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Interacting bosons on a Su-Schrieffer-Heeger ladder: Topological phases and Thouless pumping
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We study the topological properties of hardcore bosons on a two-leg ladder consisting of two Su-Schrieffer-
Heeger chains that are coupled via hopping and interaction. We chart out the phase diagram for the system and
show that based on the relative hopping dimerization pattern along the legs, distinctly different topological
phases and phase transitions can occur. When the dimerization along the legs is uniform, we find that the
topological nature vanishes for even the slightest rung hopping. For staggered dimerization, the system exhibits
a well-defined topological character and a topological phase transition as a function of rung hopping. While the
topological phase shows bond order character, the trivial phase shows the behavior of a rung-Mott insulator.
For this case, the topological nature is found to survive even in the presence of finite interleg interactions.
Moreover, we find that the critical point of the topological phase transition shifts to a higher or a lower rung
hopping strength depending on the attractive or repulsive nature of the interaction. To highlight the marked
effects of interactions, we propose a scheme involving a Thouless charge pump that provides insights for the
topological phases characterized by a quantized particle transport through a periodic modulation of appropriate
system parameters. In our studies, we show an interaction-induced charge pumping following specific pumping
protocols in the case of staggered dimerization.
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I. INTRODUCTION

In the past decade, a profusion of solid-state, ultracold-
atomic, and metamaterial systems have realized topological
phases of matter that beautifully conform to predictions made
at the single-particle level. One of the earliest topological
models proposed in the late 1970s in the context of polymers,
i.e., the Su-Schrieffer-Heeger (SSH) model [1,2], has formed
a paradigm for extensive studies. The SSH model is a tight-
binding model of lattice fermions having dimerized hopping
and it has offered the simplest platform to realize a topo-
logical phase transition in low-dimensional lattice systems
[3,4]. Particularly, the SSH model exhibits a topological phase
transition from one gapped phase to another as a function of
the nearest-neighbor hopping dimerization strength. Topolog-
ical phases are characterized by zero-energy midgap states
corresponding to robust, topologically protected edge bound
states in finite geometries. Underlying symmetries that protect
the topological character of the phases have attracted recent
attention for fundamental physics as well as technological
applications [5–11]. The SSH model is now a frontrunner for
realization in disparate experimental systems, revealing the
signature edge states and distinct topological phase transitions
[12–19].

With well-established single-particle topological physics
in place, attention has now turned to interaction effects. Here,
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the nature of the intrinsic particles becomes highly germane:
fermions and bosons can both form insulators either due to
band effects, and related topology, or due to interactions and
Mott physics. Delocalized behavior is typically metal-like in
fermions and superfluid in bosons. Quantum particles apart,
in metamaterials, excitations could correspond to a variety
of features, such as lattice distortions; deviations beyond the
lowest order would give rise to effective interactions between
these modes. Naturally, the SSH model has formed a key sub-
ject for understanding how interactions modify its predicted
topological phases [20]. Interparticle interactions in the SSH
model and its variants are known to have significant effects on
the topological character. In this context, interaction effects
have been studied in stabilizing topological phases in a one-
dimensional SSH model of few and many interacting particles
[21–38]. Moreover, interactions can even induce a topological
phase and an associated phase transition [39–41]. Interaction
effects have also been generalized to two-component systems
in the framework of the SSH-Hubbard model [22,26,27,42–
47]. On the experimental front, the topological phases have
been observed in a one-dimensional interacting SSH model
[48] and also in an SSH-Hubbard model [49]. While the
topological properties of the SSH model in the presence of
interaction has been a topic of great interest in recent years
due to their accessibility in experiments involving artificial
systems such as ultracold atoms in optical lattices, the physics
of coupled SSH chains is still not well explored.

In this theoretical work, we investigate the interplay be-
tween interactions and interchain coupling in the case of
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FIG. 1. Two-leg ladder with different hopping dimerization pat-
terns: (a) the uniform dimerization pattern and (b) the staggered
dimerization pattern. ta, tb, and tp are the hoppings along leg a, leg b,
and along the rungs of the ladder. αa and αb decide the dimerization
along leg a and leg b, respectively. The circles represent the sites, and
the thick (thin) bonds along the legs represent the strong (weak) hop-
ping strengths. The dashed vertical lines illustrate the rung hopping.
We allow interparticle interaction V only along the rungs, which is
marked by the arrow.

multiple SSH chains, and its effect on topological physics.
As depicted in Fig. 1, two-leg ladders provide a minimal
setup to explore the intermediate regime between one- and
two-dimensional lattices. The topological properties of these
coupled SSH models have been theoretically investigated at
the single-particle level [50–59] and even realized experimen-
tally [60]. The coupling between the chains, which forms
the ladder, provides a degree of freedom to vary, and the
possibility of new phases. In particular, if the dimerization
pattern is uniform between chains [Fig. 1(a)], the smallest
amount of rung coupling renders topology to be weak. In that
case, edge states between chains can hybridize and break away
from their zero-energy status. If the dimerization pattern is
staggered between chains [Fig. 1(b)], such rung hopping can
result in three phases [53]. Two of the phases entail having
topologically protected midgap states, as would be found in
individual chains. A third, also gapped, phase results from
strong enough coupling between chains such that the midgap
states completely disappear, and only bulk states exist. The
effect of interactions on this physics has been studied in many-
body spin and fermionic systems [61,62]. Many-body physics
in bosonic SSH ladders is far from a simple extrapolation;
competing effects, such as superfluidity, offer widely unex-
plored regimes and form the subject of our study.

In this paper, we thus perform an in-depth study of the
topological nature of hardcore bosons on the two-leg SSH
ladder in the presence of interleg interactions. We first re-
view single-particle physics to set the stage for phenomena
exhibited by interacting bosons. We establish how the most
significant effects of topology come into play at half filling,
away from gapless superfluid phases that surround gapped
phases in parameter space. On introducing interleg interac-
tions, for the uniform ladder, we show how a rung-Mott
insulator phase can dictate and suppress the topological na-
ture of the system. For the staggered ladder, starting from a
topological phase at a fixed rung hopping, we show that the
system sustains a robust topological phase with increasing
interleg interactions until it reaches a critical strength at which
it undergoes a phase transition to a trivial phase. We find that

the topological phase transition is sensitive to the nature of the
interaction, i.e., a topological to trivial phase transition occurs
at a smaller (larger) critical rung hopping when the interaction
is repulsive (attractive). We do a careful study to quantify
these topological properties by deriving and analyzing the ex-
citation spectrum, finite edge polarization, quantized Berry’s
phase, and Thouless charge pumping properties. Our studies
show that the SSH bosonic ladder has a rich range of phases, is
topologically robust, and has some features that are markedly
different from its single-particle and fermionic counterparts.

