual wire arrays is only valid under a thin-wire
approximation, so that rw � a and rh � a, provided a �
λ, with λ the wavelength of operation and kt a � π , with
k = kzẑ + kt and kt = kxx̂ + kyŷ the transverse component of
the wave vector [4,5].

As shown in Appendix A, the magnetic response of the
nested wire metamaterial is that of the helical-shaped wire
medium, which was thoroughly discussed in [36,37]. Such
magnetic response plays no role in the emergence of the Fano
resonances discussed ahead in this paper. Hence, we will
focus our study on the electric response of the nested wire
metamaterial.

Within an effective medium approach, the photonic modes
that can propagate in the structure can be calculated from
the characteristic equation of the problem using the effective
parameters of the metamaterial. This equation can be obtained
replacing the effective permittivity tensor of the metamaterial
into the Maxwell equations and calculating the plane-wave so-
lutions for a spatial variation of the form eik·r, so that ∇ = ik.
For propagation in the xoz plane, so that ∂/∂y = 0 and ky = 0,
it is easily checked that the dispersion of the TM eigenwaves
(with H = Hyŷ) can be calculated from the solution of the
characteristic equation:

det

⎡
⎣(

k2(¯̄I − ûyûy
) − kk

) ·
(

εeff,A+B

ε0

)−1

− ¯̄I(ω/c)2

⎤
⎦ = 0,

(7)

with k2 = |k|2 and kk is the tensor product operation of k
with itself. For a given value of kt the dispersion relation (7)
corresponds to a cubic equation on k2

z , thus yielding three
different solutions (eigenmodes) with positive frequency ω

and three different solutions with negative (and symmetric)
frequency ω.

Let us consider a metamaterial structure wherein the wires
in subarray A have radius rw/a = 0.005, while the wire
medium forming subarray B is characterized by helices with
radius R = 0.1a, pitch |p| = 0.1a, and wires with radius
rh/a = 0.005. For this set of structural parameters C0a ≈
38.28 and C1a ≈ 19.5. Moreover, both sets of wires are em-
bedded in a vacuum. The band diagram of this metamaterial
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a
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ω

TM

2q-TEM

1q-TEM

FIG. 2. Band diagram: ωa/c of the nested wire metamaterial
structure calculated as a function of the normalized wave vector
kza when kt = 0. The subarray A has straight wires with rw/a =
0.005. The helices in subarray B have R = 0.1a, |p| = 0.1a, rh/a =
0.005, C0a ≈ 38.28, and C1a ≈ 19.5. For a fixed value kza, the wire
metamaterial supports three eigenwaves with positive ω: two quasi-
transverse electromagnetic waves, denoted by q-TEM1 and q-TEM2,
and a TM mode. The solid black lines correspond to the results
calculated with the effective medium theory and the discrete red
symbols to the results obtained from full-wave simulations [60].

structure, calculated with the numerical simulator [60] and the
effective medium model, when kt = 0, is shown in Fig. 2.

The results obtained with the homogenization model are in
good agreement with the full-wave results and reveal that the
metamaterial supports three eigenmodes: two quasi-transverse

electromagnetic (q-TEM) waves, with a nearly linear dis-
persion, and a TM mode, similar to what is observed in
the original nested wire medium configuration [39]. We des-
ignate these modes by q-TEM1, q-TEM2, and TM. Each
q-TEM mode is associated with a different subarray of wires
[5,23,29,39]. Specifically, one quasi-TEM mode is associated
with a field localized close to helical-shaped wires (q-TEM1),
while the other mode (q-TEM2) corresponds to a field concen-
trated near the straight wires.

III. FANO RESONANCES IN THE WIRE METAMATERIAL

Here we apply the effective medium model of the nested
wire metamaterial that was developed in the previous sec-
tion to characterize the scattering of electromagnetic waves
in a metamaterial slab with thickness h. We consider TM-
polarized incident waves propagating in the xoz plane (i.e.,
ky = 0 and magnetic field polarized along the y direction) with
an angle of incidence θinc. A TM-polarized incident wave can
excite plane waves in the metamaterial slab with transverse
wave vector kt = kxx̂, with kx = (ω/c) sin(θinc). A represen-
tative system geometry is depicted in Fig. 3.

