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Plasmons in a layered strange metal using the gauge-gravity duality
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In an attempt to understand the density-density response of the cuprate superconductors, we study plasmons in
a layered strange metal using the Gubser-Rocha model. The latter is a well-known bottom-up holographic model
for a strange metal that is used here to describe the strongly repulsive on-site interactions between the electrons
in each copper-oxide (CuO2) layer, whereas the long-range Coulomb interactions are incorporated by a so-called
double-trace deformation. To be able to model the bilayer cuprates more realistically, we consider in particular
the case of two closely spaced CuO2 layers per unit cell. In the response we then obtain for vanishing out-of-plane
momentum both an optical and an acoustic plasmon, whereas for nonvanishing out-of-plane momentum there
are two acoustic plasmon modes. We present the full density-density spectral functions with parameters typical
for cuprates and discuss both the dispersion and the lifetime of these plasmon excitations. Moreover, we compute
the conductivity after introducing disorder into the system. Finally, we also compute the loss function to facilitate
a comparison with experimental results from electron energy-loss spectroscopy.
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I. INTRODUCTION

Strange metals have puzzled physicists for decades, as
certain defining properties of these metals cannot be eas-
ily understood by standard condensed-matter physics. Most
importantly, the electrical resistivity is perfectly linear in
temperature [1–3], up to the melting point of the material,
and it exceeds the Mott-Ioffe-Regel limit [4]. These pecu-
liar properties are presumed to be linked to the unusually
strong interactions between the charge carriers in a strange
metal [5,6]. In this paper we focus on layered strange met-
als, in particular, the cuprate superconductors, which is a
class of materials characterized by copper-oxide (CuO2) lay-
ers stacked on top of each other [7], with insulating charge
reservoirs in between them whose composition can be altered
to dope the CuO2 layers. In the normal phase cuprates exhibit
strange-metal behavior within a limited doping and temper-
ature range [8]. Moreover, cuprates are superconductors up
to relatively high temperatures, and critical temperatures of
up to 135 K have been observed [9]. It is unknown why
the critical temperature is so high in these materials, but it
is suspected that a thorough understanding of the strange-
metal phase is required to answer this question [8]. Studying
the behavior of cuprate superconductors above their criti-
cal temperature, where they become strange metals, might
therefore help to increase the critical temperature further
towards room temperature in the future. Achieving room-
temperature superconductivity at atmospheric pressure is one
of the greatest goals of condensed-matter physics. In this
paper we use a holographic model to investigate the properties
of charge-density oscillations, better known as plasmons, in
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the strange-metal phase of cuprate superconductors. The plas-
mons in this class of materials have been studied in several
experiments before [10–18]. Our goal is to attempt to gain
more insight into these experiments, in particular by includ-
ing one of the defining characteristics of strange metals, the
linear-in-T resistivity.

It is usually assumed that an understanding of these ex-
periments requires a theory which models the effects of the
strong on-site Coulomb (Hubbard-U) repulsion between the
electrons in the strange-metal phase. One way to achieve this
is to apply a technique that originates from string theory,
known as the gauge-gravity duality or AdS-CFT correspon-
dence [19]. This correspondence conjectures that there is a
relationship between a bulk gravity theory in an anti–de Sitter
(AdS) space-time and a conformal field theory (CFT) on its
boundary. Since this is a bulk-boundary correspondence it is
also known as the holographic principle, which has proven
in recent years to effectively describe low-energy properties
of strongly interacting systems [20]. The specific model we
use in this paper is the Gubser-Rocha model [21], a special
case of an Einstein-Maxwell-dilation model. In this model the
entropy scales linearly with temperature and hence the resis-
tivity is also linear in temperature, which is one of the defining
features of a strange metal. Moreover, recent angle-resolved
photoemission spectroscopy (ARPES) experiments have been
accurately described by the Gubser-Rocha model [22].

Ultimately, and most importantly for our purposes, this
model gives a long-wavelength density-density response func-
tion for a single CuO2 layer. This response function can
only be obtained numerically in principle, but to obtain more
analytical insight we use a very accurate hydrodynamic ap-
proximation instead. The Gubser-Rocha response function
describes strongly interacting but “neutral” electrons, imply-
ing that it describes the strong on-site interactions inside
each layer, but not yet the long-range effects of the Coulomb
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interactions that are crucial for the existence of plasmons
and thus need to be incorporated separately. To incorporate
the long-range Coulomb interactions within the framework
of the gauge-gravity duality, we need to perform a so-called
double-trace deformation of the conformal field theory [23].
This has been done in a layered geometry before [24] using
a different neutral response function that follows from the
Einstein-Maxwell gravity theory without the dilaton, but that
model does not lead to the description of a strange metal. So,
our objective is to determine, using this same double-trace
deformation, whether the Gubser-Rocha holographic model
for a strange metal can lead to an improved understanding and
interpretation of experimental results.

Since our approach consists of a bottom-up holographic
computation, we need to realize that response functions are
only determined up to an overall constant. The reason for this
is that Newton’s constant G in the gravity theory is not de-
termined from our condensed-matter system. We can remedy
this issue by noting that the density-density response function
of the layered strange metal ultimately contains a plasma
frequency that we can use to fix this single undetermined
constant such that the holographically obtained plasma fre-
quency matches exactly the experimentally measured plasma
frequency. Throughout this paper we show how this can be
achieved very explicitly, after which we present our final re-
sults in the form of the density-density spectral function that
depends solely on material parameters that can in principle
be determined experimentally. The spectral function will most
clearly display the plasmon modes of the charge-density fluc-
tuations, with a sharp peak denoting a long-lived collective
mode since the width of the peak determines its lifetime.
Moreover, it is directly related to the energy-loss function,
which has been observed experimentally.

Although our approach turns out to be very general and
almost completely analytical, we consider in this paper for
concreteness the cuprate Bi2Sr2CaCu2O8+x (Bi-2212), which
is in the class of bismuth-based cuprates. A schematic repre-
sentation of the unit cell is displayed in Fig. 1, which shows
that the crystal structure of this particular cuprate is slightly
more complex than the most basic layered structure. Namely,
it contains pairs of closely spaced CuO2 planes, and these
pairs are in turn separated by a larger distance. The unit
cell contains four, instead of two, CuO2 planes, because the
adjacent pairs of CuO2 planes are rotated by 45 degrees with
respect to each other. However, in our model we do not con-
sider this rotation, since it does not affect the long-wavelength
physics on the scale of many unit cells in the in-plane di-
rection. Thus we effectively construct a model with only two
CuO2 layers per unit cell. We focus on this particular cuprate
because we study this material in our experimental research
group in Eindhoven using electron energy-loss spectroscopy
(EELS) [25].