The paper is organized as follows. In Sec. II, we discuss
the model and the method used for our studies. We obtain the
single-particle spectrum in Sec. III, and employ it in Sec. IV
to derive results pertaining to the many-body hardcore bosonic
system in the absence of interleg interactions. In Sec. V, we
perform an involved analysis of the behavior of the SSH
ladder in the presence of interleg interactions, concluding
with a derivation and discussion of Thouless charge pumping.
Finally, in Sec. VI, we provide a summary and outlook.

II. MODEL AND APPROACH

The systems of interacting hardcore bosons on a two-leg
SSH ladder studied here are described by the Hamiltonian

H = −
∑

j

[ta − (−1) jαa](a†
j a j+1 + H.c.)

−
∑

j

[tb − (−1) jαb](b†
jb j+1 + H.c.)

− tp

∑
j

(a†
j b j + H.c.) + V

∑
j

na jnb j, (1)

where a j (b j ) and na j (nbj ) are, respectively, the bosonic an-
nihilation and on-site number operator for the jth lattice site
on leg a(b). The hopping amplitudes along the respective legs
are denoted by ta and tb. The parameters αa and αb set the
SSH-model-type dimerization along the a and b legs, respec-
tively. The two legs interact with each other through hopping
and interactions along the rung direction. Here, tp represents
the hopping amplitude along the rung, and V is the interleg
interaction strength. The hardcore constraint is imposed by
assuming (a†)2 = 0, which ensures not more than one boson
in a particular site.

Note that in the absence of both interaction (V = 0) and
rung hopping (tp = 0), the model considered above transforms
to two decoupled legs whose physics solely depends on the
choice of dimerization, i.e., αa and αb. At half filling of
hardcore bosons, the two chains exhibit topological or trivial
character, when the dimerizations αa and αb are considered to
be both positive or both negative. This indicates a topological
phase transition as the dimerizations vary from negative to
positive values, or vice versa. Additionally, in the absence
of dimerization, i.e., αa = αb = 0, the noninteracting version
(V = 0) of H is known to exhibit a rung-Mott insulator (RMI)
phase for any finite values of rung hopping tp where a particle
tries to localize in each rung [63]. However, the combined
effect of dimerization, rung hopping, and interaction in such
many-body system is not well explored.
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In this work, we systematically analyze the effect of tp

and V on the topological properties of the system. In our
studies, we consider two different combinations of dimeriza-
tions such as (a) uniform dimerization, i.e., αa = αb > 0, and
(b) staggered dimerization, i.e., αa = −αb > 0, as depicted in
Figs. 1(a) and 1(b), respectively. In the absence of tp and V ,
for the uniform dimerization case, the particles in both the legs
are in topological phases, and for the staggered dimerization
case, the particles in leg a are in a topological phase and in leg
b they are in the trivial phase. In the following, we study the
effect of tp and V on the topological features of the system.

To achieve the above two dimerization patterns, we set
the following parameters. The uniform dimerization is en-
forced by fixing ta = tb = t and αa = αb = α. Similarly, the
staggered dimerization pattern along the legs is enforced by
setting ta = tb = t and αa = −αb = α. We consider t = 0.6
and α = 0.4 in our calculations such that the hopping strength
in the strong and weak bonds in the legs is t1 = t + α = 1 and
t2 = t − α = 0.2, respectively. Here, t1 = 1.0 defines the unit
of energy, which makes the other parameters in the system
dimensionless. These choices of parameters make the system
strongly dimerized in the decoupled limit (tp = V = 0), where
the topological properties are very prominent such as the edge
states with very small correlation length (well localized) and
large bulk gap.

We numerically obtain the ground-state properties of
the system using the density matrix renormalization group
(DMRG) method [64,65] based on the matrix product states
(MPS) approach [66,67]. We consider a ladder of length up
to L = 100 rungs (i.e., 200 sites) for different particle number
sectors of N hardcore bosons with the desired densities ρ =
N/2L. Unless otherwise mentioned, we compute the physical
quantities in the thermodynamic limit (L = ∞) by using the
appropriate extrapolation technique to minimize finite-size
effects. The accuracy of the DMRG simulations is ensured
by considering sufficiently large bond dimensions (χ ) up to
χ = 500.

III. SINGLE-PARTICLE SPECTRUM

Before presenting many-body features, we first analyze the
single-particle spectrum of the model shown in Eq. (1). Al-
though the model under consideration is for hardcore bosons,
we show that significant insights about the topological prop-
erties of the many-particle ground state can be obtained from
the single-particle spectrum at different fillings. In the follow-
ing, we describe the quantum phases at different fillings for
both the uniform and staggered dimerization configurations
considered in our study.

As a specific representative case, we plot the numerically
obtained single-particle spectrum as a function of tp for a sys-
tem of length L = 20 for uniform dimerization case (ta = tb =
0.6t1 and αa = αb = 0.4t1) and staggered dimerization case
(ta = tb = 0.6t1 and αa = −αb = 0.4t1) in Figs. 2(a) and 2(b),
respectively. Note that for the case of uniform dimerization,
the system is a weak topological system consisting of a stack
of lattices that are topologically identical in nature. When
tp = 0, the two legs of the ladder are equivalent to two isolated
SSH chains, which are individually known to manifest a gap
in the middle of the spectrum due to the onset of the bond

FIG. 2. The single-particle energy spectrum of a system of 40
sites (L = 20) with varying tp for (a) uniform dimerization pattern
(ta = tb = 0.6t1 and αa = αb = 0.4t1) and (b) staggered dimerization
pattern (ta = tb = 0.6t1 and αa = −αb = 0.4t1) along the legs. The
red line with circles in (b) denotes the corresponding winding num-
ber ν. (c),(d) The on-site probability |ψ j |2 of states marked by the red
plus signs in (a) and (b), respectively. Note that the on-site probability
for all the states marked in (a) is identical to that in (c). This clearly
indicates that the edge states are crossing the band from one gapped
phase to another.