For the studied configuration, the relevant components of
the electromagnetic field are Hy, Ex, and Ez. We use a plane-
wave expansion of the fields and write them as a superposition
of exponentials propagating in the xoz plane. The magnetic
field distribution in all space may be written as

Hy(z, ω) = eikxx E inc

η0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eγ0z − ρe−γ0z, z > 0

A+
1 eγq-TEM1 (z+h) + A−

1 e−γq-TEM1 (z+h) + A+
2 eγq-TEM2 (z+h),

+A−
2 e−γq-TEM2 (z+h) + A+

3 eγTM(z+h) + A−
3 e−γTM(z+h),

−h < z < 0

Teγ0(z+h), z < −h.

. (8)

Here A±
i , with i = 1, 2, 3, correspond to the complex amplitudes of the counterpropagating waves inside the metamaterial slab,

each pair associated with one eigenmode propagating in the slab, and ρ and T are the reflection and transmission coefficients,
respectively. Moreover, the propagation constant in free space is determined by γ0 = √

k2
x − ω2μ0ε0, while the propagation

constants of each mode (γq-TEM1 , γq-TEM2 , and γTM) in the metamaterial, which are of the form γ 2 = −k2
z , are calculated from

the solutions of Eq. (7) with k = kxx̂ + kzẑ.

The electric field distribution can be calculated from the magnetic field in Eq. (8) using E = 1
−iω

[
εeff,A+B

(
ω,−i d

dz

)]−1 ·
∇ × H, with the permittivity tensor given by Eq. (2), and it is equal to

Ex(z, ω) = eikxxE inc

iωε0η0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γ0(eγ0z + ρe−γ0z ), z > 0
1

εhεt
γq-TEM1 (A+

1 eγq-TEM1 (z+h) − A−
1 e−γq-TEM1 (z+h) )

+ 1
εhεt

γq-TEM2 (A+
2 eγq-TEM2 (z+h) − A−

2 e−γq-TEM2 (z+h) )

+ 1
εhεt

γTM(A+
3 eγTM(z+h) − A−

3 e−γTM(z+h) ),

−h < z < 0

γ0Teγ0(z+h), z < −h,

, (9)

Ez(z, ω) = −eikxxE inckx

ωη0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

eγ0z − ρe−γ0z, z > 0
1

εeff,A+B,zz (ω,iγq-TEM1 ) (A+
1 eγq-TEM1 (z+h) + A−

1 e−γq-TEM1 (z+h) )

+ 1
εeff,A+B,zz (ω,iγq-TEM2 ) (A+

2 eγq-TEM2 (z+h) + A−
2 e−γq-TEM2 (z+h) )

+ 1
εeff,A+B,zz (ω,iγTM ) (A+

3 eγTM(z+h) + A−
3 e−γTM(z+h) ),

−h < z < 0

Teγ0(z+h), z < −h.

(10)
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x
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y

h

a
E

H

k

incθ

FIG. 3. Geometry of the scattering problem under study: a wire
metamaterial slab with thickness h is illuminated by a TM-polarized
plane wave with an incidence angle θinc. The metamaterial slab
has period a and is composed by two subarrays of wires: subarray
A formed by straight metallic wires and subarray B formed by a
racemic helical-shaped wire medium.

To characterize the scattering properties of the metamate-
rial slab, i.e., to calculate ρ and T , as well as the complex
amplitudes of the modes inside the slab A±

i , one can impose
suitable boundary conditions at the metamaterial-air inter-
faces. The classical boundary conditions describe the behavior
of the tangential components of the electric and magnetic
fields at the interfaces. Since there are no surface currents or
surface magnetization at the interfaces, the tangential com-
ponents of the electric and magnetic fields are continuous at
z = 0,−h, so that

�Ex�z=0,−h = 0, (11a)

