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Understanding magnetoelectric switching in BiFeO3 thin films
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In this work we use a phenomenological theory of ferroelectric switching in BiFeO3 thin films to uncover the
mechanism of the two-step process that leads to the reversal of the weak magnetization of these materials. First,
we introduce a realistic model of a BiFeO3 film, including the Landau energy of isolated domains as well as the
constraints that account for the presence of the substrate and the multidomain configuration found experimen-
tally. We use this model to obtain statistical information about the switching behavior—by running dynamical
simulations based on the Landau-Khalatnikov time-evolution equation, including thermal fluctuations—and we
thus identify the factors that drive the two-step polarization reversal observed in the experiments. Additionally,
we apply our model to test potential strategies for optimizing the switching characteristics.
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I. INTRODUCTION

Magnetoelectric multiferroics are the materials that si-
multaneously show magnetic and ferroelectric orders. The
coupling between magnetic and electric degrees of freedom
enables the possibility to manipulate magnetic properties of
these materials by applying an electric field and vice versa,
which holds great potential for the development of devices
with multiple functionalities and low energy consumption, as
well as for their miniaturization [1,2]. Among this class of
compounds, BiFeO3 is of particular interest since it displays
both ferroic orders at room temperature [3].

Below TC ∼ 1100 K [4,5], BiFeO3 shows a spontaneous
polarization P of up to 1 C/m2 aligned along a pseudocu-
bic 〈111〉 direction [6,7] of its rhombohedrally distorted
perovskite structure (space group R3c, no. 161) [8,9]. The
polarization P originates from the displacements of Bi3+ and
Fe3+ cations with respect to O2− anions, where the Bi3+

cations dominate since they possess stereochemically active
6s lone pairs [10,11].

At TN ∼ 640 K, the Fe magnetic moments in BiFeO3 or-
der antiferromagnetically [4,14]. The Dzyaloshinskii-Moriya
(DM) interaction [15,16] drives the small canting of an-
tialigned Fe spins which can give rise to a weak magne-
tization. Crucially, the DM interaction is a consequence of
the symmetry breaking caused by the FeO6 octahedral tilts
of BiFeO3 [17]. These tilts are about the axis of P and are
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expressed as a−a−a− in Glazer’s notation [18]; in the fol-
lowing, we denote these tilts by R. Indeed, the phase of the
octahedral rotations defines the sign of the DM vector and,
therefore, that of the weak magnetization [17]. In general, lin-
ear magnetoelectric (LME) effect is allowed by symmetry in
BiFeO3 [19,20]. However, in a bulk system, an incommensu-
rate cycloidal spiral is superimposed on the antiferromagnetic
order, which yields a zero net magnetization [21] and leads
to cancellation of LME effect. Nevertheless, this cycloid can
be suppressed by doping in bulk BiFeO3 [22] or by epitaxial
constraints in thin films [12,23–25]. In the cases of interest
here, ferroelectricity coexists with weak ferromagnetism in
BiFeO3 at ambient conditions [7,12,17,26].

A deterministic reversal of the weak magnetization by an
electric field was reported by Heron et al. [12] in a com-
bined experimental and theoretical study of (001)-oriented
BiFeO3 films grown on a DyScO3 substrate. (All the direc-
tions and plane orientations to which we refer in the text are
in pseudocubic setting.) The authors demonstrated that such
a magnetoelectric switching occurs as a result of a peculiar
two-step polarization reversal in which a 109◦ rotation of P is
followed by a 71◦ rotation [see Fig. 1(f)] or vice versa. As it
was revealed by first-principles calculations, the axis of the
FeO6 octahedral tilts rotates together with the polarization,
which results in the reversal of the DM vector and, thus, the
weak magnetization. Additionally, it was shown that a single
step 180◦ P switching, which does not affect FeO6 octahedral
tilts, has a significantly higher energy barrier and is therefore
unfavorable. Note that such single-step P switching would not
result in the reversal of magnetization: indeed, the observed
two-step switching path is key for magnetoelectric switch-
ing to occur in multidomain BiFeO3 films. Additionally, it
is worth noting that the magnetoelectric switching resulting
from the two-step P reversal is a nonperturbative effect that
cannot be discussed in terms of the tensors characterizing the
response to small fields.

2469-9950/2024/109(8)/085116(15) 085116-1 Published by the American Physical Society

https://orcid.org/0000-0001-6189-2266
https://orcid.org/0000-0001-7668-569X
https://orcid.org/0000-0001-6435-3604
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.085116&domain=pdf&date_stamp=2024-02-12
https://doi.org/10.1103/PhysRevB.109.085116
https://creativecommons.org/licenses/by/4.0/


NATALYA S. FEDOROVA et al. PHYSICAL REVIEW B 109, 085116 (2024)

FIG. 1. Polarization switching in BiFeO3 films grown on a DyScO3 substrate as reported by Heron et al. [12]. The top row shows our
hand-drawn sketches of the ferroelectric domain patterns that appear during the polarization switching process, which capture the essential
features observed in the time-resolved PFM images of Refs. [12,13]. Panels (a) and (c) show the ferroelectric domain patterns in the film before
and after switching, respectively, while panel (b) shows an intermediate state. Panel (d) shows the symmetry allowed polarization variants; we
also list here the P directions and signs of the shear strains (ηxy, ηyz, and ηxz) for the corresponding domains. (We use a pseudocubic setting.)
Note that only the polarization variants P(1) to P(4) have been observed in the experiment of Heron et al. Panel (e) shows the number of
polarization switches per pixel as obtained experimentally (data taken from Ref. [12]). Panel (f) illustrates the two-step polarization switching,
with an electric field applied along [001̄], where a 109◦ P rotation is followed by a 71◦ P rotation.

The observed possibility of manipulating a magnetization
by an electric field at room temperature makes BiFeO3 thin
films very promising for designing novel magnetoelectric
memory devices. However, to make them technologically rel-
evant, the switching characteristics have to be optimized [27].
For example, in the experiments described above the applied
voltages were in the range of a few volts, while the current tar-
get is to switch below 100 mV; similarly, the switching times
should move from the microseconds of Ref. [12] to values in
the order of 10–1000 ps [28,29]. In addition, any optimiza-
tion must be compatible with maintaining the magnetoelectric
control, i.e., the two-step polarization switching path has to
be preserved. Therefore, to be able to optimize the switching
characteristics of BiFeO3 films, the microscopic mechanisms
driving the two-step process need to be understood.

In this work, we introduce a phenomenological model of a
multidomain BiFeO3 film and investigate which physical ef-
fects (couplings) allow one to reproduce the peculiar two-step
polarization reversal observed experimentally. This enables
us to propose potential strategies for optimizing switching
characteristics, for example, via doping.

II. PHENOMENOLOGICAL SWITCHING MODEL

A. Summary of the experimental observations

First, let us summarize the specific features of the po-
larization switching behavior observed in the time-resolved
piezoresponse force microscopy (PFM) experiments by Heron
et al. [12], which inform the definition of our phenomenolog-
ical model.

(i) (001)-oriented films of BiFeO3 (100 nm) with SrRuO3
bottom electrode (8 nm) were grown on a DyScO3 substrate to
obtain a striped pattern of ferroelectric domains [30–32] with
two alternating polarization directions (P(1) and P(2)) forming
71◦ domain walls as illustrated in Figs. 1(a) and 1(d). The
electric field was applied along the [001̄] direction and it led
to a 180◦ polarization reversal in all domains [P(1) switched
to P(3) and P(2) to P(4), following the definitions in Fig. 1(d)].
The final state is shown in Fig. 1(c): it features a striped
pattern of alternating P(3) and P(4) domains similar to that
of the initial state [Fig. 1(a)]. Interestingly, only these four
polarization variants occur during the switching process, out
of the eight symmetry allowed possibilities shown in Fig. 1(d).
Also note that, in principle, one would rather expect a 71◦
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FIG. 2. Approximation of a multidomain BiFeO3 thin film as
a one-dimensional series of domains with uniform polarization Pi,
FeO6 octahedral tilts Ri, and strain ηi, with i = 1, . . . , N .

switching involving only the z component of the polarization,
which is directly coupled to the electric field applied along
[001̄]. This switching path, however, was never observed [12].