The structure of the paper is as follows. We start with
briefly presenting the holographic theory to describe the two-
dimensional CuO2 planes. We give the gravitational action
for the Gubser-Rocha model and we further explain why we
choose this particular model. We also discuss the hydrody-
namic approximation of the Gubser-Rocha density-density
response function in two dimensions and its corresponding
spectral function. Then we introduce for a single layer the

FIG. 1. The unit cell of Bi-2212 [25]. Adjacent pairs of CuO2

planes are rotated by 45 degrees.

long-range Coulomb interactions by performing a double-
trace deformation on the single-layer result, and we show how
this leads to a plasmon mode with a square-root dispersion
in the density-density spectral function. From here we first
add another identical layer at a nonzero distance from the
first one and derive the density-density spectral function for
this bilayer system. Thereafter, we periodically stack these
pairs of layers on top of each other to form an infinite crystal
which resembles Bi-2212. We again determine and discuss the
density-density spectral function in this case. As mentioned
above, the plasma frequency we obtain is used to fix the single
unknown holographic parameter. Furthermore, we also con-
sider the special limit in which each CuO2 layer is separated
by the same distance, to verify that our band structure for two
layers per unit cell in that limit exactly reduces to the result for
a single layer per unit cell. Next, we compute the conductivity
in the case of Planckian dissipation in the system. Finally, we
construct the EELS loss function to be able to compare our
findings with experiments.

II. HOLOGRAPHIC THEORY
OF A TWO-DIMENSIONAL STRANGE METAL

In this section we go over some of the mathematical details
to describe the strong interactions in the two-dimensional
CuO2 planes. We give the gravity action used and the resulting
density-density response function. For the rest of the paper we
use the expression obtained here. If desired, it is possible to
also use a different description of the strong in-plane inter-
actions, but the addition of long-range Coulomb interactions
will proceed in exactly the same way as presented after this
brief summary of holography.
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As mentioned previously, we here use the holographic
principle [19] to derive the single-layer response. This prin-
ciple states that a strongly interacting quantum field theory is
equivalent or dual to a classical gravitational theory with one
additional spatial dimension. This is also known as the AdS-
CFT correspondence. The anti–de Sitter space-time is the
curved bulk space-time with the conformal field theory on its
boundary that is located at r → ∞, where r is the additional
space coordinate of the bulk space-time. More specifically, we
use a version of the Einstein-Maxwell dilaton model proposed
by Gubser and Rocha [21]. This model is dual to a quantum
field theory characterized by “semilocal” quantum-critical be-
havior. This implies that the only momentum dependence in
the electron self-energy is in the exponent, i.e., h̄�(ω, k) ∝
ω(−ω2)νk−1/2. It represents a quantum-critical theory because
the correlation length diverges and its dynamical exponent
obeys z = ∞. The significance of this result is that it agrees
with experimental observations. For example, upon tuning
the adjustable parameters in the holographic model such
that νkF ≡ α, this self-energy can reproduce the “power-law
liquid” model, h̄�′′(ω, k) ∝ ω2α , which very accurately de-
scribes the experimentally observed electron self-energy in
ARPES measurements near the Fermi surface in the nodal
direction [26]. There is even another, more recent ARPES
experiment that confirms the momentum dependence in the
exponent and shows that it can accurately describe the devia-
tions from the power-law liquid model away from the Fermi
surface [22]. These experiments thus indicate that the Gubser-
Rocha model describes some aspects of the strange-metal
phase, although there are other properties of the strange metal
that might not yet be accurately described by this model, for
example, the anomalous scaling of the Hall angle [27–29].
Although this quantity is not relevant for this paper, as we con-
sider no external magnetic field, we are aware that there might
be need for a more advanced model which could describe all
of these properties simultaneously.

Next we give the action and explain how this action de-
scribes certain properties of a strange metal. The gravitational
action for the model is [30]

SGR = Sct + c4

16πG

∫
drdtd2x

√−g

×
[

R − (∂μφ)2

2
+ 6

L2
cosh

(
φ√
3

)
− eφ/

√
3

4g2
F

FμνFμν

]
,

(1)

where r is the additional spatial dimension of the bulk space-
time, g is the determinant of the metric tensor, R is the Ricci
scalar, and φ is the dimensionless scalar field known as the
dilaton [31,32]. Moreover, Fμν is the electromagnetic field
strength tensor. Its coupling constant is g2

F = c4μ̃0/16πG,
with μ̃0 the dimension of a magnetic permittivity m kg C−2.
Then L is the anti–de Sitter radius, which is the radius of
curvature of the AdS space-time. Finally, Sct contains the
boundary counterterms that ensure that we have a well-defined
boundary problem and that the theory is properly renormal-
ized. The dilaton field φ is responsible for being able to
describe the typical strange-metal behavior of linear-in-T re-
sistivity and gives also a linear momentum dependence in the

exponent νk of the correlations. We can rewrite the action into
dimensionless quantities by defining lengths in terms of L and
energies in terms of h̄c/L, and then the prefactor of the action
becomes NG ≡ c3L2/16π h̄G, which is related to the large-N
number of species of the boundary CFT [33]. We come back to
this in-principle unknown constant and explain how to fix it by
looking at the experimentally observed plasma frequency. The
thermodynamics of the two-dimensional strange metal is de-
scribed by a background solution to the following equations:
the Einstein field equations for the metric gμν , the Maxwell
equations for the U(1) gauge field Aμ, and the Klein-Gordon
equation for the dilaton field φ. These equations can be ob-
tained by varying the above action.