�Hy�z=0,−h = 0, (11b)

where �F�z=z0
= Fz=z+

0
− Fz=z−

0
, i.e., � � is an operator that

evaluates the discontinuity of F at a pertinent interface z = z0.
However, because of the spatial dispersion of the wire arrays,
applying solely the classical boundary conditions to solve this
scattering problem results in an underdetermined system of
equations. To overcome this problem, one must also specify
additional boundary conditions at the interfaces [24,61–64].
As shown in [23,39] these boundary conditions characterize
the behavior of the microscopic currents flowing in each set
of wires at the interfaces. Considering that both subarrays are
severed at z = 0,−h, the current flowing in the wires should
vanish at these interfaces. Since the interaction of each array
with the other can be viewed as a macroscopic excitation,
the contribution of the polarization vector of each subarray
to the total polarization vector (P = PA + PB) is related to
the current flowing through its wires as Pl · ẑ = 1

−iω
Il
a2 , with

l = A, B. Hence, stating that the current in each set of wires
vanishes at the interface is equivalent to enforcing that [39]

Pl · ẑ|z=0,−h = 0, with l = A, B. (12)

It is easily checked from Eq. (1) that Eq. (12) may also be
written using the normal component of the electric field, so
that the additional boundary conditions are[

εzz,A

(
ω,−i

d

dz

)
− 1

]
Ez

∣∣∣∣
z=0,−h

= 0, (13a)

[
εzz,B

(
ω,−i

d

dz

)
− 1

]
Ez

∣∣∣∣
z=0,−h

= 0. (13b)

Using Eqs. (11a) and (11b) and (13a) and (13b) allows us
to obtain a linear system of equations that can be numerically
solved to determine the scattering parameters of the metama-
terial slab.

In what follows, we characterize the scattering properties
of a metamaterial slab with thickness h = 5a for incident TM
waves with an incidence angle θinc = 60◦. The subarrays of
wires have the same structural parameters as considered in the
calculations depicted in Fig. 2. The transmission properties of
the slab, calculated as a function of the operation frequency,
are shown in Figs. 4(a) and 4(b) where we compare the
results obtained with the homogenization model (blue solid
curves) with the numerical simulations (green dashed curves)
obtained using the full-wave simulator [60].

As seen, apart from a small frequency shift, the results
calculated using the effective medium model and the nu-
merical simulations have good agreement, indicating that the
homogenization formalism can accurately characterize the
electromagnetic response of the nested wire metamaterial. It
is important to mention that we numerically checked (not
shown) that when the helices have radii larger than R � 0.2a,
the effective medium model fails to accurately character-
ize the electromagnetic response of the metamaterial. This
happens because for helices with large radii there is a non-
negligible near-field coupling between each subarray of wires.

Quite interestingly, the transmission characteristic of the
slab reveals the emergence of a sharp resonance with
asymmetric line shape around the normalized frequency
ωa/c ≈ 0.36, highlighted in Figs. 4(a) and 4(b) as a shaded
gray region. The asymmetric shape of this resonance is very
distinct from a Lorentzian-type resonance and can clearly
be identified as a characteristic feature of a Fano resonance
[40,41]. Notably, increasing the pitch of the helical-shaped
wires induces a small blueshift in the Fano resonance [com-
pare Figs. 4(a) and 4(c)]. Additionally, it can be checked that
the resonance linewidth narrows when the pitch increases.

In Ref. [39], we showed that the unit cell of the nested wire
metamaterial must have some sort of structural asymmetry
for the Fano resonances to emerge in the medium, either by
considering wires formed by different plasmonic materials,
or by terminating each subarray of wires differently at the
interfaces. In this study, we demonstrate the presence of Fano-
type resonances in the scattering properties of a nested wire
metamaterial even when the wires are terminated uniformly
and are made of the same material. Structural asymmetry is
achieved by incorporating two subarrays of wires with distinct
shape.

We also examined the scattering of incident TM-polarized
waves in nested wire metamaterials where all helical-shaped
wires have the same handedness. This medium exhibits mag-
netoelectric (chiral) coupling [36,59], allowing some of the
energy from the incident TM wave to couple with the TE
mode. Our analysis revealed that while this structure may
also exhibit Fano resonances for TM incidence, the reso-
nance linewidth is notably broader compared to the original
configuration. Such effect ultimately constrains the practical
applications of the resonant behavior in that configuration for
a TM-incident polarization.