order (BO) phase [23]. This gapped phase hosts a pair of
symmetry-protected zero-energy edge states [see Fig. 2(a)].
When tp takes finite values, apart from the gap at the middle
of the spectrum, two more gaps open up symmetrically at
one-quarter and three-quarter fillings of the spectrum after
a critical tp due to the formation of a plaquette order (PO)
in the system, which will be discussed in detail in the next
section. The zero-energy edge modes in the two legs of the
ladder hybridize to become energetic while staying at the
edges. These states can be called midgap states. However, in
this case, these states merge with the energy bands before the
bulk gap closes at a higher value of tp, violating the bulk-edge
correspondence. As mentioned before, this phenomenon can
be attributed to the weak topology of the uniform dimerization
configuration. With further increase in tp, the bulk gap opens
up again but without the midgap states. A pair of midgap
states appears inside the two symmetrically formed gaps at
one-quarter and three-quarter fillings of the energy spectrum.
To confirm that these midgap states are edge states, in Fig 2(c)
we plot the probability density |ψ j |2 of these states marked
by red plus signs in Fig. 2(a), where ψ j is the wave-function
amplitude at each lattice site j. It can be clearly seen that the
amplitude ψ j has maximum weight on the edge lattice sites
of both the legs. We note that these midgap states cross the
bulk bands and go from one gapped phase to another gapped
phase as a function of tp. While crossing the band, the edge
state retains its properties, i.e., the probability density behaves
similar to Fig. 2(c) at all three positions marked by the red plus
symbols in Fig. 2(a).

For the case of staggered dimerization, however, the single-
particle spectrum exhibits a simple but topologically richer
picture. In this case a gap-closing transition occurs between
two gapped phases as a function of tp, where one of the gapped
phases hosts zero-energy edge modes, as can be seen from
Fig. 2(b). We plot the probability density (|ψ j |2) in Fig. 2(d)
for the states marked by the red plus sign in Fig. 2(b). It
can be seen that the edge states are concentrated on the two
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edges of leg a. The bulk-boundary correspondence can be
properly established by linking a bulk topological invariant in
the momentum space under periodic boundary conditions to
the edge states under open boundary conditions. In Fig. 2(b),
we plot the invariant quantity in terms of a winding number ν

(red circles) defined by the formula

ν = 1

π

∫ 2π

0
i〈uk|∂kuk〉dk, (2)

where |uk〉 stands for the filled Bloch band and k denotes a
quasimomentum. It turns out that the gapped phase before (af-
ter) the critical point corresponds to ν = 1 (0), which indicates
a clear topological phase transition, and the correspondence
between the bulk and the boundary.

The single-particle orbitals discussed above can be filled
one by one from the lowest energy onwards to obtain different
ground-state phases arising at different fillings of fermions
in the many-body context. Fundamentally, hardcore bosons
share some properties with the spinless fermions such as
the energy and diagonal correlations, but strictly in one di-
mension. The situation is different in the case of a two-leg
ladder. A critical study on this front has been performed
in Ref. [63], where the differences between noninteracting
spinless fermions and hardcore bosons in a two-leg ladder
model with uniform leg hopping have been highlighted. It
has been shown in Ref. [63] that at half filling, both spinless
fermions and hardcore bosons stabilize to the gapped phases
as a function of the rung hopping. In these gapped phases,
the particles prefer to localize on the rungs. However, the
difference between fermions and hardcore bosons is that the
transition to the gapped phase occurs after a critical tp for the
case of spinless fermions, whereas for hardcore bosons, the
system becomes a gapped RMI phase for any finite value of tp,
indicating a clear difference between the two systems. While
these differences exist, the single-particle analysis provides a
broad basis for understanding topological insulators in both
fermionic and bosonic systems.

In our studies, we show that for the model under consid-
eration, the hardcore bosons in the many-body limit exhibit
different phases, such as topological bond order (BO) phases,
rung-Mott insulators (RMI), plaquette order (PO) phases,
along with superfluid (SF) phases at incommensurate fillings.
We first discuss the scenario without interaction (V = 0) and
then with interaction (V �= 0) for both the cases of uniform
and staggered dimerizations.

IV. MANY-BODY PHASES

Interacting bosons in periodic lattices exhibit a range of
rich phenomena [68]. One such phenomenon is the phase
transition from the gapless superfluid (SF) to gapped Mott in-
sulator (MI) phase at integer filling [69–71]. While the SF-MI
transition has been extensively studied in all three dimensions,
in one-dimensional lattices, the SF phase is characterized
by off-diagonal quasi-long-range order. In the presence of
strong on-site interaction, i.e., in the hardcore limit, the sys-
tem reaches the Tonk’s limit [72]. Such hardcore bosons in
one dimension mimic the physics of spin-polarized fermions
and, therefore, the physics of the associated many-body prob-
lem can be extracted from the single-particle picture. One of

FIG. 3. Phase diagram of model (1) with V = 0, ta = tb = 0.6t1,
and αa = αb = 0.4t1 plotted in the tp-μ plane. The solid black lines
show the phase boundaries of gapped phases, such as the plaquette
order (PO), the bond order (BO), and the rung-Mott insulator (RMI)
phases. The dashed red lines denote the midgap states. The gapless
superfluid (SF) phase is represented by the gray shaded area.

the simplest examples is the one-dimensional bosonic SSH
model, which exhibits a topological phase transition in the
presence of interaction [23–25]. However, in the case of
quasi-one-dimensional (quasi-1D) lattices, this mapping is
not straightforward and therefore it is difficult to predict the
physical picture of a many-body problem.

In this section, we analyze the many-body physics of the
SSH ladder shown in Eq. (1) in the absence of interaction (i.e.,
V = 0) for both of the cases of dimerizations considered here.

