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Two-dimensional lattice with an imaginary magnetic field
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We introduce a two-dimensional non-Hermitian lattice model with an imaginary magnetic field and elucidate
various unique features which are absent in Hermitian lattice models with real magnetic fields. To describe the
imaginary magnetic field, we consider both the Landau gauge and the symmetric gauge, which are related by a
generalized gauge transformation, changing not only the phase but also the amplitude of the wave function. We
discuss the complex energy spectrum and the non-Hermitian Aharonov-Bohm effect as examples of properties
which are due to the imaginary magnetic field independent of the generalized gauge transformation. We show
that the energy spectrum does not converge as the lattice size is made larger, which comes from the intrinsic
nonperiodicity of the model. However, we have found that the energy spectrum does converge if one fixes the
length of one side and makes the other side longer; this asymptotic behavior can be understood in the framework
of the non-Bloch band theory. We also find an analog of the Aharonov-Bohm effect; the net change of the norm
of the wave function upon adiabatically forming a closed path is determined by the imaginary magnetic flux
enclosed by the path, which provides an experimentally observable feature of the imaginary magnetic field.
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I. INTRODUCTION

Physics of a charged particle in an external magnetic field
has been of fundamental importance in condensed matter
physics. In two dimensions, a charged particle in a magnetic
field forms the equally spaced energy spectrum called the
Landau level, which is directly responsible for phenomena
such as the Landau diamagnetism, de Haas–van Alphen effect
[1], and the integer and fractional quantum Hall effects [2,3].
Moreover, a charged particle on a two-dimensional lattice
under a magnetic field is described by the Harper-Hofstadter
model [4,5], which is the paradigmatic model of the Chern
insulator [6].

Recently, there has been increasing interest in non-
Hermitian physics [7,8]. Also in non-Hermitian quantum
mechanics, the effect of vector potentials has played signifi-
cant roles. For example, the seminal Hatano-Nelson model is
the one-dimensional lattice model under an imaginary vector
potential [9,10], and has been of fundamental importance
showing the non-Hermitian skin effect and nontrivial point
gap topology [11–15]. The non-Hermitian skin effect has been
experimentally realized recently in a variety of systems in-
cluding mechanical metamaterials [16,17], electrical circuits
[18,19], photonics [20–22], and ultracold atomic gases [23].
The imaginary vector potential has also been crucial in under-
standing the Landau-Zener transition [24,25].

With the recent experimental development of non-
Hermitian quantum mechanics, one can now realize a variety
of non-Hermitian models under control, and there is an in-
creasing interest in experimentally realizing two or higher
dimensional non-Hermitian models [26–29]. Despite this
rapid progress in non-Hermitian physics and the important
role of magnetic fields played in condensed matter physics,

there has been little study on properties of the imaginary
magnetic fields in two dimensions, namely, properties of
non-Hermitian lattice systems where magnetic fields are
imaginary, analogous to the imaginary vector potential in the
Hatano-Nelson model.

In this paper, we explore basic properties of two-
dimensional lattices with an imaginary magnetic field. We first
elucidate the meaning of gauge invariance in non-Hermitian
settings to distinguish between properties which are gauge
independent or gauge invariant, i.e., intrinsically due to the
imaginary magnetic field, and which are gauge dependent,
i.e., dependent on specific realizations and setups. We find
that certain spectral properties are gauge invariant, and discuss
that the asymptotic energy spectrum as one makes the length
of the system larger, fixing the other length, can be nicely
understood within the framework of the non-Bloch band the-
ory. Especially, even though the system is non-Hermitian,
the asymptotic spectrum under open boundary conditions can
be related to the spectrum under the periodic boundary con-
dition satisfying certain conditions. We also find an analog
of the Aharonov-Bohm effect for imaginary magnetic fields.
Upon making a wave packet move to form a closed trajectory
in real space, the overall change of the norm of the wave
function is related to the imaginary magnetic flux enclosed
by the trajectory. Our paper lays a foundation to understand
gauge invariant properties in the setup of imaginary magnetic
fields, generalizing the concept of magnetic fields to two-
dimensional non-Hermitian settings.

The structure of the paper is the following. In Sec. II, we
introduce the model we study, which is the two-dimensional
non-Hermitian lattice model with an imaginary magnetic
field. In Sec. III, we discuss generalized gauge transforma-
tions which are relevant to discussing properties intrisically
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due to the imaginary magnetic field. In Sec. IV, we discuss
various properties of the complex energy spectrum of the
model. We first discuss open boundary conditions in both
directions and then the effect of taking one direction to be pe-
riodic, which we call the cylindrical configuration. In Sec. V,
we discuss the asymptotic limit of the energy spectrum when
we fix the length of one side and make the length of the other
side infinitely long. We analyze the asymptotic spectrum using
the non-Bloch band theory. In Sec. VI, we discuss the analog
of the Aharonov-Bohm effect under the imaginary magnetic
field. We finally give the conclusion and future prospects in
Sec. VII.