To demonstrate in a conclusive manner that the emergence
of the Fano resonance is linked to the interaction between
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FIG. 4. (a) Amplitude and (b) phase of the transmission coefficient calculated using the effective medium model (blue solid curve) and
the full-wave simulations (green dashed curve) as a function of the normalized frequency ωa/c for a metamaterial slab with thickness h = 5a.
The remaining structural parameters are the same as considered in Fig. 2. (c) Amplitude of the transmission coefficient of the nested wire
metamaterial slab (black curves), helical-shaped wire metamaterial slab (red curves), and standard wire medium slab (green curves) as a
function of the normalized frequency ωa/c. The pitch of the helices is 2.5 times larger than in the configuration used in panel (a), i.e.,
|p| = 0.25a, so that C0a ≈ 29.42 and C1a ≈ 14.72, while the remaining of the parameters are as in panel (a). (d) Amplitude of the transmission
coefficient calculated as a function of frequency for a metamaterial slab with thickness h = 5a and a = 10 μm, considering aluminum wires
(full-wave numerical results) and PEC wires (theoretical results). The remaining structural parameters are the same as in (c). In all panels the
TM-incident waves illuminate the slab at an incidence angle θinc = 60◦. Moreover, the effective medium model results correspond to the solid
curves, whereas the dashed curves depict the full-wave simulation results.

both subarrays of wires, we also depict in Fig. 4(c) the re-
sponse of each individual subarray of wires alone. Under an
effective medium approach, the scattering properties of each
subarray of wires are calculated neglecting the contribution
of the other subarray in the effective response of the nested
metamaterial. As we can see, the response of the nested wire
metamaterial is totally different from that of each subarray of
wires. Particularly, around the Fano resonance both the trans-
mission characteristic of subarray A (straight wires), depicted
as green curves in Fig. 4(c), and that of subarray B (helical
wire medium), depicted as red curves in Fig. 4(c), exhibit
broad weak dipole resonances (centered around ωa/c ≈ 0.32
and ωa/c ≈ 0.42). Generically a Fano resonance emerges
from the interference between two resonances: one with a
narrow line shape and another with a broad line shape [52].
These resonances may originate from the interaction between
different resonators [39] or from the interaction of different
modes of the same resonator [52,65]. The emergence of Fano
resonances in nested wire metamaterials is related to the
macroscopic interaction that takes place when combining both
sets of wires within the same unit cell. This interaction induces
a phase disparity in the currents flowing through the two wire
arrays, thereby generating a distinct narrow antibonding mode
that is associated with a quadrupole/magnetic resonance [39].
Indeed, at the peak of transmission of the Fano resonance

the subwavelength wires, which to a first approximation can
be regarded as dipoles, have dipole moments with the same
amplitude but oscillate out of phase, so that the net dipole mo-
ment is zero and an incoming wave is completely transmitted.
Similar effects may be observed in other types of metama-
terials [66]. In summary, it is the interference between this
narrow quadrupole/magnetic resonance and the broad dipolar
resonance of each set of wires that gives rise to the Fano
asymmetric shape in the nested wire metamaterial.

To better illustrate the effect, we calculated the z com-
ponent of the polarization vector of each subarray of wires(
Pi · ẑ = 1