For the background the solutions to the equations of
motion are a function of r only. We then have a set of
equations (gtt = −1/grr , gxx = gyy, At , φ), which supports a
fully analytical black-hole solution with nonzero temperature
and entropy [21]. To compute the response functions, how-
ever, we also need to consider small external perturbations
of this background, and we have to linearize the gravitational
equations around the analytical black-hole solution. Then we
obtain a coupled set of equations for the fluctuations (δgtt ,
δgtx, δgxx, δgyy, δAt , δAx, δφ) that can only be solved nu-
merically. According to the holographic dictionary, finding a
solution to the linearized equations of motion with infalling-
wave boundary conditions at the black-hole horizon allows
us to extract all the retarded Green’s function of the system,
and thus also the desired density-density response function

(ω, q), by studying the near-boundary behavior of the field
fluctuations [33].

In this manner we arrive at the objective of this section—
the two-dimensional single-layer response describing the
strong short-range interactions. In the low-temperature regime
and at energies and momenta much smaller than the Fermi
energy and Fermi momentum, respectively, we can use a
hydrodynamic approximation to obtain [34]


(ω, q) = q2
(
ωD + iv2

s Ddχq2
)

ω3 + iω2q2(2Ds + Dd ) − ωq2v2
s − iv2

s Dd q4
,

(2)

where we have used rotational invariance to write q ≡ |q| as
a scalar. In addition, D is the Drude weight, χ is the hy-
drodynamic compressibility, and we also define two diffusion
constants, Ds and Dd , that correspond to sound diffusion and
charge diffusion, respectively. Finally, vs is the speed of sound
in the material.

In Figs. 2 and 3 we show the density-density spectral
function −
′′ ≡ −Im 
. We use values for the variables in
Eq. (2) typical for cuprates. We elaborate on these variables
in Sec. IV B below. In a spectral function the intensity of
modes is plotted as a function of momentum and frequency
or energy, thus clearly showing the associated dispersion. It
also captures the broadening of the modes, which tell us about
the lifetime of the mode. If the width is small the mode
has a long lifetime. In Figs. 2 and 3 there is a linear sound
mode, ω = vsq, instead of a typical plasmon mode expected in
the presence of long-range Coulomb interactions and screen-
ing and with a square-root dispersion ω ∝ √

q. The speed
of sound is vs = 0.76vF � 1.14 eV Å/h̄ = 1.73 × 105 m s−1.
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FIG. 2. Density-density spectral function −
′′ of a single layer
with only strong short-range interactions. This plot contains a lin-
ear sound mode, ω = vsq, and a diffusive mode, ω = −iDd q2. The
temperature is fixed at room temperature, T = 293 K.

This value of the Fermi velocity of Bi-2212 is chosen because
this specific cuprate is studied by our group in Eindhoven [25].
In the limit T = 0 the diffusion constants vanish, as they show
the same linear behavior in temperature as the resistivity, and

FIG. 3. Density-density spectral function as in Fig. 2. In this case
we have h̄ω � 0.05 eV, showing more clearly the diffusive mode.

Eq. (2) simplifies to


(ω, q) = q2D
ω2 − v2

s q2
, (3)

which indeed contains the sound mode ω = vsq. We use this
equation in later sections to derive the plasmon dispersion
when we have introduced the long-range Coulomb interac-
tions. At nonzero temperatures the density-density response
function also contains a diffusive mode with ω = −iDd q2 +
O(q4), which can be seen more clearly in Fig. 3.

Compared to the density-density response function of a
Fermi liquid, which only contains an electron-hole contin-
uum, the response in Fig. 2 is completely different due to
the effect of interactions incorporated in the Gubser-Rocha
response function. This can be qualitatively explained by
taking the Fermi liquid and slowly turning on interactions,
since weak interactions create first sound only for very long
wavelengths. As the interactions become stronger, the domain
of the first sound mode increases and ultimately dominates the
response, as seen in Fig. 2.

We analyze the response function for ω 	 q, which means
we neglect in the denominator the cubed and squared terms
in ω. Then multiplying both nominator and denominator with
ω − iDd q2, so as to take most easily the imaginary part, this
leaves us with the following formula for the spectral function:

−
′′(ω, q) = ω
χ − D/v2

s

Dd q2
, for ω 	 q. (4)

So for small ω the intensity approaches zero linearly at a fixed
value of q, confirming what is shown in Fig. 3. Furthermore,
we see in Fig. 2 that for larger momenta the diffusive mode
and the sound mode merge together.

III. PLASMON MODES

A. Single-layer plasmons

Now, having an appropriate response function incor-
porating the strong but short-range interactions in the
two-dimensional strange-metal layer, long-range Coulomb in-
teractions are introduced. We do this by coupling dynamical
photons to the density current Jμ. Thus in the language of
string theory we perform a so-called double-trace deformation
[23,35] of the conformal field theory. In Refs. [24,36] it is
explained more physically how to achieve this, but in practice
this means adding a boundary term to the gravitational action
from Eq. (1), ultimately leading to

S = 1

2

∫
dtd2xdz

∫
dt ′d2x′dz′

× Jμ(x, z, t )
−1
μν (x, t ; x′, t ′)Jν (x′, z′, t ′)

−
∫

dtd2xdz

(
1

4
εFμνFμν − eAμJμ

)
, (5)

where z is the spatial direction orthogonal to the x − y plane
and ε is the permittivity of the material surrounding the
strange-metal layer. The addition of this boundary term does
not change the linearized equations of motion, but it does
change the boundary conditions for the field fluctuations
[33,37].
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We restrict the current to the x − y plane where the strange-
metal layer is assumed to be located, which gives us the
following equation for the current,

Jμ(x, z, t ) = Jμ(x, t )δ(z), (6)

but let the Coulomb interactions, i.e., the photons, live in three
dimensions. Then we obtain, after Fourier transforming and
integrating out the photon field [24], the following effective
boundary action,

S = 1

2

∫
dωd2q

(2π )3
Jμ(−ω,−q)χ−1

μν Jν (ω, q), (7)

where χμν is the current-current response function and is
given by

χ−1
μν ≡ 
−1

μν + e2ημν

2εq
. (8)

Since we are in a condensed-matter system, we are only
interested in the density-density response, which is the 00-
component. In principle, and if desired, the density-current
response χ0i and the current-current response χi j can also
be obtained. Here we take only the 00-component and then
obtain the density-density response function,

χ (ω, q) = 
(ω, q)

1 − e2
(ω,q)
2εq

. (9)

We thus see that we obtain the effects of the Coulomb poten-
tial e2/2εq in a similar manner as seen in the random phase
approximation (RPA), except that 
(ω, q) is not a noninter-
acting response function but contains interaction effects via
the use of the Gubser-Rocha model. The Coulomb potential
is taken independent of frequency, which means we neglected
retardation effects due to the assumption that vF 	 c for our
nonrelativistic system.

