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Unconventional correlated metallic behavior due to interorbital Coulomb interaction
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We study the nondegenerate one-dimensional two-orbital Hubbard model with an interorbital Coulomb inter-
action. By means of the density-matrix renormalization group technique, we calculate the local single-particle
density of states and the optical conductivity at zero temperature. We find that a finite interorbital Coulomb
repulsion V generates a different class of states within the Mott-Hubbard band which has a large weight of
holon-doublon pairs, which we hence call the holon-doublon band (HDB). When V is sufficiently large, the
HDB specifies the gapless low-energy excitations, and the system becomes an unconventional correlated metal.
Optical conductivity results resolve different metallic behaviors for zero and finite interaction V . Compared to
the case without an interorbital interaction, the conductivity is strongly reduced in the correlated holon-doublon
metal for finite V . In addition, the absorption spectrum is dominated by the HDB, which is clearly distinguishable
from the Mott-Hubbard band.
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I. INTRODUCTION

The study of strongly correlated electron systems is one
of the most challenging topics in the current research areas
of condensed matter physics. Even the simplest models such
as the Heisenberg or the Hubbard model are still prevalent
because of their connection to emergent and unconventional
behaviors such as correlation-driven phase transitions or high-
temperature superconductivity.

In the past decades, in parallel to remarkable experi-
mental progress, in particular in electron spectroscopy tech-
niques such as angular resolved photoemission spectroscopy
(ARPES) [1], there have been important developments and
improvements of efficient numerical techniques which have
paved the way for a more detailed theoretical understanding of
the properties of correlated systems. Among these numerical
techniques we highlight the density-matrix renormalization
group (DMRG) [2–4] together with its modern versions in
matrix product states and tensor network representations [5,6],
and the concomitant developments for calculating dynamical
response functions [7–9], together with other methods such as
the dynamical mean-field theory (DMFT) [10] using efficient
impurity solvers based on the DMRG [11,12].

In the present paper, we study the dynamical properties
of the nondegenerate two-orbital Hubbard model with an
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interorbital interaction in one dimension at zero temperature.
This model is relevant for understanding the microscopic
physics in low-dimensional correlated materials with local-
ized and delocalized electrons, e.g., iron selenide two-leg
ladder materials [13–17], some of which behave in a manner
compatible with orbital-selective Mott physics [18–20].

Previous results on similar models have reported holon-
doublon excitations at high energies [21–24], which are
accessible and have been examined as photon-induced
states [25,26]. In addition, the emergence of novel struc-
tures within the correlated Hubbard bands was later observed
in numerical studies for the two-orbital Kanamori-Hubbard
model on a Bethe lattice using DMFT [27–29]. Subsequent
work on the doped one-dimensional, degenerate version of
this model confirmed the existence of in-gap states generated
by V and observed that for large dopings those excitations
are formed mainly by interorbital holon-doublon (HD) states;
their energies follow approximately the HD states of the
atomic limit [30]. Also, additional Hund bands were reported
recently [31] as well as excitonic density waves and biex-
citons in a highly doped strongly interacting version of the
Kanamori-Hubbard model [32].

By virtue of the high accuracy provided by the DMRG for
static and dynamical properties, we find in the nondegener-
ate two-orbital model that a narrow band is formed within
the Mott-Hubbard gap as a consequence of a finite interor-
bital Coulomb repulsion V . This band has a large projection
onto interorbital holon-doublon excitons and constitutes the
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FIG. 1. Graphical representation of the model, Eq. (1). HD repre-
sents the local holon-doublon pair (marked using a dashed elliptical
line; see text).

gapless low-energy excitations for sufficiently large values of
V , thereby forming an unconventional correlated metal, as
becomes evident in the optical conductivity.