−iω
Ii
a2

)
using the proposed effective medium for-

malism, at the frequency corresponding to the peak of
transmission at the Fano resonance, which for the meta-
material slab considered in Fig. 4(c) corresponds to the
frequency ωa/c ≈ 0.5208. The results are shown in Fig. 5(a)
and demonstrate that at the Fano resonance the z component
of the polarization vectors in each set of wires have nearly
identical amplitude and are in opposition of phase, so that the
total polarization vector along the z direction vanishes. This is
substantiated in Fig. 5(b) where we show the full-wave sim-
ulation results of the microscopic current in the wires at the
frequency corresponding to the peak of transmission (|T | ≈ 1)
calculated with the simulator [60]. It is important to empha-
size that while the microscopic current in the helical-shaped
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FIG. 5. (a) Normalized amplitude and phase of the z component
of the polarization vector of each subarray of wires at the frequency
of operation ωa/c ≈ 0.5208 (corresponding to the transmission peak
at the Fano resonance). The green curves correspond to the polar-
ization vector of subarray A (array of straight wires), whereas the
blue curves are the results calculated for subarray B (racemic array of
helical-shaped wires). (b) Normalized amplitude of the microscopic
current density distribution in a unit cell of the wire metamaterial slab
calculated at the transmission peak of the Fano resonance. In both
panels the geometric parameters are the same as those considered in
Fig. 4(c).

wires flows along the helical path, the spatial-averaged current
is oriented parallel to the straight wires (z direction). From
Fig. 5(b) we see that the counterclockwise microscopic flow
of the current in the helices originates an average current that
is directed in the opposite direction of the current flow in the

straight wires. Hence, consistent with the homogenization re-
sults, the numerical simulations reveal that the physical reason
behind the peak of transmission at the Fano resonance is the
opposite signed polarization vectors in each subarray of wires.

To have a better understanding of the robustness of the
emergence of these resonances in our system, in what fol-
lows we determine the Fano resonance frequency for some
variations of the structural parameters. Importantly, as the
emergence of a Fano resonance in the metamaterial response
is linked to the formation of a subradiant mode which re-
sults from a null net polarization vector, one can determine
the peak transmission frequency at the Fano resonance sim-
ply by calculating the value of the net polarization vector
P · ẑ = (PA + PB) · ẑ. In Fig. 6(a) we show the net polar-
ization vector calculated as a function of the frequency of
operation and incidence angle for the same metamaterial pa-
rameters as considered in Fig. 4(c). The result reveals that
the frequency of the transmission peak at the Fano reso-
nance (ωa/c ≈ 0.5208), which corresponds to the null of the
net polarization vector [dark region in Fig. 6(a)], is highly
insensitive to variations of the incidence angle. Therefore,
for ωa/c ≈ 0.5208 and for a wide range of incidence an-
gles the currents excited in the subarrays of wires have the
same amplitude and flow in opposite directions. The physical
reason behind this response can be inferred from the band
diagram shown in Fig. 2. For small frequencies the metamate-
rial only supports two bulk modes, the q-TEM modes, each
one associated with one set of wires. We checked that for
small frequencies the isofrequency contours of the quasi-TEM
modes are nearly flat, i.e., are vastly insensitive to variations
of kx = sin(θinc)ω/c.

Additionally, we performed another parametric study
where we fixed the incidence angle at θinc = 60◦ and varied
the thickness of the metamaterial slab. The corresponding re-
sults are shown in Fig. 6(b) and confirm that a Fano resonance

FIG. 6. (a) Amplitude of the net polarization vector
∣∣(PA + PB) · ẑ

∣∣ (in arbitrary logarithmic units) as a function of the frequency of
operation and incidence angle for a metamaterial slab with the same parameters considered in Fig. 4(c). (b) Similar to (a) but we fix the
incidence angle θinc = 60◦ and vary the wavelength of operation λ = 2πc/ω and the thickness of the slab. In both panels the dark colored
points (null net polarization vector) correspond to Fano resonances.
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appears for all the considered values of h, revealing also the
emergence of other (higher order) Fano resonances for larger
frequencies (smaller wavelengths of operation). Furthermore,
it is seen that the Fano resonance wavelength is proportional to
the thickness of the slab, similar to the resonance wavelength
of electric dipole antennas. Thus, varying the length of the
slab can provide for a tuning mechanism to obtain a Fano
resonance in a desired frequency range. Since the wire arrays
are made from the same metallic material, provided that its
conductivity is sufficiently high, the proposed metamaterial
can be effectively scaled to operate across a broad frequency
range, spanning from microwave regime up to terahertz fre-
quencies.