(ii) The initial and final domain configurations have the
same deformation state. Indeed, all components of the strain
tensor in P(1) domains have the same magnitude and sign as
those corresponding to P(3) and the same holds for P(2) and
P(4) domains; see Fig. 1(d) for details.

(iii) For the observed polarization variants, only domain
walls (DWs) in the (011) plane satisfy the condition of charge
neutrality,

σDW = (Pi − Pi+1)n = 0, (1)

where σDW is the charge density at the DW, n = (0, 1, 1)/
√

2
is the vector normal to the wall plane, and Pi is the polarization
of the ith domain [the domains are numbered along the y di-
rection in Fig. 1(a); see also Fig. 2]. Otherwise, a discontinuity
in the P components normal to the DW plane would lead to an
accumulation of bound charges, which would result in a large
and unfavorable electrostatic energy penalty [33,34].

As an example, let us consider a system of two domains
with the DW in the (011) plane. If the polarization in domain
1 is P(1) = P(1,−1, 1) and P(2) = P(−1,−1, 1) in domain
2 [see Fig. 1(d)], the charge density at the corresponding
71◦ DW can be computed as [Eq. (1)] σDW,1−2 = P(2, 0, 0) ·
(0, 1, 1)/

√
2 = 0; therefore, this DW is neutral. Similarly,

σDW = 0 for (011) DWs between P(1) and P(3) (180◦ DW), as
well as between P(1) and P(4) (109◦ DW) and those symmetry
equivalent to them. On the other hand, the charge density at
a (011) DW between P(1) and P(5) is σDW,1−5 = P(0, 0, 2) ·
(0, 1, 1)/

√
2 = P

√
2; therefore, such a DW would be charged.

The same holds for (011) DWs between P(1) and P(6), P(1)

and P(7), and P(1) and P(8), and those symmetry equivalent to
them.

We thus find the following remarkable situation. Experi-
mentally, only the P(1), P(2), P(3), and P(4) domains have been
observed during the switching and it is known that the domain
walls in the equilibrium multidomain states lie indeed within
the (011) plane, thus being neutral [12]. This strongly suggests
that the domain walls remain in the (011) plane throughout the
entire ferroelectric switching. This is the situation we assume
in the following.

(iv) Although 180◦ domain walls between P(1) and P(3)

(or P(2) and P(4)) would also satisfy the condition of charge
neutrality described above [Eq. (1)], such boundaries have
never been observed experimentally. This can be seen by mon-
itoring the domain evolution during the switching as sketched

in Fig. 1, where the orange regions never touch the light
blue regions and the brown regions are never in contact with
the dark blue regions. Hence electrostatics is not the only
mechanism preventing the formation of certain boundaries.

(v) More than 87% of the sample area switches in more
than one step. In fact, over 60% switches in exactly two steps
as shown in Fig. 1(e). The observed steps are a 109◦ rotation
of P where the y and z components are reversed (denoted
as 109yz switch in the following) and a 71◦ rotation where
only the x component is reversed (71x switch). Interestingly,
the results of Refs. [12,13] suggest that the 109yz switch is
the nucleation event; this involves the reversal of the out-of-
plane component, i.e., the one directly coupled to the applied
field. Then, the 71x switches seem related to the domain wall
movements and rearrangements that occur to accommodate
the switched regions and eventually yield the striped state of
Fig. 1(c). Hence, in the following, we assume that the 109yz
events are the main driving force for the switching, while the
71x events are a secondary effect.

B. Model of multidomain BiFeO3 film

We now introduce a model of a multidomain BiFeO3 film,
which will allow us to identify the minimal physical ingredi-
ents that yield the observed two-step polarization switching
path. For that purpose, we take into account all the features of
the switching process discussed in Sec. II A.

We approximate the BiFeO3 film as a one-dimensional
series of N domains (Fig. 2), each of which is described by the
uniform polarization Pi, the FeO6 antiphase octahedral tilts
Ri, and the strain tensor ηi. We write the total energy density
of our system as

F = FL + Felec + FDW + Felas, (2)

where FL is the self-energy of the domains (as if they were
part of an infinite unconstrained bulk material), Felec is the
electrostatic energy penalty associated to the formation of
charged DWs, FDW is the energy penalty associated to the
structural discontinuity at the DWs, and Felas includes the
elastic constraints imposed by the DyScO3 substrate as well
as other elastic interactions affecting the domains. In the fol-
lowing, we describe these terms in detail.

1. Energy of bulklike domains

We define the self-energy of bulklike domains as

FL =
N∑

i=1

FL,i, (3)

where FL,i is the Landau-like energy of a domain i and N is
the total number of domains considered in our simulations.

Following Ref. [35], we represent FL,i as an expan-
sion around the paraelectric cubic perovskite structure in
powers of the electric polarization Pi = (Pi,x, Pi,y, Pi,z ), the
FeO6 antiphase octahedral tilts Ri = (Ri,x, Ri,y, Ri,z ), and
the strain ηi = (ηi,xx, ηi,yy, ηi,zz, ηi,yz, ηi,xz, ηi,xy). Here ηi,xx =
εi,xx, ηi,yy = εi,yy, ηi,zz = εi,zz, ηi,yz = 2εi,yz, ηi,xz = 2εi,xz, and
ηi,xy = 2εi,xy, and εi,αβ are the symmetric components of the
homogeneous strain tensor. The resulting expression for the
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potential is written as

FL,i = F0 + F (Pi ) + F (Ri) + F (ηi )

+ F (Pi, Ri ) + F (Pi, ηi ) + F (Ri, ηi ), (4)

where F0 is the energy of the reference cubic phase of bulk
BiFeO3. F (Pi ), F (Ri ), and F (ηi ) are the energy contributions
due to polarization, FeO6 tilts and strain, respectively, and
have the following expressions:

F (Pi ) = AP
(
P2

i,x + P2
i,y + P2

i,z

)
+ BP

(
P2

i,x + P2
i,y + P2

i,z

)2

+ CP
(
P2

i,xP2
i,y + P2

i,yP2
i,z + P2

i,zP
2
i,x

)
, (5)

F (Ri ) = AR
(
R2

i,x + R2
i,y + R2

i,z

)
+ BR

(
R2

i,x + R2
i,y + R2

i,z

)2

+ CR
(
R2

i,xR2
i,y + R2

i,yR2
i,z + R2

i,zR
2
i,x

)
, (6)

and

F (ηi ) = 1
2C11

(
η2

i,xx + η2
i,yy + η2

i,zz

)
+ C12(ηi,xxηi,yy + ηi,yyηi,zz + ηi,zzηi,xx )

+ 1
2C44

(
η2

i,yz + η2
i,xz + η2

i,xy

)
. (7)

Since our goal is to introduce a minimal model that captures
the basic energetics of BiFeO3, we truncate the expansion in
Pi and Ri at the fourth order (the minimum necessary to model
structural instabilities) and only include harmonic terms for
ηi. Then, F (Pi, Ri ), F (Pi, ηi ), and F (Ri, ηi ) are the coupling
terms between the considered degrees of freedom:

F (Pi, Ri ) = BPR
(
P2

i,x + P2
i,y + P2

i,z

)(
R2

i,x, + R2
i,y + R2

i,z

)
+ CPR

(
P2

i,xR2
i,x + P2

i,yR2
i,y + P2

i,zR
2
i,z

)
+ C′

PR(Pi,xPi,yRi,xRi,y + Pi,yPi,zRi,yRi,z

+ Pi,zPi,xRi,zRi,x ), (8)

F (Pi, ηi ) = γP111
(
ηi,xxP2

i,x + ηi,yyP2
i,y + ηi,zzP

2
i,z

)
+ γP122

[
ηi,xx

(
P2

i,y + P2
i,z

) + ηyy
(
P2

i,z + P2
i,x

)
+ ηi,zz

(
P2

i,x + P2
i,y

)]
+ γP423(ηi,yzPi,yPi,z + ηi,xzPi,zPi,x + ηi,xyPi,xPi,y ),

(9)

and

F (Ri, ηi ) = γR111
(
ηi,xxR2

i,x + ηi,yyR2
i,y + ηi,zzR

2
i,z

)
+ γR122

[
ηi,xx

(
R2

i,y + R2
i,z

) + ηi,yy
(
R2

i,z + R2
i,x

)
+ ηi,zz

(
R2

i,x + R2
i,y

)]
+ γR423(ηi,yzRi,yRi,z+ηi,xzRi,zRi,x +ηi,xyRi,xRi,y).

(10)

Again, for simplicity we only include in the model the lowest-
order symmetry-allowed couplings.

In Eqs. (5)–(10), A, B, C, C′, and γ are the expansion co-
efficients that one can compute for bulk BiFeO3 using density
functional theory (DFT); see Sec. SV of the Supplemental

TABLE I. Our initial guess (“default set”) for the parameters
of the model introduced in Sec. II B for multidomain BiFeO3 thin
films. The parameters of the Landau model (AP, AR, BP, ...) [35],
as well as Kelec, Kelas,xy, Kelas,xz, and Kelas,yz, are normalized so they
give energies per five-atom perovskite unit cell. The KDW,P and KDW,R

parameters give domain wall energies per unit area (see Sec. SI of the
Supplemental Material [36] for details on how we obtain them).

Default set Units

AP −1.747 ×10−19 J m4C−2

BP 1.070 ×10−19 J m8C−4

CP −7.486 ×10−20 J m8C−4

AR −8.555 ×10−22 J deg−2

BR 2.169 ×10−24 J deg−4

CR −1.240 ×10−24 J deg−4

C11 1.833 ×10−17 J
C12 7.301 ×10−18 J
C44 4.600 ×10−18 J
BPR 1.121 ×10−21 J m4C−2deg−2

CPR −3.437 ×10−22 J m4C−2deg−2

C′
PR −2.245 ×10−21 J m4C−2deg−2

γP111 −9.444 ×10−19 J m4C−2

γP122 −1.557 ×10−19 J m4C−2

γP423 −3.232 ×10−19 J m4C−2

γR111 −1.178 ×10−21 J deg−2

γR122 1.158 ×10−22 J deg−2

γR423 1.155 ×10−21 J deg−2

Kelec 1.602 ×10−19 J m4C−2

KDW,P 4.756 ×10−2 J m2C−2

KDW,R 4.733 ×10−4 J m−2deg−2

Kelas,xy 4.600 ×10−18 J
Kelas,xz 4.600 ×10−18 J
Kelas,yz 4.600 ×10−18 J
LP 2.000 ×102 F m−1s−1

LR 8.319 ×104 deg2m3J−1s−1

Lη 1.714 m3J−1s−1

QP 2.000 ×102 F m−1s−1

QR 8.319 ×104 deg2m3J−1s−1

Material [36] and Refs. [37–40] therein. [For convenience,
the coefficients C11, C12, and C44 of Eq. (7) as well as γ of
Eqs. (9) and (10) are given in Voigt notation.] The values are
given in Table I. This model allows one to accurately predict
the energies and structural properties of BiFeO3 polymorphs
that are relevant for the purposes of studying polarization
switching. Additional details on the model and the physical
insights that it provides, as well as the methods for computing
its parameters, can be found in Ref. [35].

2. Electrostatic energy penalty

The formation of charged domain walls gives rise to a large
and unfavorable electrostatic energy penalty, which makes
them unstable. Note that, in the general case, various screen-
ing mechanisms (e.g., charged defects, inhomogeneities in
the polarization field) may favor the occurrence of charged
DWs. However, since in the discussed experiments of Heron
et al. [12] charged DWs were never observed, we assume
that these mechanisms were not present or effective enough
in the investigated samples. Therefore, for the present pur-
poses, we disregard charged interfaces as well as all possible
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mechanisms that can facilitate their appearance. To ensure that
our model precludes charged DWs, we introduce the term

Felec = 1

2
Kelec

N−1∑
i=1

|(Pi − Pi+1) · n|2, (11)

where Kelec is an electrostatic penalty constant. Calculating
Kelec from first principles would require DFT simulations of
charged domain walls in BiFeO3. This, however, is very chal-
lenging due to their instability. Thus, since charged domain
walls are not observed during polarization switching in the
experiments of interest here, we simply assume Kelec > 0 with
a magnitude large enough to prevent their formation in our
simulations (see Table I).

3. Structural energy of domain walls

The next term, FDW, describes the energy penalty due to
structural discontinuity associated to the formation of DWs
and we define it as

FDW = FDW,P + FDW,R. (12)

Here, the FDW,P contribution arises from the change of the
polarization across the wall and we write it as

FDW,P = 1

2
KDW,P

N−1∑
i=1

∑
α=x,y,z

(Pi,α − Pi+1,α )2. (13)

In turn, the FDW,R term penalizes a discontinuity in the octa-
hedral tilt pattern and has the form

FDW,R = 1

2
KDW,R

N−1∑
i=1

∑
α=x,y,z

(Ri,α − Ri+1,α )2. (14)

As one can see from Eqs. (13) and (14), the domain wall
energy is minimized if polarization and octahedral tilts are
uniform across the sample (i.e., for a monodomain config-
uration). We use the DFT domain wall energies computed
for BiFeO3 by Dieguez et al. [34] to estimate the parameters
KDW,P and KDW,R. Note that the obtained values (Table I)
reflect the fact that the main contribution to FDW is given
by FDW,R (see more details in Sec. SI of the Supplemental
Material [36]).

4. Elastic constraints

We describe the elastic constraints imposed on the system
as

Felas = Fsub + Fmatrix. (15)

Here, Fsub takes into account the action of the DyScO3 sub-
strate, which forces the BiFeO3 film to have no net shear
strain in the xy plane. This leads to the formation of the ex-
perimentally observed pattern of ferroelectric and ferroelastic
domains (with alternating P(1)/P(2) polarization variants in the
initial state and P(3)/P(4) variants in the final state) where the
shear ηi,xy alternate sign between neighboring domains [41]
[see Figs. 1(a), 1(c), and 1(d)]. To favor the observed ground
state, we write Fsub as

Fsub = 1

2
Kelas,xy

N−1∑
i=1

(ηi,xy + ηi+1,xy)2, (16)

where Kelas,xy > 0.

Additionally, as we mentioned in Sec. II A, it is experi-
mentally found that the deformation state is preserved during
the switching process, i.e., the domains in the initial and final
state have the exact same strains. Following the discussion by
Heron et al. [12], we hypothesize that this may result from
the interaction between switching domains and the matrix of
as-grown domains that are not yet switched, since the electric
field is applied locally in the discussed experiments. To take
this into account, we write Fmatrix as

Fmatrix = Felas,xz + Felas,yz, (17)

where

Felas,xz = 1

2
Kelas,xz

N∑
i=1

(
ηi,xz − ηref

i,xz

)2
(18)

and

Felas,yz = 1

2
Kelas,yz

N∑
i=1

(
ηi,yz − ηref

yz

)2
. (19)

Here, ηref
i,xz > 0 (ηref

i,xz < 0) for odd i (for even i) are the strains
corresponding to the initial state or the unswitched region [see
Fig. 1(d)]. In turn, ηref

yz < 0 for all observed polarization vari-
ants (P(1) to P(4)). The magnitude of ηref

i,xz and ηref
yz is obtained

by minimizing the energy of single domain BiFeO3 [Eq. (4)]
with no applied electric field; we get |ηref

i,xz| = |ηref
yz | = 0.0059.

