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We have studied the ground state properties of Hubbard model on long six-leg square cylinders with
doped hole concentration 5.55% � δ � 12.5% using density-matrix renormalization group. Our state-of-the-art
DMRG study with a large number of states convincingly shows that the nature of the ground state is remarkably
sensitive to the presence of next-nearest-neighbor electron hopping t ′. In the positive t ′ side, we find a robust
d-wave superconducting (SC) phase characterized by coexisting quasi-long-range SC and charge density wave
(CDW) correlations. Without t ′ the ground state forms an insulating stripe phase with long-range CDW order. In
stark contrast to four-leg cylinders, our results show that the lightly doped Hubbard model on six-leg cylinders
remains insulating in the negative t ′ side where the SC correlations decay exponentially with short correlation
lengths. In the larger negative t ′ side, the doped holes form a holon Wigner crystal with one doped hole per
emergent unit cell and short-range spin-spin correlations.
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I. INTRODUCTION

The Hubbard model, and closely related t-J model, plays a
paradigmatic role in the theory of strongly correlated many-
body systems [1–6]. It is widely believed that the Hubbard
model, despite its apparent simplicity, could exhibit strikingly
rich quantum phases including various forms of antiferromag-
netism, charge density waves, and unconventional supercon-
ductivity. However, despite tremendous efforts devoted over
more than half a century, various basic properties of the actual
phases within Hubbard models still remain controversial. This
is partially due to the insufficiency of controlled analytical
approaches for strongly correlated systems and the prevalence
of many low-energy competing orders. However, with signif-
icant numerical method developments in recent years, many
progresses have been made to understand properties of various
quantum phases resulting from moderate interaction strengths
[5–31]. From controlled numerical treatments, especially us-
ing density-matrix renormalization group (DMRG) [5,6,22–
26], there is a growing consensus that unidirectional charge-
density-wave (CDW) (i.e., “stripe”) order [32–36] rather than
superconductivity arises in lightly doped “pure” Hubbard
models having only a nearest-neighbor (NN) electron hopping
t and intermediate-value Coulomb repulsion U .

However, recent numerical studies have shown that the
balance between superconductivity and other forms of order,
such as CDW order, can be sensitively tipped by the inclusion
of next-nearest-neighbor (NNN) electron hopping t ′. For in-
stance, superconducting (SC) correlations can be significantly
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enhanced by adjusting t ′, where recent DMRG studies have
shown that a robust quasi-long-range superconductivity can
be achieved in the doped Hubbard model on four-leg square
cylinders for both positive and negative t ′ [37–40]. Contrary
to the normal d-wave pairing symmetry observed for electron
doping with positive t ′, a plaquette-type d-wave symmetry is
observed in the hole doping with negative t ′, which is unique
to four-leg square cylinders [24,41], inconsistent with what
might be expected for 2D systems. Similarly, SC correlations
can also be significantly enhanced by t ′ in doped t-J models,
i.e., the strong coupling limit of the Hubbard model, on sys-
tems wider than four-leg cylinders, compared with the “pure”
Hubbard model without t ′. However, this enhancement is only
observed for electron doping with positive t ′ [42–47]. This is
surprising in the context of high temperature superconduct-
ing cuprates given that the band dispersions of hole-doped
cuprates require negative t ′. Whether the SC correlations can
be notably enhanced in the electron-doped Hubbard model
with positive t ′, and whether robust superconductivity can
also be achieved in the hole-doped Hubbard model on sys-
tems wider than four-leg cylinders, especially for intermediate
interactions, where U is comparable to the bandwidth of the
system, has remained elusive. To better understand how the
superconductivity emerges from the t ′-Hubbard model, the
unbiased numerical evidence from wider systems is highly
desired.