II. MODEL

We consider a two-dimensional square lattice with an
imaginary magnetic field. We label the lattice sites by co-
ordinates (x, y), where x and y are both integers. We let
ψx,y denote the amplitude of the wave function at site (x, y).
The Schrödinger equation governing the dynamics of the
system is

i
dψx,y

dt
= J

(
eiθX (x−1,y)ψx−1,y + e−iθX (x,y)ψx+1,y

+ eiθY (x,y−1)ψx,y−1 + e−iθY (x,y)ψx,y+1
)
, (1)

where t and J are the time and hopping parameter, respec-
tively. In this paper, we consider two gauge choices: the
Landau gauge and the symmetric gauge. The Landau gauge
is defined by (θX , θY ) = (0, Bx) and the symmetric gauge is
defined by (θX , θY ) = (−By/2, Bx/2). When B is real, these
gauges correspond to the ordinary Landau and symmetric
gauges with a real magnetic field. In this paper, however, we
take B to represent a purely imaginary magnetic field, B = iB,
with B being a real number. We note that when B is imaginary,
the factors eiθX (x,y) and eiθY (x,y) can have a modulus different
from one, implying non-Hermiticity.

III. GAUGE TRANSFORMATION

Landau and symmetric gauges are equivalent for a real
magnetic field because they are related by a gauge transfor-
mation. We first review the gauge transformation in Hermitian
setups, and then extend the concept to non-Hermitian settings.
The gauge transformation is to consider a state which is re-
lated to the original state by a position-dependent phase factor
ψ ′

x,y = eiχ (x,y)ψx,y, where χ (x, y) is a real function. This trans-
formation amounts to applying a local unitary transformation
to wave function. If we take the Hamiltonian H in the Her-
mitian Landau gauge, by choosing the gauge transformation
eiχ (x,y) = eiBxy/2, the Hamiltonian H ′ transformed under the
gauge transformation is in the Hermitian symmetric gauge.
Since the gauge transformation is a unitary transformation, the
energy spectrum is invariant under the gauge transformation.

Now we extend the concept of gauge transformations to
non-Hermitian setups of imaginary magnetic fields. An im-
portant feature of imaginary magnetic fields is that the Landau
gauge and the symmetric gauge cannot be connected via an
ordinary gauge transformation eiχ (x,y) determined by a real
function χ (x, y). Instead, it is more appropriate to consider
a generalized gauge transformation, ψ ′

x,y = f (x, y)ψx,y with

f (x, y) being a nonzero complex function, which does not just
multiply a phase factor but also allows scale change for the
wave function. The Hamiltonian changes under this general-
ized gauge transformation, not by a unitary transformation but
by a local (diagonal) similarity transformation. The Landau
and symmetric gauges are related via the generalized gauge
transformation f (x, y) = eiBxy/2 = e−Bxy/2. Since this gener-
alized gauge transformation is a similarity transformation, the
energy spectrum is invariant. Furthermore, upon the general-
ized gauge transformation, the product of hopping amplitudes
as one goes around a plaquette of the square lattice does not
change, implying that the imaginary magnetic field is also
invariant.

There are various realizations of non-Hermitian Hamiltoni-
ans, and what is observable depends on the individual system
that one works on. Upon studying properties of imaginary
magnetic fields, one should thus make a clear distinction
between what are universal properties of imaginary magnetic
fields and what are gauge- and system-specific features which
depend on particular realizations. We consider properties in-
trinsic to imaginary magnetic fields to be those invariant under
the generalized gauge transformation.

IV. ENERGY SPECTRUM

As is well-known in the study of non-Hermitian Hamilto-
nians, an energy spectrum under periodic and open boundary
conditions can take drastically different values [9,10,14,30].
We should therefore analyze the energy spectrum together
with the boundary conditions. We first note that, unlike the
case of real magnetic fields, lattice models with imaginary
magnetic fields cannot be made periodic in both x and y
directions. For the Landau gauge, we can make the lattice
periodic in the y direction but not in the x direction, and
for the symmetric gauge we cannot make the Hamiltonian
periodic in either direction. In this paper, we call the Landau
gauge with the periodic boundary condition in the y direction
a cylindrical configuration. As we see, the energy spectrum
under open boundary conditions in both directions and that
under the cylindrical configuration are qualitatively different.