A. Uniform dimerization

In Fig. 3, we show the phase diagram for uniform dimer-
ization on both of the legs of the ladder with ta = tb = 0.6t1
and αa = αb = 0.4t1. The phase diagram is obtained as a
function of the chemical potential μ and tp, and it exhibits
three gapped phases at ρ = 1/2, 1/4, and 3/4, denoted by the
white regions with black solid boundaries. The boundaries of
these gapped phases are calculated using the formula

μ− = E (N ) − E (N − 1), μ+ = E (N + 1) − E (N ), (3)

where E (N ) is the ground-state energy of the system consist-
ing of N bosons. Here, μ− (μ+) is the chemical potential that
defines the lower (upper) boundary of a gapped phase. All the
lines in the figure are plotted after extrapolating the values of
μ± to the thermodynamic limit. One of the major differences
that appears in the energy gap at ρ = 1/2 as compared to
the single-particle picture is that it always remains finite as
a function of tp [compare with Fig. 2(a)]. A similar feature
exists for the nondimerized hardcore bosonic ladder where
a gapped RMI phase extends until tp = 0 at half filling, in
contrast to the single-particle physics [63]. The red dashed
lines are the midgap edge states, which are determined by
analyzing the ρ-μ plot, as shown in Fig. 4. The figure depicts
the behavior of the bulk (ρb) and edge (ρe) densities, which
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FIG. 4. The figure displays the bulk and edge densities of the
system represented by ρb and ρe, respectively, as a function of
μ. (a)–(c) The ρb (solid lines) and ρe (dashed lines) with varying
chemical potential μ for tp = 0.2t1, 0.75t1, and 1.5t1, respectively,
corresponding to three cuts in the phase diagram shown in Fig. 3.
This shows the nature of the bulk phases (gapped or gapless) when
the edge states are being filled in different parameter regimes.

are defined as

ρb = 1

L − 2

L−1∑
j=2

〈na j + nb j〉 (4)

and

ρe = 1

4
〈na1 + nb1 + naL + nbL〉, (5)

respectively, as a function of μ. Figures 4(a)–4(c) show the
ρ-μ behavior for tp = 0.2t1, 0.75t1, and 1.5t1, respectively,
corresponding to three different cuts in the phase diagram of
Fig. 3. The plateaus in the ρb curves (black solid lines) indi-
cate the three bulk gaps at ρ = 1/4, ρ = 1/2, and ρ = 3/4,
which confirm the existence of the gapped phases. The shoul-
ders around the plateaus are the signature of gapless regions
where the system exhibits a superfluid (SF) character with
off-diagonal quasi-long-range order. The behavior of the ρe

(red dashed lines) in Fig. 4 reflects the existence of edge states
in the system. When the bulk is gapped, the sudden change in
the number of particles at the edges (Ne) by two or a change
in ρe by 0.5 for tp = 0.2t1 and 1.5t1 [Figs. 4(a) and 4(c)]
mark the μ of the midgap edge states. The change in Ne by
two particles is due to the two degenerate midgap edge states
at that particular μ. Interestingly, for the case of tp = 0.75t1
[Fig. 4(b)], ρe increases continuously only when the bulk is
in the gapless SF region with density 1/4 < ρb < 1/2 and
1/2 < ρb < 3/4. This indicates that the edge states get filled
up while the bulk of the system exhibits a gapless SF phase.
As discussed earlier, a similar phenomenon can be seen in the
single-particle case, where the edge states survive inside the
bands between half and quarter fillings.

Now we discuss the properties of the gapped phases in
different parameter regimes. At ρ = 1/2, when tp = 0, the
two chains are isolated SSH chains. Due to the dimerized
hopping on both legs, the system exhibits a gapped bond order

FIG. 5. The figure shows the bond energies (Bj) of all the bonds
defined in Eq. (6) and the on-site particle number (〈nj〉) for different
phases corresponding to Fig. 3 with a system consisting of 40 sites
(L = 20 rungs). In the figures, the thickness of a bond is proportional
to the respective strength of Bj , and the face color of the circles
represents the values of 〈nj〉. This captures different dimerization
patterns and the existence of edge states in different phases. (a) Bj

and 〈nj〉 corresponding to the bond order (BO) phase at 1/2 filling
(N = L) for tp = 0.2t1, which has two filled edge states (localized
at each edge). The parameters in (b) are the same as (a), but with
N = L + 1, which has three occupied edge states (two localized on
the left edge and one on the right edge). (c),(d) The same quantities
for tp = 0.75t1 and 1.5t1, respectively, at 1/2 filling (N = L). The
change in bond order pattern can be seen going from (a) the bond
order (BO) to (d) the rung-Mott insulator (RMI) phase. (e),(f) The
1/4-filling plaquette order (PO) phases for parameters tp = 0.5t1

with N = L/2 − 1 and tp = 1.5t1 with N = L/2, respectively. The
edge state appears (localized on the left edge) in (f). Note that in all
the cases, we have used a small on-site potential of −0.001t1 in one
edge to break the degeneracy of the edge-state pair.

(BO) phase along the legs with edge states on both legs. For
the other limit of tp, when it is large compared to the hopping
along the legs, the system is gapped once again, but due to
the dimerization along the rungs. This phase is known as
the rung-Mott insulator (RMI) phase, as already introduced
before. However, from the phase diagram shown in Fig. 3,
it can be seen that the two gapped phases at two limits of
tp are connected without any gap closing. To identify these
phases, we calculate the bond energy along the legs and the
rungs using the formula given by

Ba, j =〈a†
j a j+1 + H.c.〉, Bb, j = 〈b†

jb j+1 + H.c.〉,
Br, j =〈a†

j b j + H.c.〉. (6)

Here the subscripts a, b, and r denote the leg a, leg b, and rung,
respectively. Figures 5(a)–5(d) display the bond energy in all
the bonds, along with the on-site particle densities for a system
of size L = 20 at half filling when tp = 0.2t1, 0.2t1, 0.75t1,
and 1.5t1, respectively. Here the thickness of the bonds is
proportional to the bond energy Bj , and the face color of the
circles represents the particle densities on a particular site.
In Fig. 5(a), we can see that the alternate bonds along the
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legs are stronger, indicating the BO phase with one particle
delocalized in the first and last rungs. When both of the legs
are isolated (tp = 0), a configuration with one particle in one
of the edges of leg a and one particle in one of the edges of
leg b is an energetically favorable configuration at half filling.
However, in Fig. 5(a), since we consider a finite rung hopping
(tp = 0.2t1), the system chooses to be in a state such that both
of the edge rungs have one particle delocalized in them, which
is the minimum energy configuration. We can get more insight
regarding the edge states by moving away from half filling,
e.g., by adding one extra particle to the system, we get a strong
bond on the rightmost rung, as shown in Fig. 5(b). This is
because at ρb = 1/2, there are, in principle, two pairs of edge
states at different μ. Since in this case we consider N = L + 1
particles, three out of four edge states are filled. Due to this,
two particles reside on the left edge of the ladder (i.e., the first
rung) and one particle resides on the right edge of the ladder
(i.e., the last rung). The particle that resides on the last rung
delocalizes itself on the rung due to finite tp [as can be seen
from Fig. 5(b)].