II. PRINCIPAL RESULTS

In this paper, we present extensive DMRG studies of the
t-t ′-U Hubbard model at hole doping concentration of δ =
1/18 − 1/8 and for −0.4 � t ′/t � 0.5, carried out on six-leg

2469-9950/2024/109(8)/085121(6) 085121-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1477-4731
https://orcid.org/0000-0003-2842-6591
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.085121&domain=pdf&date_stamp=2024-02-14
https://doi.org/10.1103/PhysRevB.109.085121


JIANG, DEVEREAUX, AND JIANG PHYSICAL REVIEW B 109, 085121 (2024)

FIG. 1. Ground state phase diagram of the Hubbard model in
Eq. (1) as a function of t ′ and hole doping concentration δ at U = 12
where the solid diamonds are data points. Here the d-wave supercon-
ducting phase is denoted by SC, holon Wigner crystal is denoted by
WC∗, “two-third-filled” charge stripe phase is denoted by CDW-2/3,
and phase separation is denoted by PS.

square cylinders with periodic and open boundary conditions
in the short and long directions, respectively. Using the state-
of-the-art DMRG calculation combined with the symmetry of
the model and GPU acceleration, we obtain the ground state
phase diagram and properties of the Hubbard model summa-
rized in Fig. 1. As the width increases, the evolution of the
quantum phases is surprisingly sensitive to both t ′ and δ. The
blue region around t ′ ∼ 0 is identified as an insulating phase
with a unidirectional “2/3-filled” charge stripes and mutually
commensurate spin stripes, but short-range SC correlations.
This charge stripe phase is similar to the one reported in
previous DMRG studies of the “pure” Hubbard model with
t ′ = 0 [26,38,39]. In the presence of positive t ′, a robust d-
wave SC phase, similar to the one observed in the Hubbard
model on four-leg square cylinders [39] and the closely related
t-J model on wider systems [42–47], is found. This phase is
characterized by coexisting quasi-long-range SC and CDW
orders, but short-range spin-spin correlations.

However, in stark contrast to four-leg cylinders, we find
that the doped Hubbard model on six-leg cylinders in the hole-
doped case with negative t ′ appears insulating with strong
CDW order. Other correlations, including both SC and spin-
spin correlations, are short ranged with fairly short correlation
lengths. Surprisingly, in addition to the usual charge stripe
order, a distinct CDW phase appears at the lower-left corner
of the phase diagram with relatively larger negative t ′ and
lower hole doping concentrations. This CDW phase, which
we refer to as holon Wigner crystal (WC∗) where the holon
carries the charge of an electron but without its spin [48], is
similar with the one observed in the doped spin liquid on the
Kagome lattice [49,50]. In this spin-charge separated phase,
the doped holes form a long-ranged CDW ordered state with
one doped hole per emergent unit cell, while both SC and
spin-spin correlations are short ranged. Therefore, this is a
fractional phase characterized by the crystal of spinless holons
instead of holes.

III. MODEL AND METHOD

We employ DMRG [51,52] to investigate the ground state
properties of the lightly doped Hubbard model on square
lattice defined by the Hamiltonian

H = −
∑

i jσ

ti j (ĉ
†
iσ ĉ jσ + H.c.) + U

∑

i

n̂i↑n̂i↓. (1)

Here ĉ†
iσ (ĉiσ ) is the electron creation (annihilation) operator

on site i = (xi, yi ) with spin σ , and n̂iσ = ĉ†
iσ ĉiσ and n̂i =∑

σ niσ are the electron number operators. The electron hop-
ping amplitude ti j is equal to t if i and j are NN and equal to
t ′ if i and j are NNN. U is the on-site Coulomb repulsion. We
take the lattice geometry to be cylindrical and a lattice spacing
of unity. The boundary condition of the cylinders is periodic in
the ŷ = (0, 1) direction while open in the x̂ = (1, 0) direction.
Here, we focus on cylinders with width Ly and length Lx,
where Ly and Lx are the number of sites along the ŷ and x̂ di-
rections, respectively. There are N = Lx × Ly lattice sites and
the number of electrons is Ne = N at half-filling, i.e., n̂i = 1.
The concentration of doped holes is defined as δ = Nh

N , with
Nh = N − Ne the number of holes measured from half-filling.

For the present study, we focus on Ly = 6 cylinders of
length up to Lx = 48 at doping concentration δ = 1/18, 1/12,
1/9, and 1/8. We set t = 1 as an energy unit and report
results for −0.4 � t ′ � 0.5 with U = 12. We perform up to
85 sweeps and keep up to m = 50 000 states in each DMRG
block with a typical truncation error ε � 3 × 10−6. For some
special sets of parameters, e.g., t ′ = −0.4 and δ = 1/18, we
have further performed the DMRG calculation with SU (2)
spin rotational symmetry by keeping an even larger U (1)-
equivalent number of states m ≈ 100 000 to improve the
reliability and accuracy of various correlation functions at
long distances. Further details of the numerical simulation are
provided in the Supplemental Material (SM) [53].