II. MODEL AND METHOD

Specifically, we study the two-orbital Hubbard model in
one dimension with broken orbital degeneracy and interorbital
Coulomb repulsion,

H = −t
∑

jασ

(c†
j,ασ c j+1,ασ + H.c.) − (Vg − ε)

∑

jα

n j,α

− �
∑

j

n j,2 +
∑

j

Hj , (1)

where the on-site interactions Hj are

Hj = U
∑

α

n j,α↑n j,α↓ + V
∑

σσ ′
n j,1σ n j,2σ ′ . (2)

U (V ) is the intraorbital (interorbital) Coulomb repulsion
between electrons and we consider U > V (see Fig. 1). Here,
j denotes sites on an open chain, α = 1, 2 and σ are the or-
bital and spin indices, respectively. The creation (destruction)
operator on site j is c†

j,ασ (c j,ασ ); n j,α = ∑
σ c†

j,ασ c j,ασ is the
on-site number operator for orbital α and � accounts for the
crystal-field splitting between orbitals. A global gate voltage
Vg is introduced and subsequently the ground state is deter-
mined in Fock space; thereby the particle numbers N1 and
N2 in each orbital are obtained fixing also the overall particle
number N = N1 + N2. Henceforth we set ε = −U/2 − V in
order to have a half-filled system when Vg = 0 and � = 0.

The nearest-neighbor hopping is t and no interorbital hy-
bridization is included. In this paper we consider t = 0.5.

We use the DMRG [2–9] to calculate the ground state and
its energy, the local density of states, the projections onto par-
ticular excitations, and the optical conductivity, as described
below.

Local density of states and projections. The local density
of states (LDOS) is obtained from the imaginary part of two
dynamical response functions,

A>
j,α (ω) = − 1

π

∑

σ

Im〈c j,ασ (ω + iη − H + E0)−1c†
j,ασ 〉,

A<
j,α (ω) = − 1

π

∑

σ

Im〈c†
j,ασ (ω + iη − H + E0)−1c j,ασ 〉,

(3)

where the expectation value is taken for the ground
state of the system, energies are measured relative to the

ground-state energy E0, and the Lorentzian broadening is
set to η = 0.1. The orbitally resolved local density of states
follows as ALDOS, j,α (ω) = A>

j,α (ω) + A<
j,α (−ω).

The analysis of the LDOS is complemented by using pro-
jected response functions as previously defined [27,28,30]. In
particular, we employ the projection onto HD local pairs (one
orbital being doubly occupied and the other one empty) on
site j, AHD, j,α (ω) = A>

HD, j,α (ω) + A<
HD, j,α (−ω), where

A>
HD, j,α (ω)

= − 1

π

∑

σ

Im 〈c j,ασ (ω + iη − H + E0)−1X †
HD, j,α〉 ,

A<
HD, j,α (ω)

= − 1

π

∑

σ

Im 〈c†
j,ασ (ω + iη − H + E0)−1XHD, j,α〉 , (4)

with X †
HD, j,α = PHD, j,αc†

j,ασ , XHD, j,α = c j,ασ PHD, j,α , and
PHD, j,1 = |↑↓, 0〉 〈↑↓, 0| or PHD, j,2 = |0,↑↓〉 〈0,↑↓|. The
bra and ket states represent the site configuration where the
first (second) component corresponds to the electronic state
in orbital 1 (2).

Optical conductivity. The real part of the optical conduc-
tivity along the chain direction is obtained from [33,34]

Re σ (ω) = − 1

Lπω
Im 〈J†(ω + iη − H + E0)−1J〉 , (5)

where the current operator

J = it
∑

j,ασ

(c†
j+1,ασ c j,ασ − H.c.) (6)

is expressed in terms of the fermionic operators.

III. RESULTS

In this section we present the DMRG results for the local
density of states and for the optical conductivity. The particle
numbers in both orbitals are fixed through the gate voltage Vg.
Without loss of generality we consider U = 8, L = 8 physical
sites (unless otherwise indicated), with two nondegenerate
orbitals at each site and open boundary conditions. The LDOS
is calculated near the center of the chain at site j = 4 to
minimize the boundary effects; we use up to m = 1024 states
for the ground-state energies (with an accuracy of ∼10−8

comparing the ground-state energies between two successive
finite-size DMRG sweeps), m = 512 for response functions,
and between four and six sweeps. The value of U was chosen
to ensure a clear separation of the different subbands. How-
ever, the results are robust for a wide range of U and V as
long as U > V .