To demonstrate that the Fano resonance can be excited at
terahertz frequency, we considered that both sets of wires are
made from aluminum and determined the scattering properties
of the metamaterial slab with the full-wave simulator for a
lattice period of a = 10μm while the remaining structural
parameters are as in Fig. 4(c). The aluminum material is mod-
eled in the simulator by a conductivity σ = 3.5607×107S/m.
The results are shown in Fig. 4(d) and reveal the emergence of
a Fano sharp resonance near ω/(2π ) ≈ 2.37 THz, thus indi-
cating that the proposed metamaterial can indeed be designed
to operate in the terahertz regime. Moreover, in Fig. 4(d) we
also overlap the homogenization model results calculated for

PEC wires. Interestingly, it is seen that the frequency shift
between both results is very similar to that in Fig. 4(c), in-
dicating that the aluminum wires remain good conductors at
this frequency range.

Finally, we also considered the possibility of fixing the
incidence angle and varying the pitch of the helical-shaped
wires. The results for a set of structural parameters as in
Fig. 4(c) are shown in Fig. 7(a) and reveal that as the pitch
increases, the Fano resonances become increasingly narrower
(the dark region, wherein P · ẑ ≈ 0, becomes increasingly
thinner as the pitch of the helices increases), in line with the
results of Figs. 4(a) and 4(c). A more precise quantification of
the resonance’s linewidth can be inferred from the frequency
bandwidth �ωL spanning from low to high transmission of
the Fano resonance [67] [see the inset in Fig. 7(b)]. This band-
width is normalized to the peak transmission frequency at the
Fano resonance ωT =1. The normalized frequency bandwidth
from low to high transmission frequencies for the Fano reso-
nance, calculated across various pitch values p of the helices
using the same structural parameters as depicted in Fig. 4(c),
is presented in Fig. 7(b). These results corroborate that as
the pitch p increases, the resonance’s linewidth diminishes,
consistent with the findings of Fig. 7(a).

Since the linewidth of a resonance is inversely propor-
tional to its quality (Q) factor, our results indicate that as

FIG. 7. (a) Amplitude of the net polarization vector
∣∣(PA + PB) · ẑ

∣∣ (in arbitrary logarithmic units) as a function of the frequency of
operation and the pitch of the helical-shaped wires. The dark colored points (null net polarization vector) correspond to Fano resonances. (b)
Frequency bandwidth spanning from low to high transmission �ωL of the Fano resonance normalized to the peak transmission frequency at
the Fano resonance ωT =1. (c) Quality (Q) factor of the Fano resonance. (d) Fano parameter q (blue curve) and normalized width of the Fano
resonance a/c (green curve). In panels (b)–(d) the metamaterial parameters are the same as those considered in Fig. 4(c) and the quantities
are calculated as a function of the pitch of the helical-shaped wires.
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the pitch of the helices increases, the Q-factor also increases.
In Appendix C, we provide a description of the method for
determining the Q-factor of a Fano resonance in the meta-
material slab. We calculated the Q-factor for a metamaterial
slab as a function of the pitch of the helices, for the same
structural parameters as considered in Fig. 4(c). These re-
sults are depicted in Fig. 7(c) revealing that the Q-factor can
exceed Q > 8000 when p/a > 0.75. We also checked (not
shown) that the Q-factor does not vary significantly with the
transverse component of the wave vector, which goes in line
with the results shown in Fig. 6(a), wherein the linewidth
of the region wherein P · ẑ ≈ 0 is almost independent of the
incidence angle. It is important to mention that the Q-factor of
the Fano resonance may be set arbitrarily large by increasing
the pitch of the helices. We also find it relevant to mention
that the enhancement of the Q-factor depicted in Fig. 7(c) may
also be seen as a signature of a bound state in the continuum
(BIC). A sharp Fano resonance in the scattering parameters
is often an indicator of a trapped state [68–70]. Indeed, if
the linewidth of the resonance vanishes, the radiative life-
time becomes infinite, which is consistent with a BIC. In
our configuration, the linewidth of the resonance is tied to
the degree of bulk structural asymmetry in the metamaterial,
specifically associated with the pitch of the helices. Breaking
the symmetry (p 
= ∞) induces radiative coupling, yielding a
Fano resonance with finite linewidth connected with a quasi-
bound state in the continuum (q-BIC) [70–74]. However, in
the limit when p → ∞ there are no Fano resonances. The
physical reason behind such response is that when p → ∞
the metamaterial becomes a straight wire medium which, as
shown in Fig. 4(c), does not exhibit any Fano resonance. It was
shown in [39] that even when both sets of straight wires have
different radii, the metamaterial lacks the capability to exhibit
Fano resonances when both wire subsets are composed of the
same material. This suggests that the level of asymmetry in
such structure is insufficient to induce Fano resonances.