IV. d-WAVE SC PHASE

The SC phase with normal d-wave symmetry occupies a
large portion of phase diagram in the electron-doped side with
positive t ′. Similar with previous DMRG studies of doped
Hubbard [39] and t-J models [37,42–47,54], this SC phase
has coexisting quasi-long-range SC and charge stripe orders,
but short-range spin-spin and single-particle correlations. In
the following, we consider a characteristic set of parameters
that is deep inside the SC phase, e.g., t ′ = 0.5 and δ = 1/12,
as an example to describe its physical properties in details.

A. Superconducting correlations

We first calculate the equal-time spin-singlet pair-pair cor-
relations to find out the nature of the SC correlations defined
as

�αβ (r) = 〈�̂†
α (x0, y0)�̂β (x0 + r, y0)〉. (2)

Here �̂†
α (x, y) = 1√

2
(c†

↑,(x,y)c
†
↓,(x,y)+α − c†

↓,(x,y)c
†
↑,(x,y)+α ) is a

spin-singlet pair creation operator on bond α = x̂ or ŷ. (x0, y0)
is the reference bond taken as x0 ∼ Lx/4 and r is the distance
between two bonds in the x̂ direction.
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FIG. 2. Characterization of the d-wave SC phase: (a) Super-
conducting correlation �yy(r) plotted on double-logarithmic scales
where the solid line denotes power-law fit �(r) ∼ r−Ksc . (b) Charge
density profiles n(x) fitted by the Friedel oscillation (solid line)
using Eq. (4). (c) Charge density-density correlation D(r) on double-
logarithmic scales where the solid line denotes a power-law fit
D(r) ∼ r−Kc . (d) Spin-spin correlation F (r) on a semilogarithmic
scale where the solid line denotes an exponential fit |F (r)| ∼ e−r/ξs .
Here t ′ = 0.5, δ = 1/12, and data points in red are used for the fit.

According to the Mermin-Wagner theorem, a SC state that
can be realized in quasi-one-dimensional (1D) systems such
as long cylinders has quasi-long-range SC correlations which
decay as a power law with the appropriate Luttinger exponent
Ksc defined by

�(r) ∝ r−Ksc . (3)

As shown in Fig. 2(a), it is clear that the spatial decay of
�αβ (r), e.g., �yy(r), is consistent with such a power-law de-
cay. The exponent Ksc, which is obtained by fitting the results
using Eq. (3), is nearly independent of the length Lx of cylin-
ders that we have considered. For instance, the extracted Ksc =
1.65(3) and Ksc = 1.66(7) for δ = 1/12 on six-leg cylinders
of length Lx = 24 and Lx = 32, respectively. This establishes
that the lightly doped Hubbard model on six-leg cylinders
with positive t ′ has quasi-long-range SC correlations as the
corresponding SC susceptibility χsc ∼ T −(2−Ksc ) with Ksc < 2
diverges as the temperature T → 0. In addition to �yy(r),
we have also measured other components of �αβ (r) and find
that �yy(r) ∼ �xx(r) ∼ −�xy(r). Contrary to the plaquette
d wave, the SC correlation �yy along the ŷ direction does
not change sign. Therefore, our results suggest that the SC
correlations have a normal d-wave form. We also calculate
the binding energy Eb in the SC phase and find that Eb < 0,

which are consistent with the quasi-long-range SC order. The
detailed results of Eb and other gaps in the SC phase are
provided in the SM [53].