We have plotted the resulting density-density spectral func-
tion −χ ′′ in Fig. 4. We now clearly see a dispersion ω ∝ √

q,
as expected in a two-dimensional system. Using Eq. (3) we
obtain the following dispersion relation:

ω =
√

e2D
2ε

q + v2
s q2. (10)

For low momenta q we indeed have a square-root plasmon
mode, and at large q we recover the sound dispersion from
the previous section. Furthermore, we see that the width of
the plasmon peak in the spectral density quickly approaches
zero as the momentum approaches zero, which indicates that
at long wavelengths the plasmons have a long lifetime. We
also still have a diffusive mode, but it is barely visible in this
figure. This is due to the fact that the intensity of the plasmon
mode is much greater than the diffusive mode. But the latter
mode is essentially still the same as in the neutral response
function.

To gain more insight into this figure we compare it to a
Fermi-liquid picture. Since the AdS-CFT approach we are
using is relativistic and we are also dealing with a two-
dimensional system, it is best to compare with graphene.
The spectral function in this instance consists of two con-
tinua (inter- and intraband) and a strongly peaked plasmon
mode [38]. The plasmon mode resides in a triangle that

FIG. 4. Density-density spectral function of a single layer with
strong short-range interactions and long-range Coulomb interactions.
We see a square-root plasmon mode in the density-density re-
sponse, with ω ∝ √

q. The temperature is fixed at room temperature,
T = 293 K.

otherwise has negligible spectral density. In Fig. 4, how-
ever, the plasmon mode is always broadened, except in
the extreme-long-wavelength limit, and the triangle shape
of zero spectral density has disappeared completely. Essen-
tially, the particle-hole continuum has become widespread in
momentum-frequency space and is not sharply defined any-
more due to the absence of fermionic quasiparticle excitations
in the strange metal.

B. Bilayer plasmons

Next we introduce another identical layer at a distance a. In
this section we derive the density-density spectral function of
this system of two layers. The dominant interaction between
the layers is the Coulomb force [41]. The double-trace defor-
mation is now carried out with a different expression for the
current. The density current Jμ in real space is now

Jμ(x, z, t ) = Jμ
1 (x, t )δ(z + a/2) + Jμ

2 (x, t )δ(z − a/2).

(11)

This describes two strange-metal layers parallel to the x − y
plane separated by a along the z axis, and the current is re-
stricted to the two layers. The strong short-range interactions
have no effect on the other layer, so we only need to ac-
count for the long-range Coulomb interaction between the two
layers. Integrating out again the photon field, we obtain the
following expression for the inverse of the bilayer response:

χ−1
μν =

⎛
⎝
−1

μν + e2ημν

2εq
e2ημνe−qa

2εq

e2ημνe−qa

2εq 
−1
μν + e2ημν

2εq

⎞
⎠. (12)
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FIG. 5. Diagonal part of the density-density spectral-function
matrix of two layers with strong short-range interactions and long-
range Coulomb interactions. The two layers are separated by 3.2 Å.
This distance is due to the cuprate that we model. We see the in-phase
mode, ω ∝ √

q, and the out-of-phase mode, ω ∝ q. The temperature
is fixed at room temperature, T = 293 K.

As in the previous section, we take the 00-component and
then invert the 2 × 2 matrix with layer indices to obtain the
density-density response function of one of the layers, i.e.,
χII ≡ χ00,II . Here I, J are the layer indices and refer to the
components of the matrix in Eq. (12). Note that the density-
density response function of the bilayer as a whole equals
χ ≡ ∑

IJ χIJ .
Then we can use this to plot the diagonal part of the

density-density spectral-function matrix −χ ′′
II in Fig. 5. Here

we can see two modes. One mode has, as in the single-layer
case, a square-root dispersion ω ∝ √

q. This is the in-phase
mode, whose behavior is similar to the single-layer case. The
width of this mode decreases very quickly as q approaches
zero. Then there is also another mode visible. This is a linear
sound mode, and this additional mode is the main difference
between the bilayer and the single-layer case. It is called
the out-of-phase mode, because the density fluctuations in
adjacent planes are out of phase. Since there are no total
charge fluctuations in this mode, we recover sound. We can
again substitute the zero-temperature Gubser-Rocha response
to obtain the dispersion relations:

ω =
√

e2D(1 ± e−qa)

2ε
q + v2

s q2. (13)

The plus sign is for the in-phase mode, and the minus sign
is for the out-of-phase mode. Notice that in the limit a →
∞, both dispersion relations reduce to the single-layer case,
which is expected for two uncoupled layers.

Next, we expand the dispersion for small q. The dispersion
of the in-phase mode is

ω =
√

e2Dq

ε
+ O(q3/2). (14)

To lowest order this is similar to the single-layer dispersion.
The only difference is an additional factor of 2 under the
square root. That is because the total density is twice as big
as the single-layer density. In the dispersion this effectively
doubles the Drude weight. For the out-of-phase mode, using
the minus sign in Eq. (13) we obtain the following expansion
of the dispersion:

ω =
√

v2
s + e2Da

2ε
q + O(q2). (15)

So the renormalized speed of sound of this mode is√
v2

s + e2Da/2ε. The width of this mode decreases less
quickly and is wider over the whole range of q compared to
the in-phase mode. Again, there is also a diffusive mode that
is not visible in this plot range because of the intensity of the
plasmon modes. But it is the same as in the previous plots and
has ω = −iDd q2.

IV. LAYERED STRANGE METAL

A. Two layers per unit cell

The next step is to stack such bilayers in an infinite periodic
crystal. In this section we will derive the spectral function of
this crystal of bilayers. We take again the two layers in the
unit cell to be separated by the distance a. Then we define the
distance between the centers of the neighboring unit cells to
be l . If l = 2a this case reduces to a periodic crystal of single
layers all separated by a. We will discuss that special limit at
the end of this section for completeness.