Apart from the gapped phase at ρ = 1/2, we also see two
more gapped phases at ρ = 1/4 and 3/4, which is expected
from the single-particle analysis. Note that the gapped phases
at ρ = 1/4 and ρ = 3/4 are dual to each other due to the
particle-hole symmetric nature of the model in the absence
of interaction (V = 0). At ρ = 1/4 (ρ = 3/4), for tp = 0, the
system is in the SF phase, but when tp is strong, a particle
(hole) tends to get localized in every alternate plaquette of the
ladder and hops within the plaquette only. This phase is very
similar to the BO phase, but here a particle gets trapped in
a plaquette rather than a bond, which we call the plaquette
order (PO) phase. In Figs. 5(e) and 5(f), we show the bond
energy and particle densities of the gapped phase at ρ = 1/4
for tp = 0.5t1 and 1.5t1, respectively. Here we can see that at
every alternate plaquette, the bond energy is stronger. But the
edge state exists only in Fig. 5(f), which is dimerized in the
first rung.

This analysis clearly shows that the strong topological
character ceases to appear in the case of uniform dimerization
and the zero-energy edge states become midgap edge states
for any finite value of tp, hence ruling out any topological
phase transition as a function of tp. However, in the following,
we show that the case of staggered dimerization exhibits a
clear topological phase transition, even in the presence of
finite interaction.

B. Staggered dimerization

In this case, the leg a (leg b) of the ladder is considered
to be of a topological (trivial) nature. Similar to the uniform
dimerization case, we first discuss the many-body phase di-
agram in the absence of interaction (V = 0) and compare
it with the single-particle picture [Fig. 2(b)]. In Fig. 6, we
show the phase diagram with the parameters ta = tb = 0.6t1
and αa = −αb = 0.4t1 in the μ − tp plane. In the figure, the
white regions bounded by the black line with circles corre-
spond to the gapped phases, and the gray regions around them
are the gapless regions. The phase diagram clearly shows
a phase transition between two gapped phases as a func-
tion of tp at half filling. In the following, we show that this

FIG. 6. Phase diagram of model (1) with V = 0, ta = tb = 0.6t1,
and αa = −αb = 0.4t1 is plotted in the tp-μ plane. The solid black
lines show the phase boundaries of gapped phases and the dashed
lines denote the midgap states. The gapless superfluid (SF) phase is
represented by the shaded gray area. A topological phase transition
happens through a gap-closing point for ρ = 1/2 from a topological
bond order (BO) to a trivial rung-Mott insulator (RMI) phase.

transition through a gap-closing point is a well-defined topo-
logical phase transition, which was already indicated in the
single-particle picture [compare with Fig. 2(b)].

First of all, when tp = 0, the system corresponds to two
isolated SSH chains. Due to staggered dimerization, the upper
leg at ρ = 1/2 exhibits a topological BO phase with zero-
energy edge states, and the lower leg exhibits a trivial BO
phase without any edge states. Because of this, there exists a
finite gap at tp = 0 with zero-energy states at the middle. Upon
switching on the rung hopping tp, the system shows an affinity
towards dimerizing along the rungs due to the enforcement of
the RMI character. As a result, the topological BO phase and
the edge states (red dashed line) survive up to certain values
of tp. After a critical value of tp ∼ 0.9t1, the dimerization in
the rungs dominates, leading to the appearance of the gapped
RMI phase, which does not exhibit any edge states. This tran-
sition clearly occurs through a gap-closing point, indicating
a topological phase transition as a function of tp. These two
gapped phases can be distinguished by comparing their bulk
behavior through Bj , as shown in Figs. 7(a) and 7(b) which
are plotted for parameters tp = 0.25t1 and 1.5t1, respectively,
at ρ = 1/2. From the figure, it can be seen that when tp is
below the critical value, the dimerization is maximum along
the legs of the ladder and the left edge of leg a is occupied
by a particle, indicating the presence of an edge state. When
tp is above the critical value, we see a dominant dimerization
along the rungs forming the RMI phase, which does not host
any edge states.

To inspect the gap-closing point, we analyze the behavior
of the single-particle correlation function 	i j = 〈a†

i a j〉 as a
function of the distance |i − j| at half filling for three different
values of tp lying in both the gapped phases as well as at
the gap-closing point. From Fig. 8, it can be seen that when
the system lies in the topological BO phase for tp = 0.25t1, the
correlation 	i j decays exponentially (red squares), indicating
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FIG. 7. The figure shows the bond energy (Bj) of all the bonds
defined in Eq. (6) and the on-site particle number (〈nj〉) for different
phases of a system consisting of 40 sites (L = 20). (a),(b) Two
gapped phases at the 1/2 filling (N = L), which are topological
bond order (BO) and trivial rung-Mott insulator (RMI) phases corre-
sponding to the parameter value tp = 0.25t1 and 1.5t1, respectively,
in Fig. 6. Here the thickness of a bond is proportional to the cor-
responding value of Bj , and the face color of the circles represents
the on-site particle number. We can see the change in dimerization
pattern between (a), which also has an occupied edge state (localized
at the left edge), and (b). Note that in both cases, we have used a small
on-site potential of −0.001t1 in one edge to break the degeneracy of
the edge-state pair.

the gapped nature of the phase. Similar features can be seen
for the RMI phase for tp = 1.5t1 (green circles). However,
near the gap-closing point i.e., for tp = 0.87t1 (black dia-
monds), 	i j exhibits a power-law decay. Such a behavior of
the correlation function indicates that the system becomes a
superfluid with quasi-long-range order at the critical point of
topological phase transition.

At this point, it is evident that the staggered dimerization
case favors a topological phase transition in the many-body
limit, which is absent in the case of uniform dimerization.
In the remaining part of the paper, we focus on the role
of interaction on the topological character displayed by the
many-body system in the staggered dimerization case.

V. INTERACTION-INDUCED TOPOLOGICAL PHASE
TRANSITION

In this section, we study the fate of the topological phase
that occurs for the staggered dimerization case in the presence

FIG. 8. The figure shows the correlation function 	i j as a func-
tion of distance |i − j| for V = 0, tp = 0.25t1 (red squares), tp =
0.87t1 (black diamonds), and tp = 1.5t1 (green circles). Here we
show the behavior only along the leg a for a ladder with 200 lattice
sites (i.e., L = 100).