The connection between the degree of structural asymme-
try in the nested wire metamaterial and the emergence of the
Fano resonance may also be inferred from the dimensionless
Fano factor q that characterizes the spectral shape asymmetry
of the Fano resonance. The line shape of a Fano resonance
can be generically described using the frequency-dependent
equation [40,52]

σ (ω) = 1

1 + q2

[
q + 2(ω − ω0)

]2

2 + 2(ω − ω0)2 , (14)

where ω0 and  are the resonant frequency and width, re-
spectively. To make the lineshape amplitude compatible with
the transmission spectra, we normalized it to fall within the
range of zero to one. Through a numerical fitting process,
we matched the line shape described in Eq. (14) with the
transmission characteristics of the slab within the frequency
range of the Fano resonance. This allowed us to determine
both the Fano factor q and the linewidth of the resonance .
We calculated q and  using the same metamaterial slab as
illustrated in Fig. 7(c). These calculations were performed as a
function of the pitch of the helices, and the results are depicted
in Fig. 7(d). Notably, the Fano parameter and the linewidth of
the resonance exhibit a significant reduction as p increases. It

is worth noting that as q → 0 and  → 0, in accordance with
Eq. (14), the Fano resonance ceases to exist.

IV. CONCLUSIONS

In this work we studied the effective medium response of
a nested wire metamaterial formed by a set of straight wires
and a racemic array of helical-shaped wires. The proposed
effective model was validated against full-wave simulations.
We investigated the scattering of plane waves using a slab
of such metamaterial and showed that the coupling between
each set of wires can give rise to sharp Fano resonances
with asymmetric line shape and high quality (Q) factor. The
physical origin of these resonances is related to the interaction
between the field scattered by each set of wires when there
is a counterpropagating flow of currents in each subarray.
Furthermore, we also demonstrated that by tuning the pitch of
the helical-shaped subwire array, it is possible to drastically
enhance the Fano asymmetric factor and the Q-factor of the
Fano resonance. We envision that the scattering properties of
the proposed metamaterial, with sharp Fano-type variations
between opaque and transparent states, can have interesting
applications in sensing and switching devices, ranging from
the microwave up to terahertz frequencies.
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APPENDIX A: THE EFFECTIVE
PERMEABILITY FUNCTION

In this section we derive the magnetic response of the
nested wire metamaterial by extending the formalism de-
scribed in [29,39] to calculate its effective permeability.

It is easily checked that if both subarrays of wires interact
with one another as macroscopic excitations their impact on
the macroscopic magnetic polarization vector J can be written
as follows:

Jl =
[

¯̄μeff,l − μ0I
]

· H,

l = A, B. (A1)

where ¯̄μeff,l is the effective permeability of each subarray
and μ0 is the vacuum permittivity. Since the standard wire
medium configuration (subarray A) does not have a magnetic

response [9], i.e., μeff,A = μ0I, the total magnetic polarization
vector is J = JB and therefore the effective permeability of the
proposed nested metamaterial is simply equal to the effective
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permeability of the helical-shaped wire medium, so that

μeff,A+B = μeff,B. (A2)

The helical-shaped wire medium has a strong magnetic
response, behaving as a magnetic uniaxial wire medium [37].
Its effective permeability tensor [36,37] may be written as

μeff,B(ω, kz ) = μ0(ûxûx + ûyûy + μzzûzûz ), (A3)

with μzz =
⎛
⎝1 + A2k2

0
k2
0

k2
p1

− k2
z

k2
p2

⎞
⎠

−1

.