As an initial guess, we take Kelas,xy, Kelas,xz, and Kelas,yz

equal to the elastic constant C44 as computed for BiFeO3 using
DFT, which captures the stiffness against a shear strain that is
typical of perovskite oxides (see Table I). Note that this is a
very crude approximation. For example, the energy penalty
associated to the strain relaxation of the BiFeO3 film (so it
adopts its preferred shear strain and overcomes the clamping
by the substrate) will be associated to the formation of misfit
dislocations [42]. By contrast, the energy penalty imposed by
a typical C44 can be expected to be much smaller. Hence, in the
absence of a better quantitative guideline, the values of Kelas

constants (Kelas,xy in particular) will play the role of adjustable
parameters in our discussion.

5. Effect of domain size

In the sections above we have introduced all the terms in
our model potential F . Now, to construct the total energy of a
particular multidomain structure, we have to pay attention to
its specific dimensions (e.g., its domain width) and how the
different energy terms scale with them.

For example, the Landau energy FL,i and the elastic energy
penalty Felas scale with the domain width. By contrast, the
domain wall energy FDW is defined by the discontinuity in P
and R at the wall and it is therefore independent of the domain
width. Finally, the electrostatic penalty Felec scales with the
domain width; yet, this is not important here, since we choose
Kelec large enough so that the formation of charged domain
boundaries is fully precluded.

Thus, following experiments [12,43], let us assume that
our state of interest features domains that are 100 nm wide,
which is typical of BiFeO3 films about 100 nm thick. For
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simplicity, we use a domain volume Vd = (100 nm)3, not-
ing that the length of the third dimension plays no role in
the problem. This would correspond to domains with about
Nuc,d = Vd/Vuc = 1.7 × 107 five-atom BiFeO3 unit cells in
them, using Vuc = (0.3866 nm)3 for the cell volume. Simi-
larly, we have DWs with an area SDW = (100 nm)2.

Now, in Table I we give the parameters AP, BP, CP, . . . ,

γR423 to compute the domain self-energy per unit cell (uc),

which we denote FL,uc. By contrast, the parameters KDW,P

and KDW,R in Table I allow us to compute the DW energy
per unit area (ua) associated to a discontinuity in polariza-
tion or tilts, FDW,ua. Hence, to compute the total energy, we
have to weight these quantities appropriately as Nuc,d FL,uc +
SDWFDW,ua. More generally, we work with an energy density
f (normalized by Vd ) as

f = F

Vd
− E

∑
i

Pi = 1

Vd
(FL + Felec + Felas + FDW) − E

∑
i

Pi

= 1

VucNuc,d
(Nuc,d FL,uc + Nuc,d Felec,uc + Nuc,d Felas,uc + SDWFDW,ua) − E

∑
i

Pi

= 1

Vuc
(FL,uc + Felec,uc + Felas,uc) + 1

Vd
SDWFDW,ua − E

∑
i

Pi, (20)

where we introduce various unit-cell normalized energies and
E is an external electric field.

C. Numerical approach to finite temperature dynamics

In order to study the switching dynamics, we solve a sys-
tem of Landau-Khalatnikov time-evolution equations (LKEs)
of the form [44]

dφi

dt
= −Lφ

∂ f

∂φi
+ θφi (t ), (21)

where φi denotes the order parameters (Pi, Ri, or ηi) in domain
i, t is the time, f is the energy density of Eq. (20), and Lφ is
the kinetic coefficient that defines the rate at which an order
parameter φ approaches its equilibrium value. The latter are
chosen such that the relaxation times for all order parameters
are in the range of picoseconds (see Table I). Since we are in-
terested in studying polarization switching dynamics at room
temperature, we introduce a stochastic noise θφi (t ) for φi = Pi

and Ri that resembles thermal fluctuations of φi following
Ref. [45]. θφi (t ) obeys a Gaussian probability distribution and
is uncorrelated in time. Its autocorrelation function is〈

θφi (t )θφi (t
′)
〉 = 2kBT Qφ

Vuc�t
δ(t − t ′), (22)

where kB is Boltzmann’s constant, �t is the time step used
in the simulations, and Qφ defines the noise amplitude and is
often chosen to be equal to the kinetic coefficient Lφ . Hence,
at each time step in the simulations, we add the noise given by

θφi =
√

2kBT Qφ

Vuc�t
n, (23)

where n is a random number out of a normal distribution
N (μ, σ 2) with mean μ = 0 and variance σ 2 = 1.

Additionally, to account for temperature-driven changes
in the free energy landscape, we include a temperature de-
pendence in the self-energy of the domains, Eq. (4). For
simplicity, we modify only the terms/expressions which pre-
sumably have the strongest impact on the materials response

properties. More specifically, instead of using constant val-
ues for the coefficients AP and AR entering F (Pi ) and F (Ri )
[Eqs. (5) and (6), respectively], we define them as follows
[46,47]:

Aφ = A(0)
φ

TC,φ − T

TC,φ

, (24)

where φ stands for P or R, A(0)
φ < 0 is the corresponding

coefficient as obtained using DFT (thus, at T = 0 K, see Ta-
ble I), TC,φ is the critical temperature below which φ appears
in BiFeO3 (ignoring the subtleties of the structural phase tran-
sitions in this material [3], we simply choose TC,P = 1143 K
and TC,R = 1205 K), and T is the operating temperature of
interest (T = 300 K).

D. Adjustable parameters

As we discussed in Sec. II B, we can estimate most of the
parameters of our model using DFT results. In the following,
we will refer to this parameter set as the “default set” (the
values are given in Table I). However, we need to ensure that
our model reproduces the experimentally observed switching
behavior of BiFeO3 films at room temperature.

In particular, the Landau model parameters define the depth
of potential wells corresponding to the states with different
polarization directions and senses of the FeO6 octahedral ro-
tations, as well as the height of the energy barriers between
these states. Therefore, these parameters determine coercive
fields and switching times in our simulations. Although we
introduce a finite temperature correction to the quadratic co-
efficients AP and AR of the Landau potential [Eqs. (5) and (6),
respectively, as well as Eq. (24)], this might not be sufficient
to reproduce the experimental switching characteristics of
BiFeO3 films. For example, we noticed that our DFT values
of the Landau model parameters are generally one order of
magnitude larger than those typically used in phase-field sim-
ulations of BiFeO3 at room temperature [48,49]. Since the
latter allow operating with switching voltages that are close
to the experimental values, this suggests that our DFT model
parameters overestimate the height of the energy barriers.
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Moreover, our model does not describe the presence of defects
that serve as nucleation centers and reduce energy barriers
for polarization switching. Therefore, to take these effects
into account, we introduce an additional parameter K in the
range from 0.6 to 1 that serves as a rescaling factor for the
Landau energy FL [Eq. (4)] and the domain wall energy FDW

[Eq. (12)]. For the elastic constraint terms, we consider several
values of Kelas,xy = Kelas,xz, while keeping Kelas,yz [Eq. (19)]
fixed to the initial DFT estimate since it only penalizes the
states with polarization P(5) to P(8) (see Fig. 1) and, as we will
demonstrate below, does not play a significant role in driving
the two-step polarization switching process.