FIG. 9. Phase diagram of model (1) with ta = tb = 0.6t1, αa =
−αb = 0.4t1, and tp = 0.2t1 plotted in the V -μ plane. The solid black
lines show the phase boundaries of gapped phases and the red dashed
lines stand for the midgap edge states. The gapless superfluid (SF)
phase is represented by the shaded gray area. Here, at ρ = 1/2, the
topological phase transition occurs from a topological bond order
(BO) to a trivial rung-Mott insulator (RMI) phase through a gap-
closing point with increasing V .

of interaction (V ). For this purpose, we start in the parameter
domain tp = 0.2t1, ta = tb = 0.6t1, and αa = −αb = 0.4t1 in
the noninteracting phase diagram shown in Fig. 6, where the
system is in a gapped BO phase exhibiting edge states at ρ =
1/2, and examine the effect of finite V . By introducing V , we
obtain a phase diagram, which is shown in Fig. 9, in the μ − V
plane, obtained after appropriate finite-size extrapolation. The
phase diagram clearly shows a gapped to gapped phase transi-
tion, where the gapped and gapless phases are indicated by the
white and gray regions, respectively. We find that the degen-
erate edge states still survive at finite V (indicated by the red
dashed line), preserving the topological nature of the phase.
With increase in V , however, a gap-closing transition to a triv-
ial phase occurs at a critical interaction strength Vc ∼ 2.85t1.
The gap-closing transition induced by interaction signifies the
bulk-edge correspondence of the topological phase transition,
even though the edge states shift from the μ/t1 = 0 value due
to the particle-hole symmetry breaking of the Hamiltonian.
Note that in this case, the gapped phase below Vc is a topolog-
ical BO phase, and above Vc, it is the RMI phase.

The underlying mechanism of this interaction-induced
topological phase transition can be described by the argu-
ments based on the minimization of the ground-state energy.
Starting from the noninteracting (V = 0) case [e.g., Fig. 7(a)],
the dimerization pattern reveals a large probability of finding
two particles on a single rung. At finite V , this configuration is
unfavorable due to an extra energy cost. In such a situation, to
minimize the energy, the system tends to dimerize along the
rungs by localizing one particle at each rung. This preference
of dimerization along the rungs by the particles leads to a
transition from the topological BO phase to the RMI phase
(trivial) as a function of V . This also suggests that a finite
V > 0 favors a topological phase transition and, therefore,
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FIG. 10. Bond energies along the legs (Ba,b) and along the rung
(Br) computed by averaging over all the respective bonds for 240
sites (L = 120) at ρ = 1/2. (a)–(c) The bond energies for V =
0.0t1, 1.5t1, and −1.5t1, respectively, with varying tp. The Br dom-
inates over Ba,b after different tp values for different values of V ,
implying the onset of a trivial RMI phase with different critical
transition points. The green dotted lines in all the plots mark the
critical point corresponding to V = 0.0t1 in Fig. 6.

the transition should occur at a smaller tp as compared to the
V = 0 case. This is confirmed in our numerical simulations,
as shown in Fig. 10, where we compare the average bond ener-
gies along the legs (Ba and Bb) and the rungs (Br) as a function
of tp for different values of V . It can be clearly seen that
for V = 1.5t1 [Fig. 10(a)], the bond energy along the rungs
starts to dominate over the bond energies along the legs at a
smaller tp, indicating an early topological BO-RMI transition
compared to the case when V = 0.0t1 [see Fig. 10(b)].

In this context, we also examine the effect of attractive
interaction on the topological phase transition. We find that
the Br dominates over all other bond energies at a larger value
of tp for attractive V , as shown in Fig. 10(c) (for V = −1.5t1).
This opposite behavior can be understood using an argument
similar to the repulsive V case. When V < 0.0t1, the particles
prefer to dimerize along the legs rather than on the rungs.
Hence, a larger tp is necessary to break the bond ordering
along the legs and introduce rung dimerization as compared to
the repulsive V case. These behaviors can also be seen in the
phase diagrams shown in Figs. 11(a) and 11(b) for V = 1.5t1
and V = −1.5t1, respectively. Comparing the transition point
for V = 0.0t1, marked by vertical dotted lines, we can clearly
see that the topological phase transition occurs at a smaller
(larger) critical tp for repulsive (attractive) V .

Another aspect to understand these phase transitions can be
the way the interleg interaction modifies the energetics of the
system. For example, when V = 0.0t1, the chemical potentials

FIG. 11. Phase diagrams of model (1) with (a) V = 1.5t1 and
(b) V = −1.5t1 are plotted in the tp-μ plane. The solid black lines
show the phase boundaries of the gapped topological bond order
(BO) phase and trivial rung-Mott insulator (RMI) phases. The dashed
lines stand for the midgap edge states. The gapless superfluid (SF)
phase is represented by the shaded gray area. The green dotted line
marks the critical point corresponding to V = 0.0t1 in Fig. 6. The
change in the gapless critical points for finite interaction can be seen
by comparing to the noninteracting case at half filling.

μ+ and μ− are symmetric around μ = 0. On the other hand,
when V = 1.5t1, the chemical potentials are modified and
the overall phase diagram shifts by 0.75t1 [compare the red
dashed lines in Figs. 6 and 11(a)]. This is exactly V/2 because
the two lattice sites in each rung experience an interaction
equal to V . However, the critical point shifts to a lower value
for a repulsive V . This can actually be understood from the
bond energy (Bj) analysis in Fig. 8, where we observe that
the bond energies along the legs Ba/b, j remains constant up to
the gap-closing critical point, after which it decreases. Con-
versely, the bond energy along the rungs Br, j keeps increasing
with increase in tp and dominates Ba/b, j . This crossing be-
tween the bond energy along the legs and that along the rungs
occurs at a lower tp for V > 0.0t1.

To quantify the interaction-induced topological phase tran-
sition, we obtain the critical rung hopping strengths t c

p for
different values of V by monitoring the bulk gap-closing
point (as already done for Figs. 6 and 11). To this end, we
fix ta = tb = 0.6t1 and αa = −αb = 0.4t1 in the Hamiltonian
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FIG. 12. (a) Phase diagram at ρ = 1/2 corresponding to the
Hamiltonian given in Eq. (1) for ta = tb = 0.6t1 and αa = −αb =
0.4t1 (staggered dimerization). Here the topological (trivial) phase is
the BO (RMI) phase. The figure shows how the critical point changes
with the interaction strength V . (b) Berry phase under twisted phase
boundary conditions showing the topological phase transition as a
function of tp/t1 for V = 0.0t1, 1.5t1, and −1.5t1 on a system of
length L = 6 (12 lattice sites). The dotted lines mark the transition
points extracted from the phase diagram in (a) corresponding to each
V .

shown in Eq. (1) and compute the phase diagram in the V − tp

plane, as shown in Fig. 12(a) where the topological phase
(brown region) and trivial phase (white region) are separated
by the critical boundary (line with circles). We obtain that the
t c
p shifts to a higher (lower) value for attractive (repulsive)

interaction. It is interesting to note that attractive V favors a
topological phase from a trivial phase for a range of values of
tp/t1. For example, starting from tp/t1 = 1 and V = 0, if we
move by making V more and more attractive, the system un-
dergoes a trivial to topological phase transition at Vc ∼ −0.5.