APPENDIX B: THE DISPERSION EQUATION

In what follows we provide a full derivation of the dis-
persion Eq. (7) that is used to calculate the photonic modes
in the bulk metamaterial. This equation can be obtained by
substituting the effective permittivity and permeability tensors
of the metamaterial into the Maxwell equations. In that case
the Maxwell equations read

∇ × E = iωμeff,A+B · H (B1)

∇ × H = −iωεeff,A+B · E. (B2)

Combining Eqs. (B1) and (B2) yields(∇ × μ
−1
eff,A+B · ∇ × ¯̄I − ω2εeff,A+B

) · E = 0. (B3)

We are interested in the plane-wave solutions (∇ = ik) of
this equation for propagation in the xoz plane, so that ky = 0.
They are obtained by setting the determinant of the matrix in
(B3) to zero. It can be checked that for εeff,A+B given by (2)
and μeff,A+B given by (A3), the nontrivial solutions of (B3)
separate into TE (E = Eyŷ and Hy = 0) and TM (H = Hyŷ
and Ey = 0) polarizations.

After straightforward manipulations it is found that for TM
eigenwaves, the solutions of Eq. (B3) satisfy the following
homogeneous system of equations:⎛
⎜⎜⎝

k2
z − (

ω
c

)2 εxx
ε0

0 −kxkz

0 −(
ω
c

)2 εyy

ε0
0

−kxkz 0 k2
x − (

ω
c

)2 εzz

ε0

⎞
⎟⎟⎠ · E

=
[

k2
(¯̄I − ûyûy

) − kk − εeff,A+B

ε0

(
ω

c

)2
]

· E = 0, (B4)

where k2 = k2
x + k2

z and kk =
(

k2
x 0 kxkz

0 0 0
kxkz 0 k2

z

)
is calculated

for ky = 0. Equation (B4) may also be written as

⎡
⎣(

k2(¯̄I − ûyûy) − kk
) ·

(
εeff,A+B

ε0

)−1

− ¯̄I(ω/c)2

⎤
⎦ · E = 0.

(B5)

The bulk eigenmodes supported by the metamaterial are
then determined by the nontrivial solutions of the homoge-
neous system of Eq. (B5), which are formally equal to the
solutions of Eq. (7), the characteristic equation.

APPENDIX C: THE QUALITY FACTOR
OF THE FANO RESONANCE

In the following, we describe the formalism used to deter-
mine the Q-factor of the Fano resonances in a metamaterial
slab. The Q-factor of a resonator at a resonant frequency
ω0 may be defined as Q = ω0U/P [76], where U is the
electromagnetic energy stored in the resonator and P is the
total power loss in the resonator (either by radiative or by
dissipative processes). The Q-factor of a resonator may also be
calculated from its eigenmodes with frequency ω̃ = ω̃′ + iω̃′′
using Q = −ω̃′/(2ω̃′′) [77]. Note that even when the materials
are lossless the Q-factor can be finite due to energy leakage.
Hence, the Q-factor has the physical meaning of a measure
of the lifetime of the eigenmode in the resonator. We calcu-
late the Q-factor of the Fano resonance in the metamaterial
slab from the supported eigenmodes. The eigenmodes of the
metamaterial can be obtained by expanding the electromag-
netic field in the air and metamaterial regions in terms of
plane waves as in Eqs. (8)–(10), but in the absence of the
incident wave. By imposing the same boundary conditions
at both interfaces as in the scattering problem [Eqs. (11a)
and (11b) and (13a) and (13b)] we obtain a homogeneous
8×8 linear system of equations, whose kernel determines
the characteristic equation that gives the dispersion of the
natural modes of oscillation for TM waves. The solution
of the characteristic equation corresponds to the eigenfre-
quency ω̃ = ω̃′ + iω̃′′ of the natural mode of oscillation and
allows determining the Q-factor of the Fano resonance using
Q = −ω̃′/(2ω̃′′) [68].
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