We study four different cases. Case A: An in-gap HD band
in orbital 2 emerges with increasing V when we start from a
hole-doped orbital 1 and an insulating orbital 2. Case B: This
HD band is shown to exist when orbital 1 turns doped with
decreasing Vg. Case C: The formation of an HD metal upon
changing the gate voltage. And finally case D: The presence
of an HD band in orbital 1 is verified also when orbital 2 is
electron doped.
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FIG. 2. Case A: LDOS for a sequence of V and L = 8, U = 8,
� = 4, and Vg = −3.5. Starting from a hole-doped orbital 1 and an
insulating half-filled orbital 2, V is increased (from bottom to top). A
finite V generates a band of HD excitations in orbital 2 which crosses
ω = 0 for V = 4. The shaded regions correspond to the projected
HD spectra [Eqs. (4)], and the dashed line in orbital 1 indicates
projections on local excited configurations of the |σ,↑↓〉 type (σ
represents the spin degree of freedom) following Ref. [30]. The LHB
and the UHB of orbital 2 are marked, as well as the LHB of orbital
1. The UHB of orbital 1 is not shown (out of scale, around ω = 8).
Note the difference in the ω scales between (a) and (b).

A. Local density of states: Emergence of an HD band

Case A. First, we consider the effect of changing the in-
terorbital interaction V starting from a situation in which
orbital 1 is hole doped and orbital 2 is a Mott insulator (half
filled) with V = 0.

In all the results shown in Fig. 2, orbital 1 is quarter filled
(N1 = 4) so it is doped with holes (the main results, however,
are independent of the filling, as long as it is hole doped).
For V = 0 we immediately identify the lower (LHB) and
upper (UHB) Hubbard bands in orbital 2. Upon turning on the
interorbital Coulomb repulsion, spectral weight is transferred
from the UHB towards lower energies. For V = 2 a new sep-
arated subband in the gap between the Mott-Hubbard bands
has formed. This situation is similar to the already reported
results for degenerate orbitals [27,28,30].

To characterize this in-gap band, we have calculated the
projected LDOS onto HD states using Eqs. (4). These are

represented by the shaded areas in Fig. 2(b) for orbital 2
and indicate that there is a large weight which corresponds
to HD excitations, supporting the notion of an in-gap HD
band (HDB). In the local or atomic limit representation, this
band corresponds to excitations of the type |0, σ 〉 → |0,↑↓〉
[following the notation given below Eqs. (4), where σ repre-
sents a generic spin]. A simple calculation in the atomic limit
identifies the energy for this excitation ω = U/2 − V − � −
Vg = 3.5 − V for the parameters used here, which coincides
approximately with the mean energy of the HD band for all
values of V . When V � 1 there is a structure located at en-
ergy ω = −U/2 − V − Vg − � = −4.5 − V that corresponds
to transitions of the type |0, σ 〉 → |0, 0〉, i.e., creating an
empty site by removing an electron from orbital 2.

For V = 4 the HDB in orbital 2 crosses ω = 0, indicating
a metallic behavior with N2 = 9 which is one electron above
half filling. In this case orbital 2 is no longer a Mott insu-
lator but rather electron doped, and the LDOS in orbital 1 is
substantially modified with a new spectral weight appearing at
higher energies around ω = 4. This new structure corresponds
to excitations of the type indicated in brackets in Fig. 2(a):
|0,↑↓〉 → |σ,↑↓〉 as defined in Ref. [30]. The atomic limit
calculation leads to an energy difference between those two
states of ω = V − U/2 − Vg = 3.5 for the parameters consid-
ered here, which is close to the energy of this structure. This
means that HD configurations with the hole in orbital 1 and
the doublon in orbital 2 are present in the ground state and
that creating a particle in orbital 1 implies a particle to a HD
configuration.

The LDOS for orbital 2 shows a clear separation between
the UHB and the HDB of approximately V .