The topological phase transitions can also be detected
from the discontinuous jump in the topological invariant
of the corresponding phases. A bulk topological invariant,
calculated from the Berry phase, is always linked with the
symmetry-protected edge states according to bulk-boundary
correspondence in topological systems. The Berry phase, de-
fined by the formula

γ =
∫ 2π

0
〈ψ (θ )|∂θψ (θ )〉dθ, (7)

can be a suitable topological invariant for our model in the
many-body limit under twisted phase boundary conditions
(TBCs) [24,25,73]. Here, |ψ〉 is the ground-state wave func-
tion, and we achieve the TBC by setting a j → eiθ/La j and
b j → eiθ/Lb j in leg a and leg b, respectively. When the twist
angle θ is varied from 0 to 2π adiabatically, |ψ〉 picks up a
phase, which is simply the Berry phase. Thus, γ is expected
to be quantized in units of π for a topological phase, whereas
it should vanish in the trivial phase. We plot γ /π as a function
of tp in Fig. 12(b) to capture the topological phase transitions
for V = 0.0t1, 1.5t1, and −1.5t1. As anticipated, γ clearly
distinguishes the topological BO and trivial RMI phases for
all three values of V . It also marks the respective critical points
(∼0.87t1 for V = 0.0t1, ∼0.47t1 for V = 1.5t1, and ∼1.4t1 for

V = −1.5t1), where we see an abrupt jump from γ = π to
γ = 0.

The many-body topological phase diagram in the non-
interacting limit (Fig. 6) is qualitatively similar to the
single-particle energy spectrum [Fig. 2(b)]. In the presence
of interaction, however, the critical point shifts to a differ-
ent critical rung hopping and the transition in this case is
not completely reminiscence of its noninteracting counterpart.
For example, the transition for V < 0.0t1 occurs at a larger
tp compared to the V = 0.0t1 case [see the phase diagram
in Fig. 12(a)]. Thus, there exists a parameter regime in the
phase diagram where a topological phase arises which is not
necessarily present for V = 0.0t1 and it is solely an outcome
of the interaction.

Thouless charge pumping

We now propose an experimentally relevant quantity in
terms of Thouless charge pumping (TCP) [74], which can
detect the interaction-induced topological phase transition
arising from our model. The TCP has recently been used to
characterize the topological nature of a system both in theory
and in experiments [13,14,75–83]. As per the TCP measure,
it is possible to pump a quantized amount of charge with an
adiabatic variation of the system parameters in a pumping
cycle which is related to the Chern number. The celebrated
Rice-Mele model [84,85] defines the pumping protocol in one
dimension where, in the parameter space, the pumping path
winds around a gapless singular point [21]. Here the system
periodically and adiabatically goes from a nontrivial to trivial
phase, and to a nontrivial phase again, by breaking the symme-
try that protects the topology in the system. While, originally,
the Rice-Mele model described the TCP of noninteracting
systems, recently its connection to interacting systems has
been proposed in various systems [21,22,24,42,76,86–90]. For
our current system under consideration, which exhibits a topo-
logical phase transition, we can define a pumping protocol by
introducing a symmetry-breaking term such that the pumping
path in the parameter space adiabatically winds around the
topological phase transition point.

In the following, we present the pumping protocol for the
two-leg ladder system with the parametric extension of the
model (1), which is given as

Hp(τ ) = −
∑

j

[ta − (−1) jαa](a†
j a j+1 + H.c.)

−
∑

j

[tb − (−1) jαb](b†
jb j+1 + H.c.)

− [to + δ(τ )]
∑

j

(a†
j b j + H.c.)

+ �(τ )
∑

j

[(−1) jna j + (−1) j+1nb j]

+ V
∑

j

na jnb j, (8)

where δ(τ ) = Aδ cos(2πτ ) changes the hopping dimerization
along the rungs and �(τ ) = A� sin(2πτ ) changes the stag-
gered on-site potential, which breaks the sublattice symmetry.

085120-9



PADHAN, MONDAL, VISHVESHWARA, AND MISHRA PHYSICAL REVIEW B 109, 085120 (2024)

FIG. 13. (a) Pictorial representation of the adiabatic variation
of parameters, shown for three different pumping cycles with three
different origins (to’s). The topological phase transition critical point
t c
p is marked with a green circle on the δ axis. (b) The evolution of the

polarization [P(τ )] is plotted for three different to’s corresponding
to three different pumping cycles shown in (a) for V = 0. Here,
t c
p ∼ 0.87t1. Here, only cycle 2, which encloses the t c

p, shows robust
pumping. (c) The evolution of P(τ ) is shown for the same parameters
corresponding to cycles 1 and 3 that are considered in (b), but with
finite interaction strength V = 1.5t1 and V = −1.5t1, respectively.
Unlike the noninteracting case, here a quantized amount of charge
is being pumped. We call this phenomenon the interaction-induced
topological charge pumping. Here, for all the cases we consider
� = 0.5t1 and a finite system of L = 200 rungs.

The quantity τ is the adiabatic pumping parameter with O =
(tp = to, 0) as the origin of the pumping cycle in the δ − �

plane. A schematic representation of the periodic variation
of the parameters is shown in Fig. 13(a) for three different
to’s with Aδ and A� > 0. Note that the pumping can only
happen if the pumping path encloses the gap-closing critical
point (t c

p). This implies that only for cycle 2 (green continuous
line) of Fig. 13(a) can we expect robust and quantized charge
pumping.

However, the results obtained for V = 0 suggest that the
critical rung hopping t c

p for the topological phase transition
can be moved towards smaller and larger values depending on
the repulsive or attractive nature of V , respectively. Hence,
it can be made possible to shift the t c

p along the δ axis of
Fig. 13(a) by a suitable choice of V such that it lies inside
cycle 1 or 3 and a finite quantized amount of pumped charge
can be generated in these cases. The phenomenon of charge
pumping induced by interactions can be termed an interaction-
induced topological charge pumping (iTCP).