B. Charge density wave order

Similar to a previous study on four-leg cylinders [39],
we have also observed a tendency to form charge stripes

in the lightly doped Hubbard model on six-leg cylinders
with positive t ′. To measure the CDW order, we define the
charge density n(x, y) = 〈n̂(x, y)〉 and its rung average n(x) =
Ly

−1 ∑Ly

y=1 n(x, y). Figure 2(b) shows examples of n(x) on
six-leg cylinders at δ = 1/12 with t ′ = 0.5, where x is the
distance from one end of the cylinder up to a maximum value
x = Lx/2. The charge density oscillations have a period λc =
1
3δ

that is consistent with “one third-filled” charge stripes. This
corresponds to an ordering wave vector Q = 6πδ with two
holes per 1D unit cell. Although this is different from the
“half-filled” charge stripes with λc = 1

2δ
on four-leg cylinders

[39], it is the same with that observed in the t-J model on
six-leg cylinders with positive t ′ [42–44,47].

Similar to SC correlations, the spatial decay of CDW cor-
relations at long distance is dominated by a power law with
the Lutting exponent Kc that can be obtained by fitting the
charge density oscillations (Friedel oscillations) induced by
the boundaries of cylinder [55]

n(x) = AQ cos(Qx + φ)x−Kc/2 + n0. (4)

Here AQ is an amplitude, φ is a phase shift, n0 = 1 − δ is
the mean density, and Q = 6πδ. For the characteristic set
of parameters shown in Fig. 2(b), the extracted Kc = 1.5(2)
and Kc = 1.5(1) for cylinders of length Lx = 24 and Lx = 32,
respectively. The exponent Kc can also be extracted indepen-
dently from the charge density-density fluctuation correlation
function defined by

D(r) = 〈(n̂x0,y0 − nx0,y0 )(n̂x0+r,y0 − nx0+r,y0 )〉. (5)

Here (x0, y0) is a reference site and r is the distance between
two sites in the x̂ direction and x0 ∼ L/4. Figure 2(c) shows
examples of D(r) for the same parameters, and the extracted
value of Kc using D(r) ∼ r−Kc gives Kc ≈ 1.44 and Kc ≈ 1.45
for cylinders of length Lx = 24 and Lx = 32, respectively.
Both cases are qualitatively consistent with each other as
Kc < 2 for both cases. A similar charge density profile and
SC correlation function have been observed in the U = 8
Hubbard model with t ′ = 0.3, as shown in the SM [53].

C. Spin-spin correlations

To describe the magnetic properties of the ground state, we
have also calculated the spin-spin correlation function defined
as

F (r) = 〈Sx0,y0 · Sx0+r,y0〉. (6)

Similar to previous studies of the Hubbard model on four-
leg cylinders [39] and the t-J model on six-leg cylinders
[42–44,47], we find that F (r) for finite dopings are short-
ranged with a finite correlation length ξs. For example, the
extracted ξs from Fig. 2(d) using F (r) ∼ e−r/ξs is ξs ≈ 3.3.
Another similar feature is that the period of F (r) is char-
acterized by a simple two-sublattice periodicity which is
independent of δ.

V. CDW-2/3 PHASE

Besides the d-wave SC phase, we find two distinct in-
sulating CDW phases in Fig. 1. The first CDW phase,
which was referred to as “CDW-2/3” in the blue region of
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FIG. 3. Characterization of the CDW-2/3 phase: (a) Charge den-
sity profile n(x) fitted by Friedel oscillations (solid line) using
Eq. (4). (b) Charge density-density correlation D(r) on a semilog-
arithmic scale where the solid line denotes an exponential fit D(r) ∼
e−r/ξc . (c) Superconducting correlation �yy(r) on a semilogarithmic
scale where the solid line denotes an exponential fit �(r) ∼ e−r/ξsc .
(d) Spin-spin correlation F (r) on a semilogarithmic scale where the
solid line denotes an exponential fit |F (r)| ∼ e−r/ξs . Here t ′ = 0,
δ = 1/12, and data points in red are used for the fit.

the phase diagram, has strong unidirectional charge stripe
order but short-range SC correlations. This is similar to
previous DMRG studies of the Hubbard model with t ′ = 0
[21,26,38,39], where the system has long-range charge stripe
order but short-range SC correlations. In the following, we
will consider one representative set of parameters with t ′ = 0
and U = 12 at δ = 1/12 as an example to demonstrate the
physical properties of this phase. Fig. 3(a) shows n(x) with a
period λc = 2

3δ
and ordering wave vector Q = 3πδ. However,

in stark contrast to the d-wave SC phase in Fig. 2(b), the
oscillation of n(x) in the “CDW-2/3” phase remains very ro-
bust, whose spatial decay is nearly invisible for these lengths
of ladders. Indeed, this is directly supported by our results
where we find that the value of extracted Kc = 0.06(4) is very
close to Kc = 0. This is consistent with long-range charge
stripe order. This is also supported by the short-range charge
density fluctuation correlations D(r) ∼ e−r/ξc having a short
correlation length ξc ≈ 4 in Fig. 3(b), as the critical charge
fluctuation is absent in a long-range charge ordered phase.