Additionally, as we discussed in Sec. II C, we take into ac-
count thermal fluctuations of the order parameters by adding
the stochastic noise term [Eq. (23)] in the LKEs [Eq. (21)].
Overall, thermal fluctuations allow one to overcome switch-
ing energy barriers more easily and therefore should reduce
switching fields and times in our simulations. As an initial
guess for the noise amplitudes, we choose Qφ = Lφ (default
parameter set in Table I). One has to keep in mind, however,
that if these noise amplitudes are too large, we may obtain
spurious switches of P and R, which are not observed in
experiments. On the other hand, as we discuss below, too
small Qφ values may make 71x switching events too unlikely,
as these are not directly driven by the applied electric field
along the [001̄] direction. Therefore, we consider multiple
combinations of QP and QR and select those giving the best
agreement with the experiment (details below, in Sec. III A).

E. Calculation details

We perform polarization switching simulations based on
the model presented in Sec. II B and LKEs introduced in
Sec. II C using an in-house developed code. In all simulations,
the kinetic coefficients Lφ of LKEs are set equal to the values
in Table I. We numerically solve the system of LKEs using the
classic Runge-Kutta method [50]. We use a constant time step
δt = 40 fs and run each simulation for ttot = 280 ns. Unless
otherwise specified, for each choice of model and simulation
parameters, we perform 200 runs with different random noise
to obtain statistics of the switching events.

We apply a sinusoidal electric field E (t ) = Emax sin(2ωt )
along [001̄]. Following the experiments of Heron et al. [12],
we use ω = 1.8 MHz. Emax values are taken in the range of
100–700 MV/m as will be detailed below.

III. RESULTS

A. Validation of the model

1. Polarization switching in monodomain BiFeO3

First, we study the simple case of monodomain bulk
BiFeO3. The energy of this system is described solely by the
Landau energy term, Eq. (4). Here we use the default values
of the Landau model parameters presented in Table I. Our
starting configuration (before switching) is shown in Fig. 4(a)
with P, R, and η obtained by minimizing the energy of the
system at T = 0 K with no applied electric field.

We start by identifying suitable noise amplitudes for P
and R (QP and QR, respectively). For that purpose, we ana-
lyze time evolution of the order parameters in this system at

E = 0 MV/m and T = 300 K with different QP and QR. In
such conditions, the order parameters are expected to fluctu-
ate around their initial state, but no (spontaneous) switching
events should occur. We begin with the default values
of the noise amplitudes, namely, QP = LP = 200 F m−1s−1

and QR = LR = 8.319 × 104 deg2m3J−1s−1. We repeated this
simulation keeping the same conditions 200 times in order
to obtain the statistics of P and R behavior. We found that
in most of these runs P and R undergo multiple stochastic
switches, in contrast with what is observed in real materials.
This indicates that our default values for QP and QR overesti-
mate thermal fluctuations in monodomain BiFeO3.

Then, we consider a set of QP (in the range of 100 to
200 F m−1s−1) and QR (in the range of 5 × 104 to 8 ×
104 deg2m3J−1s−1) combinations and identify optimal choices
for which most of our runs (>90%) do not present any sponta-
neous switching events. The parameter values and switching
statistics are summarized in Supplemental Table S1 (see [36]).

Next, using optimal QP and QR pairs, we move to switching
simulations under applied field. First, we apply E ‖ [001̄]
with the amplitude Emax = 100 MV/m, but observe almost no
switching events (see detailed statistics in Supplemental Table
S2 [36]). Then we increase the field up to Emax = 200 MV/m
and find that the most likely switching event is the rever-
sal of Pz as schematically shown in Fig. 4(a), accompanied
by the reversal of Rz. An example of the time evolution of
P and R is shown in Fig. 3, for QP = 140 F m−1s−1 and
QR = 7 × 104 deg2m3J−1s−1, which give the best statistics of
the switching events. More precisely, with these parameters
the aforementioned switching path was found in 92.5% of the
considered runs; in 2.5% there was no switching at all, while
in 5% of the runs the initial reversal of Pz was followed by the
reversal of additional P components resulting from thermal
fluctuations in the system.

Note that in this simple monodomain situation we expect to
observe the switching of only the z component of P (followed
by the z component of R), since Pz is directly coupled to
E||[001̄], and the reversal of only one component of P and R
has the lowest energy barrier. However, as mentioned above,
this switching path has never been observed in the experi-
ments of Heron et al. [12]. This indicates that the multidomain
structure must play a crucial role in determining the experi-
mentally observed switching.

2. Polarization switching in a multidomain BiFeO3 film

Next we study polarization switching in a multidomain
BiFeO3 film. As we mentioned in Sec. II B, we approximate it
by the one-dimensional series of domains with homogeneous
internal structure characterized by Pi, Ri, and ηi (Fig. 2).
We start by considering the system of four domains, with
two frozen and two allowed to evolve in response to applied
electric field [Fig. 4(b)]. The frozen domains are necessary
for reproducing the state indicated in Fig. 1(b), where the
switching region coexists with parts of the sample that remain
in the zero-field configuration. Note that, since we perform our
simulations using periodic boundary conditions, the results do
not depend on the location of the frozen domains.

The starting configuration is indicated as the state A in
Fig. 4(b) and presents a pattern of alternating domains P(1)
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FIG. 3. Time evolution of the order parameters in monodomain
bulk BiFeO3 simulated at T = 300 K. We show the evolution of the
polarization (a), the FeO6 octahedral tilts (b), and the applied electric
field (c).

and P(2) reflecting the experimental situation [Fig. 1(a)]. This
system is described by the full model, Eq. (2), introduced in
Sec. II B, which includes the couplings related to the presence
of the DyScO3 substrate, the formation of domain walls, and
the presence of the unswitched region.

First, we discuss the time evolution of Pi and Ri as ob-
tained using the default model parameters presented in Table I
with no rescaling (K = 1) and under an electric field with
Emax = 500 MV/m applied along [001̄] (with smaller fields,
Emax = 300 and 400 MV/m, Pi and Ri do not switch in most
of the runs). The result of one simulation (out of 200) is shown
in Figs. 5(a)–5(d). One can see that the simultaneous reversal
of Pi,y and Pi,z (109yz switch) in both evolving domains is
followed by the reversal of Pi,x (71x switch); further, the FeO6

octahedral tilts reverse together with Pi during this switching
process. In order to better understand this behavior, let us
discuss how the energy terms described in Secs. II B 2–II B 4
contribute at each step of the process.

As we have seen in Sec. III A 1, when E is applied along
[001̄], one would expect a reversal of only the z component
of the polarization, since it is the only one coupled to the
field [see state C in Fig. 4(b)]. However, if this were to
happen, the domain 2 would form a charged domain wall
with the frozen domain 1, which is strongly penalized by
the Felec term in our model. The argument applies also to
the domains 3 and 4. Therefore, it is preferable to perform
a 109yz switch resulting in the state B in Fig. 4(b), which
renders neutral domain walls between the switching and fixed
domains. However, this state features two 180◦ domain walls
(between the domains 1 and 2 and between 3 and 4) that
have a relatively high energy on account of the terms FDW,P

and FDW,R [Eqs. (13) and (14), respectively]. Additionally, the
strain state of the B configuration is penalized by the elastic
constraints Fsub and Felas,xz [Eqs. (16) and (18), respectively].
Therefore, the energy can be further reduced by performing
a 71x switch in both evolving domains, which optimizes all
the energy terms in our model. This results in a full reversal
of polarization in the domains 2 and 3 relative to the initial
state A.

Note also that the octahedral tilts Ri follow Pi at each step,
as there is a strong preference for Pi and Ri to be perfectly
(anti)parallel [see the third term in Eq. (8)]. Further, there
is nothing in the energetics of the tilts that tends to favor a
different switching path. Hence the reversal process shown in
Figs. 5(a)–5(d) is the ideal two-step ferroelectric switching
path that permits an accompanying magnetoelectric reversal
in BiFeO3.