First we derive the appropriate Coulomb potential matrix
for the case of interest here. Thus we construct the current
operator of the crystal

Jμ(x, z, t ) =
∑
n∈Z

Jμ
1 (x, z, t )δ(z − nl + a/2)

+ Jμ
2 (x, z, t )δ(z − nl − a/2). (16)

We then Fourier transform this expression and integrate out
the photon field. Then we obtain the Coulomb contribution to
the effective boundary action for the currents as

�SC = 1

2

∫
dωd2q

(2π )3

∫
dqz

2π

∑
n,m

(
Jμ

1 (−ω,−q, nl − a/2)

Jμ
2 (−ω,−q, nl + a/2)

)

· e2

ε

e−iqz (n−m)l

q2 + q2
z

(
ημν ημνe−iqza

ημνeiqza ημν

)

·
(

Jν
1 (ω, q, ml − a/2)

Jν
2 (ω, q, ml + a/2)

)
. (17)

We can perform the integration over qz to obtain the bilayer-
crystal equivalent of Eq. (7), there after we Fourier transform
the periodicity over n and m to the Bloch momentum p, i.e.,
Jμ

1 (ω, q, nl − a/2) = (l/2π )
∫ π/l
−π/l d pJμ

1 (ω, q, p)eip(nl−a/2).
The Bloch momentum is in the direction perpendicular to the
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FIG. 6. Diagonal part of the density-density spectral-function matrix of a crystal of bilayers. Each pair of layers is separated by a = 3.2 Å,
and the size of each unit cell is l = 15.4 Å. Each subfigure has a different value of pl . In (a), pl = 0, the in-phase plasmon mode is gapped as
expected for a three-dimensional system, and we additionally observe an out-of-phase sound mode because we have two layers per unit cell.
In [(b)–(d)], pl is π/50, π/10, and π , respectively. Here the out-of-phase sound mode is almost unaffected by the out-of-plane momentum p,
whereas the in-phase plasmon mode is no longer gapped and has obtained also an acoustic behavior at long wavelengths. The temperature is
fixed at room temperature, T = 293 K.

layers, since the periodicity is in n and m. After substituting the discrete Fourier transform into Eq. (17) we obtain the desired
result:

�SC = 1

2

∫
dωd2q

(2π )3

∫ π/l

−π/l

ld p

2π

(
Jμ

1 (−ω,−q,−p)

Jμ
2 (−ω,−q,−p)

)
· e2ημν

ε
V (q, p) ·

(
Jν

1 (ω, q, p)

Jν
2 (ω, q, p)

)
, (18)
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FIG. 7. Total density-density spectral function of a crystal of bilayers. Each pair of layers is separated by a = 3.2 Å, and the size of each
unit cell is l = 15.4 Å. In (a), pl = 0, the in-phase plasmon mode is gapped, as expected for a three-dimensional system. Compared with Fig. 6,
the out-of-phase mode is canceled completely. In [(b)–(c)], pl is π/50 and π/10, respectively. Here the out-of-phase sound mode appears, with
intensity and width increasing as p increases. The in-phase plasmon mode is no longer gapped and has obtained also an acoustic behavior at
long wavelengths. In (d), pl = π , the plot shows the lowest speed of sound of the in-phase mode. The temperature is fixed at room temperature,
T = 293 K.

with the following expression for the 2 × 2 matrix V , with the same form as for a bilayered electron gas [39,40]:

V (q, p) = 1

2q(cosh ql − cos pl )

(
sinh ql [sinh q(l − a) + e−ipl sinh qa]e−ipa

[ sinh q(l − a) + eipl sinh qa]eipa sinh ql

)
. (19)
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As in the previous section, we thus construct the inverse of
the response function as

χ−1
μν = 
−1

μν + e2ημν

ε
V. (20)

We are interested in the density-density response, so we take
the 00-component, with the same reasoning as in the previous
sections.

We have plotted the diagonal part of the density-density
spectral-function matrix −χ ′′

II in Fig. 6 for multiple values for
the Bloch momentum p. In each plot there are two modes
visible, as we are dealing with periodicity of bilayers in the
out-of-plane direction, and we thus obtain a periodic band
structure for the in-phase and the out-of-phase modes. In
Fig. 6(a) we have shown the case p = 0. In this case the
in-phase mode is gapped with an energy of 1.0 eV. This is
the plasma frequency ωpl for Bi-2212. For p �= 0 the in-phase
mode is not gapped, however. We see in Fig. 6(b) that the
in-phase mode approaches 1.0 eV for smaller momenta but
ultimately bends down to zero at the longest wavelengths
and obtains an acoustic character with a speed of sound that
strongly depends on the Bloch momentum. Indeed, in the
other subplots, for higher values of p, the mode becomes
less steep for low momenta. For p = π/l the speed of sound
of this mode is the lowest and close to the speed of sound
of the Gubser-Rocha model for the single layer. In contrast,
we observe that the out-of-phase mode has no significant p
dependence. This makes sense physically, because there is
hardly any Coulomb coupling between the different bilayers
in this case, since they are charge neutral.

Then in Fig. 7 we have plotted the total density-density
spectral function. It is defined as the sum of all components
of the matrix defined in Eq. (20). While the in-phase mode
intensity peaks at p = 0, the out-of-phase mode vanishes for
pl = 0, and its intensity increases for larger p and peaks at
p = π/l . We use the total density-density spectral function
in later sections to define the total conductivity and the loss
function.

As in previous sections, we substitute the zero-temperature
neutral response to analytically compute the dispersion. We
obtain the following expression:

ω =
√

e2Dq

2ε

sinh ql ± | sinh q(l − a) + eipl sinh qa|
cosh ql − cos pl

+ v2
s q2.