In our analysis, the iTCP is demonstrated by defin-
ing three different pumping cycles for three parameter

sets of (to, Aδ, A�) in Fig. 13(a), such as cycle 1
(0.5t1, 0.3t1, 0.5t1), cycle 2 (1.0t1, 0.4t1, 0.5t1), and cycle
3 (1.4t1, 0.4t1, 0.5t1). All the cycles correspond to the pa-
rameter sets ta = tb = 0.6t1, αa = −αb = 0.4t1, for which the
critical rung hopping for the noninteracting (V = 0) topo-
logical phase transition is t c

p ∼ 0.87t1 (Fig. 6) at half filling.
Following the standard protocol of the charge pump, we com-
pute a quantity known as polarization using the formula

P(τ ) = 1

L

L−1∑
j=0

〈ψ (τ )|( j − L/2)n j |ψ (τ )〉, (9)

which can estimate the pumped charge (Q) as

Q =
∫ 1

0
dτ∂τ P(τ ). (10)

Here, |ψ (τ )〉 is the ground state corresponding to the Hamil-
tonian Hp(τ ) since the evolution is adiabatic. In Fig. 13(b),
we plot P(τ ) for V = 0, for the pumping cycle 1 (dashed line
with circles), cycle 2 (continuous line with squares), and cycle
3 (dotted line with diamonds). According to the parameters
considered here, the t c

p resides on the δ axis within cycle 2
(to − Aδ < 0.87t1 < to + Aδ) only. Thus, we can see from the
figure that only for cycle 2 does P(τ ) varies continuously
from 0.5 to −0.5 resulting in |Q| = 1. However, for cycle 1
and cycle 3, the situation is completely different. For cycle 1,
there is a clear breakdown of charge pumping in the middle of
the pumping cycle, and there is no charge being pumped for
cycle 3.

To verify the iTCP, we re-perform the pumping along cy-
cles 1 and 3 with finite interactions V = 1.5t1 and −1.5t1,
which shift the t c

p into cycle 1 and cycle 3, respectively. In
Fig. 13(c), we plot P(τ ) for cycle 1 (dashed line with cir-
cles) and cycle 3 (dotted line with diamonds). The continuous
change of P(τ ) from 0.5 to −0.5 clearly shows a quantized
TCP for both of the cases. Note that this finite TCP was not
present for the V = 0 case [Fig. 13(b)] and is induced by the
interaction (V ), indicating an iTCP. This analysis substantiates
the interaction-induced topological phase transition as already
shown in Fig. 12.

From the analysis above, we can see that interaction favors
a topological phase transition from topological BO to the
trivial RMI phase. The same underlying physics also dictates
the change in the critical rung hopping of a topological phase
transition in the presence of interaction. Such an interac-
tion effect on the topological phase transition allows for an
interaction-induced topological charge pumping.

VI. SUMMARY AND OUTLOOK

In summary, we have studied the topological properties of
the bosonic Su-Schrieffer-Heeger ladder for its two possible
configurations. These configurations correspond to the uni-
form dimerization case where the dimerization pattern is such
that both of the legs are topological for the appropriate choice
of boundary conditions, and the staggered dimerization case,
where one of the legs is topological and the other is trivial.
Compared to previous studies of either single-particle physics
or fermions, we analyzed hardcore bosons hopping on the lad-
der and endowed with interleg interactions. We first analyzed
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the ground-state properties of the many-body system with-
out any interleg interaction and showed that for the uniform
dimerization case, there is no topological phase transition as a
function of the rung hopping strength. Rather, the system goes
from a gapped bond order phase to a gapped rung-Mott insu-
lator phase at half filling without any gap closing. In contrast,
the staggered dimerization case supports a well-defined topo-
logical phase transition from a topological bond order phase
to a trivial rung-Mott insulator phase. Further, we investigated
the effect of interleg interaction which greatly influences the
topological phases. We found a topological phase transition as
a function of interaction for a fixed rung hopping strength. We
also found that when interaction is fixed, the critical rung hop-
ping for the topological phase transition strongly depends on
the nature of the interaction. That is, for repulsive (attractive)
interaction, the topological phase transition occurs at a smaller
(larger) critical rung hopping strength. We characterized the
transitions through multiple approaches and density matrix
renormalization group (DMRG) techniques; these included
obtaining the excitation gap, edge-state profiles, Berry phases,
and Thouless charge pumping measures.

As these studies are performed on hardcore bosons hop-
ping on the SSH ladder and under the influence of interleg
interactions, there is scope for extensive further studies. To
name a few, the phase diagram warrants a more careful charac-
terization. A highlight feature of bosons is their ability to host
superfluidity; further studies could deviate from half filling to
study the entry from the superfluid phase into the topological
insulating phases. While DMRG provides a tractable tech-
nique for deriving properties of the phase diagram, alternative
ways of incorporating the effects of interaction, such as Lut-
tinger liquid treatment, would shed light on the nature of the
phase transitions and the relevance of various coupling terms.
As for the derived measures, Thouless charge pumping is new
in the context of interacting bosons and warrants further anal-
ysis. Lastly, generalizations of this bosonic SSH ladder model
would include deviations from the hardcore constraint to finite

on-site interaction strength, multiple legs of the ladder, inho-
mogeneity stemming from a spatially varying site potential,
and frustration due to modified lattice structure. Another ex-
tension can be to study the effect of intraleg nearest-neighbor
interactions on the topological phase transitions in the system,
which is presently under investigation.

Along with more extensive theoretical study, the bosonic
SSH ladder system is poised to be explored in experiment.
Several ultracold-atomic systems have characterized single
bosonic SSH chains and topological phases in optical lat-
tice systems in real space as well as in momentum space
[17], employing time-of-flight [12], mean chiral displacement
[91], and Thouless pumping [13,14] measures to identify
topological features. These avenues would be amenable to
studies of interacting ladders, with topological properties
directly measurable, for instance, through Rydberg atoms
[48]. Mechanical systems [60] have also realized SSH lad-
ders in regimes where simple harmonic approximations hold;
going beyond could introduce the equivalent of interac-
tions in the relevant degrees of freedom. Wave-guide arrays,
photonic crystals, and superconducting Josephson circuits
have all come far in the context of lattice-based, strongly
correlated physics, and would be highly amenable to the
system at hand. The SSH bosonic ladder would therefore
offer rich ground for theory and experiment to go hand
in hand.
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