It is important to note, however, that for the default pa-
rameter set we obtained this ideal behavior in only 5% of
the runs [see Fig. 6(a)]. Additionally, in 6% of the runs we
observed the perfect 109yz + 71x polarization reversal in only
one of the evolving domains, while in the second one Pi

underwent either only a 109yz switch or did not switch at all.
Nevertheless, the behavior observed in the remaining majority
of runs is still physically sound. Indeed, as one can see in
Fig. 6(a), in a large number of the simulations (70%) we
found a 109yz + 71x Pi reversal in at least one of the two
evolving domains, followed by one or multiple backswitches
of Pi,x. An illustrative example is shown in Figs. 5(e)–5(h).
Here we underline that such in-plane backswitching events are
unlikely to occur in real materials, which inevitably contain
defects serving as pinning centers and enforcing the system
to remain in the lowest-energy state. Pinning, however, is
not taken into account in our simulations. For this reason,
we assume that switching paths in which a 109yz + 71x pro-
cess is followed by a series of Px back-and-forth switches
can be considered as perfect two-step switching events. An-
other observation is that in 21.5% of the runs we have a
71x first switching event in one of the domains. However,
this behavior is driven by random noise. Indeed, as we will
show in the following, by reducing the noise amplitudes,
the number of such switching events can be dramatically
reduced [see Fig. 6(b)]. The switching processes indicated
in Fig. 6(a) as “Other” involve, for example, the single-step
180◦ polarization reversal (with or without 71x backswitches
of Pi) and 71x + 109yz (or just 71x, or just 109yz) switches
in one of the domains with no Pi switching in the second
domain.
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FIG. 4. Polarization switching paths that we can expect based on the model for BiFeO3 introduced in Sec. II B. Panel (a) shows the case
of monodomain bulk BiFeO3. Panel (b) shows the case of a multidomain BiFeO3 film, which we approximate by a system of four domains
with two of them (1 and 4) frozen and two (2 and 3) allowed to evolve. Panel (c) shows the contribution from all energy terms introduced
in Sec. IIB for each of the states (A to D) of panel (b); for simplicity, we do not include the couplings between the frozen domains 1 and 4
(only the couplings between the domains 1-2, 2-3 and 3-4 are taken into account). For example, state C presents two charged walls—between
domains 1-2 and 3-4, respectively—and has an associated electrostatic energy penalty given by Felec and labeled “2Kelec” in Table I.

B. Parameter optimization

Having introduced the basic results of our simulations, we
now describe how the parameters of the model can be adjusted
in order to reproduce the experimental observations better.

In Table II we present seven parameter sets which we
select as those giving the switching statistics closest to the
experiment. These include the set that allows one to use the
smallest electric field, labeled (i), the set that does not involve
rescaling of the model parameters (K = 1), labeled (v), and
the set in which all constants Kelas in Eqs. (16), (18), and (19)
are set equal to the elastic constant C44 of BiFeO3 obtained
from DFT, labeled (vi). The remaining sets give a high num-
ber of two-step switches in 200 runs. In Fig. 6(c) we show
the switching statistics for the representative case of set (ii),
while the corresponding data for the other parameter sets are
summarized in Supplemental Fig. S1 (see [36]).

One can see that by balancing the noise amplitudes and the
heights of the energy barriers in the Landau potential, we can
go up to 70% of two-step switching events in both evolving
domains (this number goes down to 23.5% if we do not correct
for spurious back-and-forth switches).

Next, we check that the observed two-step polarization
switching behavior is not dependent on the small number of
free domains (which is 2) used in the simulations described
above. To do that, we repeat our analysis for systems of 6,
8, and 10 domains (in all cases, we freeze two domains)
using the parameter sets presented in Table II. We observe
a high percentage of two-step polarization reversals for all
considered system sizes (details in Supplemental Figs. S2–
S4 [36]). Therefore, we conclude that our minimal model of
two free domains captures correctly the two-step polarization
reversal.
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FIG. 5. Time evolution of the order parameters in BiFeO3 simulated as a system of four domains shown in Fig. 4(b) at T = 300 K under
an applied electric field Emax = 500 MV/m using the default parameter set (Table I). The applied electric field is time dependent as shown
in Fig. 3(c). We show Pi (top row) and Ri (bottom row) only for the evolving domains 2 and 3. Panels (a)–(d) show the result of one of the
runs (out of 200) in which we observed a perfect two-step 109yz + 71x switch in both evolving domains. Panels (e)–(h) show the result of a
different run where the two-step switch in both evolving domains is followed by back-and-forth switches of Pi,x and Ri,x (see text).
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FIG. 6. Statistics of polarization switching events in the dynamical simulations of BiFeO3 approximated by a system of four domains [two
frozen and two allowed to evolve; see Fig. 4(b)]. The charts show the number of simulations (in % out of 200 runs) in which certain switching
paths have been observed. Panel (a) shows the results obtained using the default parameter set in Table I, while panel (b) shows the results for
the parameter set giving the highest number of 109yz + 71x switches [set (ii) in Table II]. “+BS” indicates the switching paths that involve
backswitches of Pi,x and Ri,x . “+(BS)” indicates that the reported number includes switching events both with and without backswitching.

C. Origin of two-step polarization reversal

In this section we analyze which terms of the model de-
scribed by Eq. (2) are the key ingredients for driving two-step
polarization switching in BiFeO3. For that we consider the
system of four domains (two fixed and two free) and perform
polarization switching simulations using five models of in-
creasing complexity. Each of the considered models includes
the Landau energy of the isolated domains [FL, Eq. (3)], the
electrostatic energy penalty that prevents formation of charged
domain walls [Felec, Eq. (11)], and the elastic energy constraint
that accounts for the presence of the DyScO3 substrate [Fsub,
Eq. (16)]. For every model we consider the seven parameter
sets presented in Table II; we perform 200 runs for each
combination of model and parameter set to obtain statistics
of the switching events.

We start with the model that includes only FL, Felec, and
Fsub and perform simulations without freezing the domains 1
and 4; see Fig. 4(b) (note that we apply periodic boundary
conditions). As one can see in Fig. 7 (model I), we mostly

obtain the 71z switching path similar to what we find for mon-
odomain BiFeO3 [Figs. 3 and 4(a)]. As already mentioned,
this switching path was not observed in the experiments of
Heron et al. [12].

Then, we freeze the domains 1 and 4 and repeat the anal-
ysis; the result is shown in Fig. 7 (model II). One can see
that this immediately gives a high percentage of 109yz + 71x
switching events. There are two main effects at play here.
On the one hand, direct 71z switching events [which would
lead to the state C shown in Fig. 4(b)] are avoided as those
would result in charged domain walls with the fixed (yet-
unswitched) regions. Thus we obtain the 109yz path instead
of 71z. On the other hand, as explained in Sec. III A 2, the
substrate-imposed constraint favors the additional 71x jump
to further optimize the energy. Hence, remarkably, this very
simple model already yields the two-step polarization reversal
as the dominant switching path.