(21)

Again, the minus sign corresponds to the out-of-phase mode
and the plus sign to the in-phase mode. The first thing to check
is if this dispersion reduces to the bilayer case in the limit l →
∞. This is indeed true, because in this limit both sinh ql and
cosh ql become equal to eql/2, and the complicated fraction
under the square root indeed exactly reproduces the result of
the bilayer case in Eq. (13). We also know that for p = 0 there
is a gapped mode. Using the above equation, we can derive an
equation for the associated plasma frequency. Taking the limit
q → 0 for the in-phase mode and p = 0, we obtain

ωpl =
√

2e2D
lε

. (22)

Here the plasma frequency is defined in terms of the two-
dimensional Drude weight D. But we can also write it in
terms of the three-dimensional Drude weight D3D = 2D/l ,
which shows that the plasma frequency equals the familiar
result ωpl =

√
e2D3D/ε. Using these equations we rewrite the

dispersion

ω =
√

ω2
pl

ql

4

sinh ql ± | sinh q(l − a) + eipl sinh qa|
cosh ql − cos pl

+ v2
s q2,

(23)

from which we can derive an expression for the two speeds of
sound for p �= 0. Namely, we find

v±(p) =
√

v2
s + ω2

pl l

4

l ± |l + (eipl − 1)a|
1 − cos pl

. (24)

B. Derivation of parameters

In this section we give the values of the various constants in
Eq. (2), the Gubser-Rocha response function, and explain how
the in-principle unknown prefactor NG of the gravitational
action can be determined using the plasma frequency. We
start with the thermodynamic equation of state for the elec-
tron density inside each layer obtained from the holographic
dictionary as [30]

n = N ′
G√
3

(
μ

h̄vF

)2
√

1 + 1

3

(
kBT

μ

)2

, (25)

where N ′
G = NG/ẽ and ẽ is the dimensionless charge. We

rewrite this such that we have a formula for the chemical
potential μ in terms of the temperature T and the electron
density n as

μ =

√√√√√
√

(kBT )4 + 108
( h̄vF

√
n√

N ′
G

)4 − (kBT )2

6
. (26)

Then we expand this near-zero temperature to obtain

μ = 31/4h̄vF
√

n√
N ′

G

−
√

N ′
G

4 × 35/4

(kBT )2

h̄vF
√

n
+ O(T 4). (27)

Following the derivation of Mauri and Stoof [30], we use
the result for the Drude weight of the Gubser-Rocha the-
ory as D = N ′

Gμ(n, T )/
√

3h̄2. Now, we also use the relation
between the Drude weight and the plasma frequency, which
we can then use to relate N ′

G to the plasma frequency. For the
Drude weight we previously obtained

D = ω2
pl

lε

2e2
. (28)

The plasma frequency is essentially temperature independent,
so we know that the Drude weight should also be temperature
independent, since the other quantities in Eq. (28) are as well.
Making use of this observation, we then derive the expansion
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for N ′
G up to second order in temperature with the result that

N ′
G =

(
31/4h̄

vF
√

n

ω2
pl lε

2e2

)2

+ 1

2 × 33/2

(
31/4h̄

vF
√

n

ω2
pl lε

2e2

)4

×
(

kBT

h̄vF
√

n

)2

+ O(T 4). (29)

We have already computed the Drude weight, so now we
can also derive the hydrodynamic compressibility χ using a
relation obtained previously [30]. Up to lowest order in tem-
perature χ = D/v2

s , while at quadratic order in temperature
the difference is given by

χ − D
v2

s

= 5.12(N ′
G)3/2

(
kBT

h̄vF
√

n

)2 √
n

h̄vF
. (30)

The factor (N ′
G)3/2 is due to the fact that the extensive param-

eters χ and D are multiplied by N ′
G, and the density should be

divided by N ′
G as it is obtained from the square of the chemical

potential. Since we can compute the Drude weight, we can
now explicitly compute the compressibility too. Then we still
have only the two diffusion coefficients left, characterizing the
charge diffusion and the sound diffusion. These parameters
are inversely proportional to the density n, which means they
should be multiplied by N ′

G and are thus equal to

Ds = 1

6
√

3
N ′

G

kBT

h̄n
, (31)

Dd = 4π√
3

N ′
G

kBT

h̄n
. (32)

For Bi-2212 that is of special interest to us here,
where we have used the following material parame-
ters: h̄ωpl = 1.0 eV, l = 15.4 Å, a = 3.2 Å, ε/e2 = 4.5 ×
55.263 × 10−4eV−1 Å−1, vF = 2.28 × 105 m s−1, vs =
1.73 × 105 m s−1, and n = 6.25 × 1018 m−2. We used these
values to plot all the density-density spectral functions. Note
that, in particular, we have N ′

G � 0.45 at zero temperature.

C. One layer per unit cell

In the limit a → l/2 the bilayer model reduces to a layered
crystal with all neighboring layers having an equal distance
l/2 between them. There is also a bismuth-based cuprate
which has this structure, given by Bi2Sr2CuO6+x, also known
as Bi-2201. The response function of this crystal has been
computed before [24]. In that case the intralayer physics was
different and did not represent a strange metal, but the long-
range Coulomb force is treated in the same way. We show now
that our response function reduces to this case of a single layer
per unit cell in the limit a → l/2. This is to corroborate the
expression for the crystal of bilayers. From Eq. (20) we can
deduce that the only relevant quantity related to the Coulomb
potential matrix in the dispersion is V± ≡ V11 ± √

V12V21. This
can be compared to the same quantity of a crystal of single
layers given by [24]

Vsingle layer = sinh ql
2

2q
(

cosh ql
2 − cos pl

2

) , (33)

with the distance between the layers taken equal to l/2. Our
expression for the bilayer case is

V± = sinh ql ± | sinh q(l − a) + eipl sinh qa|
2q(cosh ql − cos pl )

. (34)

Here a is the distance between the layers in the unit cell, and l
is the distance between the unit cells. We plot in Fig. 8 V± for
a fixed value of l and change the value of a. Then we compare
this with the single-layer result.

In Figs. 8(a) and 8(b) we have chosen a = 0.45l , which
means that the two layers in the unit cell are relatively far
apart and the system approaches the limit of a crystal of
equidistant layers. In Fig. 8(a) we have plotted both quantities
V± for p ∈ [−π/l, π/l]. Then in Fig. 8(b) we have extended
V− to [−2π/l,−π/l] ∪ [π/l, 2π/l]. This is to show that V± is
already almost equal to the single-layer result in the extended-
zone scheme. Then in Fig. 8(c) we have plotted the limiting
case of a = l/2. We see that at p = ±π/l the two solutions
are exactly matched to each other. Finally, in Fig. 8(d) we
extend the minus sign solution and see that V± is equal to the
single-layer potential for l/2, as expected. This means that in
the limit a → l/2 the crystal of bilayers reduces to the crystal
of single layers, which reinforces that the expression for the
bilayer Coulomb potential matrix is correct.