Surprisingly in comparison with four-leg ladders, we find
that other correlations are short-ranged. For example, SC
correlations, as shown in Fig. 3(c), decay exponentially as
�yy(r) ∼ e−r/ξsc with a fairly short correlation length ξsc ≈
1.5 lattice spacings. Similarly, spin-spin correlations decay
also exponentially as F (r) ∼ e−r/ξs with a short correlation
length ξs ≈ 3.2 close to that in the d-wave SC phase in
Fig. 2(d). However, contrary to the d-wave SC phase, our
results show that the spin stripes appear in this charge order
phase, which are mutually commensurate with the charge
stripes but with twice the wavelength. For the U = 8 Hubbard

FIG. 4. Characterization of the WC∗ phase: (a) Charge density
profile n(x, y) (upper panel) and spin density profile Sz

x,y (lower
panel). Here Sz is measured in the U(1) DMRG simulation with
m = 40 000 U(1) states. (b) Spin-spin correlation F (r) on a semilog-
arithm scale where the solid line denotes an exponential fit |F (r)| ∼
e−r/ξs . Here we use the SU(2) DMRG with spin SU(2) symmetry
to force 〈Sz〉 to 0. The number of SU(2) states is 31 000 [effectively
m ∼ 100 000 U(1) states]. (c) Superconducting correlation �yy(r) on
a semilogarithmic scale where the solid line denotes an exponential
fit �(r) ∼ e−r/ξsc . Here t ′ = −0.4, δ = 1/18, and data points in red
are used for the fit.

model, we find similar insulating stripe phase at t ′ = 0.0 (see
the SM [53]).

VI. HOLON WIGNER CRYSTAL

A second CDW phase appears in the left-bottom corner
of the phase diagram in Fig. 1 for more negative t ′. This is
similar with the holon Wigner crystal, which was referred
to as WC∗, reported in previous DMRG studies in doped
spin liquids on the Kagome lattice [49,50]. Distinct with the
“CDW-2/3” phase, the CDW order [see Fig. 4(a)] in the WC∗

phase breaks translational symmetries along both the x̂ and ŷ
directions, which is similar with the one previously observed
in the t-t ′-J model [43]. The entire charge density profile
appears to prefer a rectangular lattice with an emergent larger
unit cell each containing one of the blue spots. The number
of these emergent unit cells is equal to the number of doped
holes. Therefore, this is not a crystal of hole pairs.

Interestingly, similar with previous studies of doped
Kagome lattice spin liquids [49,50], our results suggest that
this CDW state is consistent with a Wigner crystal of holons,
where the holon carries the charge of an electron but with-
out its spin [48], rather than doped holes. This is because if
this is a Wigner crystal of doped holes, the spin and charge
degrees of freedom of doped holes will be bound together
without spin-charge separation. However, this is inconsistent
with our results. In the lower panel of Fig. 4(a), we show
the modified spin density profile (−1)x+y〈Sz

x,y〉 on a six-leg
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cylinder of length Lx = 48 by keeping m = 40 000 number of
states, where a clear spin-charge separation is observed. First,
the spin density profile (−1)x+y〈Sz

x,y〉 exhibits clear antiphase
domain walls only in the x direction, which is distinct from the
broken translation symmetries along both x and y directions
in the charge density profile. Second, the maxima of |〈Sz

x,y〉|,
i.e., the red and blue spots in the lower panel in Fig. 4(a),
appear exactly at the minima of the hole density profile, i.e.,
1 − 〈n(x, y)〉, rather than its maxima. Both of these suggest
the presence of spin-charge separation which is inconsistent
with a Wigner crystal formed by doped holes. Similar charge
and spin density profiles are observed in lightly doped U = 8
Hubbard models with t ′ = −0.4. (see the SM [53] for details.)