Further, the ratio of the 109yz + 71x events can be
increased by adding energy penalties for the structural dis-
continuity at the domain walls FDW (model III in Fig. 7) and

TABLE II. Sets of model parameters giving the highest number of two-step switching events as predicted from our simulations of BiFeO3

approximated by a system of two frozen and two evolving domains. K is the rescaling factor that we apply to our default choices for FL and
FDW. Kelas,xz and Kelas,yz are the parameters of the elastic constraint terms Fsub and Felas,xz, respectively. QP and QR are the noise amplitudes for
Pi and Ri, respectively. Emax is the amplitude of the applied electric field. N2d is the number of simulations (in % out of 200 runs) in which
two-step Pi and Ri switching occurs in both evolving domains. N1d is the number of simulations (in % out of 200 runs) in which two-step Pi

and Ri switching occurs only in one evolving domain, while in the second domain these order parameters switch only by 109◦. N2d and N1d

account for the switching events that involve back-and-forth switches of Pi,x and Ri,x .

i ii iii iv v vi vii Units

K 0.7 0.7 0.8 0.9 1.0 0.8 0.8
Kelas,xy 32.043 160.218 48.065 48.065 160.218 4.600 160.218 ×10−18 J
Kelas,xz 32.043 160.218 48.065 48.065 160.218 4.600 160.218 ×10−18 J
QP 1.0 1.0 1.4 1.4 1.8 1.2 1.2 ×102 F m−1s−1

QR 7.0 6.0 5.0 8.0 7.0 6.0 6.0 ×104 deg2m3J−1s−1

Emax 500 600 600 600 600 700 700 MV m−1

N2d 57 70 43 55 45 63 68.5 %
N1d 33 26 44 38.5 40 28.5 25.5 %
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FIG. 7. Statistics of switching events for the models and simulation parameters discussed in the text. More precisely, results are presented
for five models of increasing complexity. For each model we consider the seven parameter sets presented in Table II; each parameter set
corresponds to a vertical dashed line. Different symbols denote different switching behaviors in domains 2 and 3. Note that the switching
events indicated as 109yz + 71x include both perfect two-step switches as well as the paths in which the 109yz + 71x reversal is followed
by stochastic 71x back-and-forth jumps. The events denoted as “Not observed experimentally” correspond to 71z jumps or a 109yz switch
followed by a 71y rotation; such events have not been observed in the experiments of Heron et al. [12]. Switching events denoted as “Others”
include single-step 180◦ P switches where R does not follow, as well as switching paths that start with a 71x rotation. The horizontal red dashed
line shows the experimentally reported fraction of the sample in which the polarization reversal occurs in two steps [12].

remaining elastic constraints (models IV and V in Fig. 7).
For the latter, the addition of Felas,xz (model IV) allows one to
raise the number of two-step switches up to the experimentally
reported ratio of 62%. By contrast, Felas,yz does not play a
significant role. This makes physical sense, since Felas,yz only
penalizes the switching to the domains with ηyz > 0 (i.e., P(5),
P(6), P(7), and P(8)), which are already precluded by the Kelec

term.

IV. DISCUSSION

We have thus found that the occurrence of a two-step
polarization reversal relies on three main factors: (1) the pres-
ence of a substrate enforcing the formation of the striped
patterns of domains with alternating in-plane shear strains;
(2) the electrostatic interactions preventing the formation of
charged domain walls; (3) the presence of (yet-)unswitched
regions which—in combination with point (2)—effectively
preclude the direct switch of the vertical polarization compo-
nent. Additionally, we find that the elastic interaction between
the already switched domains and the yet-unswitched ma-
trix (Felas,xz), as well as the energy penalty associated to the
domain-wall structural discontinuity (FDW), also play a role
in making the two-step reversal path as dominant as observed
experimentally.

A. Optimization of two-step polarization reversal

We now use our model to explore potential strategies for
optimizing the switching speed and coercive field while pre-
serving (or improving) the ratio of two-step switching events
that permit magnetoelectric control of BiFeO3 films.

These properties of interest can be tuned by modifying
the parameters of the Landau energy described by Eq. (4).
More precisely, we can control the amplitudes of P and R,
as well as the switching energy barrier heights, by tuning the
corresponding quadratic coefficients AP and AR of Eqs. (5) and
(6). Additionally, we can tune the coupling between P and R
by modifying the parameters BPR, CPR, and C′

PR of the F (P, R)
term, Eq. (8).

We start by considering monodomain bulk BiFeO3 [de-
scribed solely by the Landau term, Eq. (4)] and study how
changes in the model parameters AP and AR, as well as BPR,
CPR, and C′

PR, affect the magnitude of P and R. First, we use
the default parameter values presented in Table I and find P
and R that minimize the energy of the system at T = 0 K
with no applied electric field. Then we consider a series of
AP values, AP = βAdef

P , where β is a number between 0.6 and
1.4 and Adef

P is the value of AP in the default set. We find
the equilibrium P and R for each considered β. As one can
see in Figs. 8(a) and 8(b), increasing AP leads to a strong
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FIG. 8. Predicted changes as we vary selected parameters of our model (see text). For a given parameter X we consider X = βX def , where
β is a scaling factor in the range 0.6 to 1.4 and X def is the value of the considered parameter from the default set. The top row shows the
evolution of the magnitudes of electric polarization P (a) and FeO6 octahedral rotations R (b) in monodomain BiFeO3. The bottom row shows
the number of the switching simulations (in % out of 200 runs) in which a certain switching path has been observed in the system of four
domains. Different symbols denote different switching behaviors in domains 2 and 3 (the domains 1 and 4 are frozen). Note that the switching
events indicated as 109yz + 71x include both perfect two-step switches as well as paths in which the 109yz + 71x reversal is followed by
71x back-and-forth jumps. We show the switching statistics as we vary the AP parameter (c), the AR parameter (d), and the P − R coupling
parameters (e).

increase in polarization magnitude and small reduction in
FeO6 octahedral tilts. Next, we repeat the same exercise, but
varying AR. It has similar effect: increasing the magnitude
of AR causes a dramatic increase in the octahedral tilts and
a small reduction of the polarization. Finally, we vary β in
BPR = βBdef

PR , CPR = βCdef
PR , and C′

PR = βC′de f
PR . As shown in

Figs. 8(a) and 8(b), the simultaneous scaling of all the P − R
couplings has a small effect on the magnitudes of P and R: we
find that both decrease with increasing β.

Next, we analyze how the variation of the model parame-
ters described above affects the switching behavior. For that
purpose, we consider our minimal simulated system of four
domains, two of which are frozen. We select the parameter set
(v) from Table II as the starting point, since it does not involve
any rescaling of the Landau energy landscape by the factor K
introduced in Sec. II D.

We use this reference model to construct a series of pa-
rameter sets that differ only by the value of AP. In particular,
we define AP as βAdef

P and vary β in the range of 0.7 to 1.2.
For each modified set we perform 200 simulations and collect
statistics of the switching events. We find that, for small AP

(β < 0.9), the local polarizations switch mostly by 180◦ in
a single step (which can be also followed by numerous 71x
back-and-forth jumps). At the same time, in most of these
simulations the octahedral tilts do not switch at all. This makes
good physical sense: as we have seen in Figs. 8(a) and 8(b),
small AP values correspond to small Pi but large Ri; the energy
barrier for reversing Ri is likely too high to be overtaken
via the coupling to the relatively small polarizations and it
is more favorable to just reverse Pi in one step (through the
Pi = 0 state) while leaving FeO6 octahedral tilts unaffected.

By contrast, for β > 1.1, we observe almost no switching
at all, as the energy barrier is too high for the considered
amplitudes of thermal noise and applied electric field. Finally,
for small changes of AP (0.9 < β < 1.1), we find that it is
possible to slightly improve the ratio of two-step switching
events [Fig. 8(c)]; yet, the improvement is not significant and
we do not discuss it further.

Next, we repeat the same analysis for AR. As one can see in
Fig. 8(d), a small reduction of AR yields a significant enhance-
ment of the ratio of two-step switching events. The reason is
that the reduction of AR yields smaller Ri and smaller energy
barriers for the switching of Ri; as a result, Ri follows Pi more
easily during the electric-field-driven switching process. By
contrast, an increased AR leads to a relatively low number of
109yz + 71x switching events and the direct 180◦ polarization
reversal becomes more favorable. This case is analogous to the
one discussed above for a reduced AP, which yields very stiff
(unswitchable) tilts.