Finally, we also plot the density-density spectral function
of the crystal of single layers in Fig. 9. Comparing these
figures with previous work [24], we see that this spectral
function also has a gapped mode for p = 0. The plasma
frequency is the same, h̄ωpl = 1.0 eV. This is because the
three-dimensional density of electrons has not changed, since
there still is one layer per l/2 in the z direction. And that
is what determines the plasma frequency. Mathematically,
the reason is that 2n/l = n/(l/2). In the other subplots the
behavior is as expected; it is similar to the in-phase mode of
Fig. 6. For pl/2 = π/50 the mode approaches 1.0 eV but then
quickly goes to zero as q → 0. For increasing p the mode
becomes less steep for small q until for pl/2 = π the lowest
speed of sound is reached. In the limit T → 0 we can again
derive the dispersion relation

ω =
√√√√e2Dq

2ε

sinh ( ql
2 )

cosh ( ql
2 ) − cos ( pl

2 )
+ v2

s q2. (35)

The plasma frequency is exactly the same as in the two-layer
case, since the three-dimensional density is kept constant. So
the dispersion relation becomes

ω =
√

ω2
pl

ql ′

2

sinh (ql ′)
cosh (ql ′) − cos (pl ′)

+ v2
s q2, (36)

where l ′ = l/2 is the distance between the layers. The plasma
frequency is given by ωpl =

√
e2D/l ′ε. Using this equa-

tion we can derive the renormalized speed of sound

v(p) =
√

v2
s + ω2

pl

l ′2/2

1 − cos (pl ′)
, (37)

confirming that pl/2 = pl ′ = π gives the lowest speed of
sound. The above equation is not valid exactly for p = 0, of
course. Besides the plasmon mode, this spectral function also
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FIG. 8. The quantity V± in blue is compared with Vsingle layer in dotted orange for a fixed value of q = 0.3 Å−1 and as a function of the Bloch
momentum p. The two upper figures are plotted with value a = 0.45l , the two bottom figures for a = l/2. The minus sign of V± corresponds to
the out-of-phase mode with a lower value and the plus sign to the in-phase mode with the higher value. In (a) and (c) we have plotted the bilayer
potential for p ∈ [−π/l, π/l], and then in (b) and (d) we have periodically extended the minus sign solution to [−2π/l,−π/l] ∪ [π/l, 2π/l].
In this plot l = 15.4 Å.

contains a diffusive mode, although this mode is not visible
due its low intensity compared to the plasmon mode.

Finally, we wish to emphasize that the spectral function in
Fig. 9 is in accordance with a number of resonant inelastic
x-ray scattering (RIXS) studies on the strange-metal phase of
cuprates with one CuO2 layer per unit cell. In two of these
RIXS studies on the electron-doped cuprate La2−yCeyCuO4+x

(LCCO) [41] and the hole-doped cuprates La2−ySryCuO4+x

(LSCO) and Bi2Sr1.6La0.4CuO6+x (Bi-2201) [15], an acoustic
plasmon dispersion is measured. The corresponding RIXS
intensity maps are qualitatively similar to Fig. 9, with the cor-
responding nonzero values of pl ′. The density-density spectral
function in Fig. 9 is calculated using an approach that is
appropriate for strange metals, namely, using the Gubser-
Rocha model. This validates the conclusion that the acoustic
branches which are measured in RIXS studies can be at-
tributed to an acoustic plasmon.

V. CONDUCTIVITY

In this section we consider for completeness also the con-
ductivity of the bilayer crystal. First we obtain the following
formula for the total density-density response function in the

long-wavelength limit q, p → 0,

χ (ω, q, p) = 2Dq2

ω2 − ω2
pl

, (38)

where χ = ∑
IJ χIJ is the total density-density response func-

tion of the bilayer crystal. We can rewrite this by factoring iω
out in the denominator, leading to

χ (ω, q, p) = 2Dq2

−iω

1

iω + ω2
pl

iω

. (39)

Next we observe that the second denominator has a form
recognizable from the continuity equation for the electron
density, together with both Ohm’s law and Gauss’s law,
namely, (

−iω + σ (ω)

ε

)
n = 0, (40)

which means that the conductivity is

σ (ω) = e2D3D

−iω
. (41)
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FIG. 9. Density-density spectral function of a crystal of single layers. The distance between layers l/2 = 7.7 Å. In (a), pl = 0, there is a
gapped plasmon mode. In [(b)–(d)], pl is π/50, π/10, and π , respectively. There is an acoustic plasmon mode visible at long wavelengths, as
in the crystal of bilayers. The temperature is fixed at room temperature, T = 293 K.

Note that the same result can also be obtained directly from
the “neutral” in-plane conductivity as

σ (ω) = 2

l
e2 lim

q→0

iω

q2

(ω, q) = 2e2

l

D
−iω

, (42)

which is as expected physically since Coulomb interactions
do not affect the acceleration of the total momentum due to
the applied electric field.

In first instance the real part of the above expression leads
to a δ function centered around ω = 0 that signals the absence
of momentum relaxation in our theory. But in an experiment

there is typically disorder in the sample. We can incorpo-
rate this using the Planckian dissipation appropriate for the
cuprates [42], by performing the replacement ω → ω + i

τ
in

the right-hand side. Planckian dissipation gives us the follow-
ing expression for the relaxation time τ ,

h̄

τ
= αkBT, (43)

with α a material parameter. For Bi-2212 it is approxi-
mately 1.1 ± 0.3 [42]. The fact that the dissipation rate is
linear in temperature aligns with the fact that the diffusion
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FIG. 10. The loss function for q0 = 0. The uncertainty is charac-
terized by �q = 0.05 Å−1. Multiple values of p are used, indicated in
the legends, and we also describe Planckian dissipation with α = 1.1.
There is strong p dependence in this case.

constants in the strong short-range response function are
also linear in temperature. So this is consistent with our
use of the Gubser-Rocha model for the strange-metal phase.
After introducing Planckian dissipation in the above manner,
Eq. (41) obtains the Drude form with the dc conductivity
inversely proportional to temperature, which means that the
resistivity is linear in temperature, as required for strange
metals.