A more direct evidence to support the Wigner crystal of
holons is the existence of gapped spin excitations evidenced
by exponentially decaying spin-spin correlations. To remove
a residual 〈Sz(x, y)〉 that breaks SU (2) spin rotational
symmetry, which is retained in the simulation even when
keeping m = 40 000 states, we set the reference point (x0, y0)
of F (r) to the location of a holon, e.g., (x0, y0) = (16, 2)
for the six-leg cylinder of length Lx = 48 in Fig. 4(a), and
further improve the accuracy of our simulation by performing
other DMRG calculations having SU (2) symmetry [56]
and keeping up to m = 31 000 SU (2) states [effectively
m ∼ 100 000 U (1) states]. Consistent with that of a WC∗,
we find that spin-spin correlations decay exponentially as
F (r) ∼ e−r/ξs as shown in Fig. 4(b). The spin-spin correlation
length is ξs ≈ 3 which is shorter than the separation between
two adjacent holons in the x̂ direction. This is a clear signature
of spin-charge separation which is consistent with a holon
Wigner crystal.

Similar to the “CDW-2/3” phase, SC correlations also
decay exponentially as �(r) ∼ e−r/ξsc with a short correlation
length ξsc ≈ 2. The pairing symmetry is consistent with that
of a d-wave form evidenced by �yy(r) ∼ −�xy(r) ∼ �xx(r).
This is qualitatively distinct from the quasi-long-range SC
with “plaquette” d-wave symmetry on four-leg square cylin-
ders with negative t ′ [38–41,49].

VII. SUMMARY AND DISCUSSION

We have studied the ground state properties of the lightly
doped t-t ′-U Hubbard model on six-leg square cylinders, and
find that its phase diagram is very sensitive to both t ′ and δ.
In the electron doped case with positive t ′, we find a robust
d-wave SC phase with coexisting quasi-long-range SC and
CDW orders. This SC phase shares many similarities with
the one previously reported for the doped Hubbard model on
four-leg cylinders [39], and the t-J model on both six- and
eight-leg cylinders [42–47]. Therefore, our results suggest that
long-range SC could also be realized in the electron-doped

Hubbard model in two dimensions. In the hole-doped case
with negative t ′, our results show that the Hubbard model
on six-leg cylinders is not SC but possesses long-range CDW
order. Although this is in stark contrast to four-leg cylinders
[38–41] with quasi-long-range superconductivity, it is consis-
tent with the hole-doped t-J model, i.e., the strong coupling
limit of the Hubbard model, on both six and eight-leg square
cylinders with negative t ′ [42–47].

In the vicinity of t ′ = 0 line, a charge stripe phase, which
is similar with the one reported in recent DMRG studies in the
“pure” Hubbard model [21,26,38,39], occupies a fairly large
portion of the phase diagram. However, it appears to be very
sensitive to positive t ′ where a small t ′ can drive the system
into a phase separation (PS) close to δ = 1/8 in an extended
region of t ′. It will be interesting to study whether such a
PS can be suppressed by introducing additional terms such
as further-neighbor electron hopping and extended electron
interaction so that a SC phase can be realized accordingly.
Answering these questions may lead to better understanding
of the mechanism of high temperature superconductivity.

Quite surprisingly, at relatively lower doping level and
larger negative t ′, we find an insulating CDW phase, i.e., WC∗,
which is similar with the one reported for doped Kagome
lattice spin liquids [49,50] and the square lattice t-t ′-J model
[43]. This is a Wigner crystal of holons, rather than either
doped holes or hole pairs. Given that the fractional exci-
tation is unlikely to show up in the undoped Hubbard and
Heisenberg models (with corresponding J2/J1 ∼ 0.1), this
WC∗ phase, which appears to be a doping induced fractional
phase, is quite striking. It will be interesting to understand its
microscopic origin which we will leave for a future study.

Note added. We have become aware of an independent
but closely related study of doped t-t ′-U Hubbard model
on square lattice using a combination of DMRG and con-
strained path auxiliary field quantum Monte Carlo [57], which
reports results on quasi-two-dimensional square lattice by
applying a finite global d-wave pairing field. Conversely,
our study focuses on long six-leg cylinders without applying
pinning fields.
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