Thus we find that a smaller AR yields an improved ratio of
109yz + 71x switching events, which suggests that this varia-
tion may also enable switching at smaller coercive fields. To
check this we repeat the analysis for β � 1 using a maximum
applied field Emax in the range between 500 and 600 MV/m.
The obtained statistics of two-step switching events is shown
in Fig. 9(a). One can see that reducing AR indeed allows one
to obtain high percentages of 109yz + 71x events at smaller
electric fields compared to the default AR. For example, for
BiFeO3 (β = 1) we predict that Emax = 600 MV/m is needed
in order to obtain 46.5% of two-step switching events; in con-
trast, for a modified BiFeO3 [e.g., a β = 0.93 in Fig. 9(a)] we
obtain the same performance for Emax � 550 MV/m, which
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FIG. 9. Influence of the AR parameter (a) and P − R couplings
(b) on the ratio of two-step switching events. For a given parameter
X we consider X = βX def , where β is a scaling factor and X def

is the value of the considered parameter from the default set. We
show the number of the switching simulations (in % out of 200
runs) for the system of four domains (two are frozen and two are
free) in which the 109yz + 71x switching path has been observed in
both evolving domains. The presented values include both perfect
two-step switches as well as paths in which the 109yz + 71x reversal
is followed by back-and-forth 71x jumps. The different lines corre-
spond to the different amplitudes of the maximum applied electric
field (in MV/m).

amounts of an ∼10% reduction. Therefore, this can be used
as an optimization strategy for magnetoelectric switching in
BiFeO3.

Finally, we study the effect of varying the P − R coupling.
As one can see in Fig. 8(e), we find that a reduced coupling
leads to a dramatic increase in the ratio of 109yz + 71x
switches, since it decreases energy barriers between the states
with opposite Pi and Ri and allows easier reversal of both
degrees of freedom. Similarly to the case of varying AR, in
Fig. 9(b) we show the statistics of two-step switching events
obtained using Emax values from 500 to 600 MV/m. One
can see that weakening the P − R couplings in BiFeO3 also
yields a high number of 109yz + 71x events at smaller Emax;
therefore, it can serve as an efficient strategy for optimizing
switching.

Based on our findings described above, we can suggest
experimental ways to optimize magnetoelectric switching in
BiFeO3 films. As we have seen, the largest improvement
of the ratio of two-step switching events is achieved by ei-
ther weakening the FeO6 tilts or by weakening the P − R
couplings. The former can be achieved experimentally, for
example, by creating a solid solution of BiFeO3 with PbTiO3,
as the latter has a large polarization, but does not present

tilts of TiO6 octahedra. Tuning the coupling between P and
R might be more challenging, but we can propose some
educated guesses. It is well known that P in BiFeO3 mainly
originates from the displacements of the Bi3+ cations, due to
the presence of stereochemically active 6s lone pairs [10,11].
Moreover, the large FeO6 octahedral tilts in BiFeO3 are
mainly driven by the same kind of chemical mechanism, as
the tilts also yield a reduced number of strong Bi-O bonds.
Having the same chemical origin, it is not surprising that
polarization and octahedral tilts compete strongly in BiFeO3,
as they involve alternative ways of satisfying Bi3+’s tendency
to bond with a reduced number of surrounding oxygens.
Therefore, this suggests that weaker P − R couplings can be
obtained by doping BiFeO3 such that the polarization is less
strongly connected to Bi3+ and, instead, more dependent on
the off-centering of the B-site cation. This logic suggests that a
solid solution of BiFeO3 and BaTiO3 (or any other perovskite
whose polarization is strongly B-site driven) might have the
desired effect.

It is important to ensure, however, that a selected optimiza-
tion strategy will not be detrimental to the weak magnetization
M. As it has been mentioned above (and also shown in
Ref. [17]), M is enabled in BiFeO3 by the symmetry breaking
caused by the FeO6 octahedral tilts; therefore, it is crucial
to ensure that the tilts are not fully suppressed by doping
or alloying. To appreciate by how much R can be reduced
without affecting significantly the magnitude of M, we can
refer to the recent experimental study by Karpinsky et al.,
who investigated the structural and magnetic properties of
(1 − x) BiFeO3-xBaTiO3 solid solutions [51]. These authors
showed that the solid solution with x = 0.2 presents a 20%
reduction of R compared to pure BiFeO3, while displaying
M = 0.3 emu/g at room temperature. A further reduction
of R (by 48% for x = 0.25 or more), however, leads to a
reduction of the weak magnetization down to 0.02 emu/g. In
this section, we have considered changes in the tilt magnitude
up to 20% [see Figs. 8(c)–8(e)]; according to Ref. [51], this
should be compatible with preserving a robust magnetization
in the material.

In summary, we conclude that it should be possible to opti-
mize two-step magnetoelectric switching by doping BiFeO3

in a way that weakens either the octahedral tilts or the
coupling between polarization and tilts. Interestingly, solid so-
lutions with well-known perovskites like BaTiO3 and PbTiO3

appear as good candidates for this.

B. Limitations of the model

As we demonstrated in the previous section, our simple
model allows reproducing experimentally observed two-step
polarization switching behavior and predicting strategies for
its optimization in BiFeO3 thin films. Nevertheless, it is
important to bear in mind the drastic approximations our
treatment relies on and its corresponding limitations.

First, the introduced model is not universal. In fact, it
describes a specific case of BiFeO3 film grown in certain
conditions (substrate, growth direction, and film thick-
ness) [12] and having the striped domain pattern discussed
above. Predicting switching behavior in BiFeO3 films hav-
ing different domain configurations or grown on substrates
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imposing different elastic constraints would require adapt-
ing our simple model in ways that may not be trivial
(or possible).

Second, our model is unable to reproduce the 71x polar-
ization rotation being the first step in the switching, though
a high number of these events have been reported by Heron
et al. [12]. As we briefly mentioned in Sec. II A, such 71x P
rotations seem related to the movement of the domain walls,
which is in turn the result of how neighboring domains rear-
range during the transformation. In the simulations described
above, each domain was considered as having uniform Pi,
Ri, and ηi and, therefore, they could not capture this be-
havior. We tried to address this issue by considering larger
domains with an inhomogeneous internal structure (see de-
tails in Supplemental Sec. SIV [36]). However, we were
still unable to reproduce the experimentally observed frac-
tion of 71x polarization rotations as the leading switching
event.

Finally, our model is too simple to predict coercive fields
accurately, for multiple reasons. First, we impose by hand a
nonswitching matrix (i.e., frozen domains), a hard constraint
that should result in an exaggerated coercivity. Additionally,
our model does not take into account the presence of defects
that usually facilitate switching by providing nucleation cen-
ters. Having said this, we think it is justified to use our model
and analysis strategy in order to discuss relative changes
(trends) of coercive fields as we vary the model parameters,
elastic constraints, etc. We thus restrict our conclusions to
such qualitative considerations.

V. CONCLUSIONS

In summary, in this article we discuss the model that
captures the peculiar two-step polarization switching that en-
ables an electric reversal of the magnetization in BiFeO3 thin
films. We demonstrate that the key ingredients that drive this
switching process are the presence of a squarelike substrate
(like DyScO3) that enforces the formation of a striped domain
pattern in the films, as well as the electrostatic interactions
that prevent the occurrence of charged domain walls during
the switching process. We use our model to explore strategies
for optimizing the switching, i.e., to reduce the coercive fields
while preserving the dominant two-step polarization reversal
that enables magnetoelectric control. We conclude that (and
explain why) solid solutions of BiFeO3 with simple ferro-
electric perovskites like BaTiO3 or PbTiO3 may be the most
interesting options to explore.
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