VI. LOSS FUNCTION

We are now in the position to discuss the so-called loss
function that can be measured experimentally in transmission
EELS measurements. We incorporate the nonzero in-plane
momentum resolution in the experiments by defining the fol-
lowing average loss function:

L(ω, q0, p) = 2

�q2

1

e−( q0
�q )2 + √

π
q0

�q

(
1 + erf q0

�q

)
×

∫ ∞

0
dqqe

−
(

q−q0
�q

)2

Im

[
−χ (ω + i

τ
, q, p)

q2

]
.

(44)

In this formula χ is again the density-density response
function of interest to us, and we take the imaginary part,
which shows that transmission EELS measures essentially
the density-density spectral function. We have incorporated
disorder in the same fashion as in the previous section and
performed the replacement ω → ω + i

τ
. Then we average

with a Gaussian distribution centered around q0, denoting the
measured in-plane momentum transfer, and with a width �q
that represents the experimental momentum resolution.

In Fig. 10 we have plotted the loss function L(ω, q0, p)
for q0 = 0 and �q = 0.05 Å−1. This loss function is strongly
dependent on p. For p close to 0 we see a peak in the inten-
sity around 1.0 eV. And as p increases the peak widens and
decreases in intensity. Then for pl = π we see that there is
a peak around 0.15 eV, which corresponds approximately to
2h̄vs�q. In Fig. 11 the in-plane momentum is increased to

FIG. 11. The loss function for q0 = 0.3 Å−1. The uncertainty
is characterized by �q = 0.05 Å−1. Multiple values of p are used,
indicated in the legends, and we also include Planckian dissipation
with α = 1.1. Compared with Fig. 10, there is little dependence
on p. We have plotted only the outermost values of p to make the
figure more clear. We also observe that the energy of the peak has
increased compared to Fig. 10. The smaller peak visible for pl = π

is due to the out-of-phase mode.

q0 = 0.3 Å−1 and the p dependence has almost disappeared.
The energy of the plasmon peak has increased to around
1.3 eV.

In these plots we have assumed a single value of p, but
an experiment could also have uncertainty in the out-of-plane
momentum p, so we introduce also �p to model this but
always centered at p0 = 0. For us, the case of p0 = 0 is most
relevant, but this can be easily extended to any p0. This leads
to our final average loss function:

L(ω, q0) = 2√
π�p

∫ ∞

0
dpe−( p

�p )2

L(ω, q0, p). (45)

We have plotted this in Fig. 12, and we see that for smaller
uncertainty �p only the 1.0 eV is visible, while for larger
uncertainty in p there are contributions from both small and
large p, such that there are two peaks in the loss function. This
is not due to the fact that there are two modes but due to the p
dependence of the plasmon mode. We especially display this
for q0 = 0, because this is a value of the in-plane momentum

FIG. 12. The dependence of the average loss function on the out-
of-plane momentum resolution for q0 = 0, �q = 0.05 Å−1, p0 = 0,
and α = 1.1.
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with a great dependence on p. For larger in-plane momenta
the uncertainty in p does not make a significant difference.

VII. CONCLUSIONS AND DISCUSSION

In this paper we discussed a layered strange metal and
computed the density-density response of this system. More
specifically, we considered a cuprate with a bilayer-crystal
structure, as is the case for Bi-2212. We modeled the strong
short-range interactions in each CuO2 layer using the holo-
graphic Gubser-Rocha model, and we obtained the associated
density-density response function for these strong interactions
from the AdS-CFT correspondence. In addition, we incor-
porated the long-range Coulomb interactions by means of a
double-trace deformation, which results in the density-density
response function of the layered strange metal. We calculated
the density-density spectral function for arbitrary values of the
out-of-plane Bloch momentum p and find both an in-phase
and an out-of-phase mode. We computed the dispersion of
these modes and showed that the in-phase plasmon mode is
gapped for p = 0, while it has an acoustic nature at long
wavelengths for nonzero p. The out-of-phase mode always
has an acoustic nature in the long-wavelength limit. Further-
more, we extracted the conductivity of the bilayer crystal from
the density-density response function, taking into account the
disorder that is present in experiments by introducing Planck-
ian dissipation. In the parameter regime typical for cuprates
there is always a Drude peak visible in the conductivity,
with a dc resistivity linear in temperature. Finally, we used
the total density-density response function to construct the
loss function which is measured in transmission EELS and
we discuss its behavior. In principle, the loss function only
contains a single peak belonging to the in-phase plasmon
mode, since the intensity of the out-of-phase mode is smaller
in the relevant regime of p. Only when allowing for a large
experimental uncertainty in the out-of-plane momentum p,
and with a transverse momentum close to zero, there are two
wide peaks visible. The mode around 1.0 eV is due to the
contributions close to p = 0, while the lower energy peak
arises from contributions with a larger value of p.

Throughout this paper we made a number of assumptions
to simplify the system. For example, in the concrete example
of Bi-2212 that we considered, there is a difference between
the atomic structure in between the pair of layers close to
each other and in between the pairs of layers. Therefore the
different dielectric constants might quantitatively influence
the behavior of plasmons. Another assumption we made is
that there is rotational invariance in each layer, which is, of
course, not exactly the case, since there is a square-lattice
structure in the CuO2 layers. Although this lattice structure
does not influence the dispersion of the plasmon for small
q, it does play a role for larger values of q. Hence, it would
be interesting to include the lattice in the future. Besides,
many cuprates are known to have an extra periodicity which
modulates their atomic lattice, known as the supermodulation
[43,44], which may lead to additional phenomena such as
charge-density waves and Umklapp scattering [45].

The findings in this paper provide new insights into the
plasmons in layered strange metals. In particular, we no-
tice that the holographic Gubser-Rocha model can reproduce
the acoustic plasmon branches that have been observed in
RIXS experiments on cuprates. However, our theoretical pre-
dictions appear to contradict the EELS results obtained by
our experimental research group, in which no acoustic plas-
mon was observed [25]. This apparent contradiction certainly
challenges the experimentalist to either discover the right
experimental conditions to observe the acoustic plasmon con-
tribution or come up with arguments to explain why an
acoustic plasmon cannot be measured. Or perhaps we should
revise our theoretical framework and include potentially rele-
vant features which it lacks at the moment, such as the lattice,
phonons, charge-density waves, and so on. In any case, it is
evident that these latter measurements require more extensive
analysis. On top of that, we hope that the theory presented in
this paper stimulates further experiments regarding plasmons
in strange metals.
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