Case B. In Fig. 3 we analyze the behavior of the LDOS
starting from Vg = −3 with both orbitals in a half-filled Mott
insulating state and lower Vg for fixed V = 2. The tail crossing
ω = 0 for orbital 1 at Vg = −3 is due to the Lorentzian broad-
ening. By lowering Vg orbital 1 becomes hole doped (with
N1 = 6 and N1 = 4 for Vg = −3.5 and Vg = −4, respectively),
and the UHB structure for ω > 0 in orbital 2 is modified by
transferring weight to a new low-energy band which has a
large component of HD excitations. As these excitations are
formed by a hole in orbital 1 and a doubly occupied state in
orbital 2, they can only exist in this large U case when the
particle number in orbital 1 shrinks below half filling. The
new structure below the LHB in orbital 2 corresponds to the
transition |0, σ 〉 → |0, 0〉.

Case C. In Fig. 4 we show the LDOS starting from both
orbitals away from half filling and lowering Vg again. In this
case, orbital 1 is quarter filled (hole doped) and orbital 2 is
electron doped (N2 = 10) at Vg = −3.5 due to the increased
interorbital interaction V = 4 (with respect to case B), with
the HDB located around ω = 0, thus indicating a metallic
character. Doublons are naturally formed in the electron-
doped orbital 2 and pair up with a hole in orbital 1. Upon
lowering Vg orbital 2 returns to a half-filled insulator and
also empties orbital 1 (N1 = 2 and N1 = 0 for Vg = −4.75
and Vg = −5.25, respectively). As long as orbital 1 is not
empty, the structure around ω = 6 in orbital 2 corresponds
mainly to transitions of the type |σ, σ ′〉 → |σ,↑↓〉 [indicated
in Fig. 4(b)] whose energy in the atomic limit is ω = U/2 −
Vg − � = 4.75. In addition, the structure around ω = −4
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FIG. 3. Case B: LDOS for a sequence of Vg and L = 8, U = 8,
V = 2, � = 4. Starting from both orbitals at half filling and doping
holes into orbital 1 (bottom up). As soon as holes enter orbital 1,
a HDB forms in orbital 2. The shaded regions correspond to the
projected HD excitations [see Eqs. (4)].

corresponds mainly to transitions |σ, σ ′〉 → |σ, 0〉 whose en-
ergy in the atomic limit is ω = −U/2 − Vg − � = −3.75.

Case D. A similar situation occurs for � = 4 and Vg = 0,
when orbital 1 is in a Mott insulating half-filled state and
orbital 2 is three quarters filled (electron doped). Because
of the overlap between HD states and the ground state of
the system after removing a particle from orbital 1 (when it
is singly occupied and when orbital 2 is doubly occupied)
a HDB appears in Fig. 5(a). The shaded region indicates
this overlap with local HD pairs. The latter transition in the
atomic limit, |σ,↑↓〉 → |0,↑↓〉, has an energy ω = −U/2 +
V − Vg = −1. Instead, the structure at ω ∼ 4 corresponds to
the transitions |σ, σ ′〉 → |↑↓, σ ′〉 whose energy in the atomic
limit is ω = U/2 − Vg = 4.

B. Optical conductivity

In Fig. 6 we show results for the optical conductivity. The
main panel displays ω Re[σ (ω)] and thereby avoids the ω →
0 rise of Re[σ (ω)] which is solely due to Lorentzian broaden-
ing. Equation (5) was employed for L = 8, U = 8, Vg = −3.5,
and three qualitatively different cases: (i) two independent
degenerate orbitals (V = � = 0), i.e., two uncoupled hole-
doped Hubbard chains with N1 = N2 = 6 particles; (ii) two
independent nondegenerate orbitals where orbital 1 is hole

FIG. 4. Case C: LDOS for a sequence of Vg for L = 8, U = 8,
V = 4, and � = 4. Starting from a hole-doped orbital 1 and an
electron-doped orbital 2, Vg is lowered (bottom up) [35]. HD ex-
citations with doublons residing in orbital 2 are shaded using the
projection in Eqs. (4). Note the difference in the ω scales between
(a) and (b).

doped and orbital 2 is a half-filled Mott insulator (V = 0,
� = 4); and the case with a HDB crossing ω = 0 in orbital
2 as in Fig. 2 (for V = � = 4).

The metallic character of the whole system with open
boundary conditions is reflected in the finite-size scaling be-
havior of the peak structure close to ω ∼ 0. This peak evolves
into the zero-frequency Drude peak when the system size
is continuously increased [36]. The scaling for the lowest-
frequency peak in Re[σ (ω)] is evaluated in the inset in Fig. 6.
Here, the optical conductivity is shown for L = 4 and L = 8
for constant electronic density.

When comparing the three cases in the main panel, dis-
tinctly different metallic characteristics are observed: For
V = � = 0 both independent hole-doped orbitals contribute
equally to the optical conductivity and the Drude peak weight
is twice as large as the conductivity σ0 of the case V = 0
and � = 4 for which one of the orbitals is quarter filled and
the other one half filled. Instead, for V = � = 4, where both
orbitals are doped and a HDB exists around ω = 0 (Fig. 2),
the weight of the Drude peak is significantly reduced com-
pared to the two independent metallic orbitals, indicating the
formation of a correlated metal. In other words, when both
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FIG. 5. Case D: LDOS for L = 8, U = 8, V = 3, � = 4, and
Vg = 0: A half-filled orbital 1 and an electron-doped orbital 2 enable
the existence of HD pairs when removing a particle in orbital 1.
The process is pictured as |σ, ↑↓〉 → |0, ↑↓〉. The transitions of type
|σ, σ ′〉 → |↑↓, σ ′〉 are associated to the structure around ω ∼ 4.

orbitals are metallic but the metallicity in one of them (orbital
2 in this case) is due to the presence of a HDB at ω = 0, the
conductivity is reduced as compared to the case in which both
orbitals are independent and metallic.

These results may be relevant to interpret the suppression
of the optical conductivity at low energies on Hund iron-based
superconductors which has been attributed to strong correla-
tions [37].

This figure also reveals how the absorption band is mod-
ified by the presence of V . For � = 4 and V = 0 there is
a conspicuous incoherent structure centered at ω ∼= 8 which
corresponds to the well-known transitions involving the UHB.
However, when V = 4, a new absorption band appears at
lower energy, around ω ∼= 5, in addition to the one involving
the UHB. This band is entirely determined by the HD excita-
tions which form an additional structure within the Hubbard
bands [shaded region in Fig. 2(b)]. The higher-energy ab-
sorption corresponds to excitations involving the remainder of
the UHB containing excitations not participating in the HDB
formation.

IV. CONCLUSIONS

Our DMRG study reveals the emergence of a band within
the Mott-Hubbard gap as a consequence of a finite interorbital
Coulomb repulsion V . This structure maintains a large weight
when projected onto holon-doublon excitations, which we call
the holon-doublon band (HDB). Although a similar structure
was already previously reported [30], here, for nondegener-
ate orbitals, we demonstrate that an insulating orbital can

FIG. 6. Optical conductivity multiplied by ω for L = 8, U = 8,
and Vg = −3.5. The orange line shows the case V = � = 0 where
both orbitals are hole doped and contribute in the same way to the
conductivity; the gray line corresponds to the case V = 0, � = 4, in
which orbital 1 is hole doped and orbital 2 is a Mott insulator (see
Fig. 2), and the purple dashed line shows the result when both orbitals
are metallic but the metallicity of orbital 2 stems from a HDB (V =
� = 4). The arrow indicates the absorption band due to the HDB.
The inset shows the conductivity Re[σ (ω)] for L = 4 and L = 8 for
this latter case.

become gapless, if the other orbital provides mobile carriers
even in the absence of interorbital hopping. When V is large
enough, the HDB crosses ω = 0 and the system becomes
an unconventional correlated metal. The optical conductivity
differentiates between the distinct metallic behaviors. When
both orbitals are metallic and V = 0 (independent orbitals),
they both contribute equally to the conductivity. However,
when one of the orbitals is doped and V is large enough, the
other orbital can turn gapless due to the existence of the HDB.
However, the conductivity of this correlated HD metal is much
lower than that for the previous case, indicating the existence
of unusual and heavier current-carrying quasiparticles with a
holon-doublon character. In this case the absorption spectrum
in the optical conductivity is dominated by this HDB and at
lower energies it precedes the absorption due to the upper
Hubbard band.

The identification of emergent bands within the electronic
structure of a prominent interacting electron model holds the
potential to unveil previously unexplored structures in photoe-
mission and absorption spectra in correlated materials.
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