A. Open boundary conditions

We first consider the open boundary conditions. As we
have seen, the energy spectrum under the Landau and sym-
metric gauges are the same because they are related by the
generalized gauge transformation. We also note that the en-
ergy spectrum is invariant upon the change of the origin of
the coordinate: the spectrum is invariant under changing x
to x + x0 and y to y + y0 in the hopping factors θX and θY .
This invariance can be shown, for example, for the symmetric
gauge by noting that the shift x → x + x0 can be realized
by f (x, y) = e−Bx0y/2 and the shift y → y + y0 by f (x, y) =
e−Bxy0/2. Since we do not want the imaginary magnetic fields
and their properties to depend on the origin of the coordinates,
these transformation properties are desirable.

In Fig. 1, we plot the energy spectrum in the complex plane
for a lattice of size Nx × Ny with Nx = Ny = 20, 40, 60, and
80 for the imaginary magnetic fields of B = 0.001i, and 0.01i.
We observe that the spread of the energy spectrum along
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FIG. 1. Energy spectrum for different system sizes and magnetic fields under open boundary conditions for (a)–(d) B = 0.001i and (e)–(h)
B = 0.01i. The system sizes are (a), (e) Nx = Ny = 20; (b), (f) Nx = Ny = 40; (c), (g) Nx = Ny = 60; and (d), (h) Nx = Ny = 80, respectively.
All axes are in units of J .

the real axis is from −4J to 4J , whereas the spread of the
energy along imaginary axis varies with the strength of the
imaginary magnetic fields as well as the size of the system.
This spread of the energy spectrum along real and imaginary
axes can be explained assuming B = Bi is small, as we shall
show.

To understand the spectral range of H (B), we expand
the Hamiltonian H (B) in the Taylor series around B = 0
and keep up to the first order in B assuming B is small.
We write this expansion as H (B) = H (0) + BδH . When B
is purely imaginary, the first-order term BδH = iBδH is an
antisymmetric matrix. Since the zeroth order term H (0) is a
symmetric matrix, H (B) = H (0) + iBδH is a decomposition
of H (B) into its symmetric and antisymmetric components.
Since H (0) is a symmetric matrix, its eigenvalues are all
purely real, whereas the eigenvalues of iBδH , which is an
antisymmetric matrix, are all purely imaginary. In the Ap-
pendix, we show that, for any diagonalizable real matrix M,
by writing M = S + A, where S and A are symmetric and
antisymmetric real matrices, the real part of the eigenval-
ues of M are contained within the minimum and maximum
values of the eigenvalues of S, and the imaginary part of
the eigenvalues of M are contained within the minimum and
maximum imaginary eigenvalues of A. The spectral range
of H (B) = H (0) + iBδH is thus contained, in the real-axis
direction, by the minimum and maximum eigenvalues of
H (0) and is contained in the imaginary-axis direction by
the minimum and maximum imaginary eigenvalues of iBδH .
Now, H (0) is the Hamiltonian of a two-dimensional square
lattice without any magnetic field. The eigenvalues in the
thermodynamic limit are given by the simple sinusoidal band
structure 2J (cos(kx ) + cos(ky)), where (kx, ky) is the two-
dimensional quasimomentum. Therefore, their maximum and
minimum are given by ±4J . The antisymmetric part, iBδH ,
in the Landau gauge, is the Hamiltonian of decoupled Nx

one-dimensional chains with nonreciprocal hoppings; for a
chain at position x, the hopping along the chain is ±BxJ ,
where x runs from some initial value x0 to x0 + Nx − 1. (Note

that, in iBδH , there is no hopping between chains.) For a chain
at position x, its eigenvalues, as a function of the quasimo-
mentum ky along y direction, are 2iJBx cos(ky). The range of
eigenvalues of iBδH thus depends on how x0 is chosen. To
obtain the tightest bound, we can take x0 to be −(Nx − 1)/2,
so x takes values from −(Nx − 1)/2 to (Nx − 1)/2. The mini-
mum and maximum imaginary eigenvalues of iBδH are then
±J (Nx − 1)Bi. The spread of the energy spectrum of H (B)
obtained numerically in Fig. 1 along the imaginary direction
agrees with the bound ±J (Nx − 1)Bi; we note that the actual
spectral spread along the imaginary direction is roughly half
compared to the bound ±J (Nx − 1)Bi. The spectrum of iBδH
provides only the upper and lower bounds, and does not nec-
essarily give limits that can be saturated.

We note that, while the spread along the real axis obtained
from the eigenvalues of H (0) does not depend on the system
size, the spread along the imaginary axis obtained from the
eigenvalues of iBδH depends linearly on Nx = Ny = N . Nu-
merically calculated eigenvalues in Fig. 1 also shows that, by
fixing the magnetic field and increasing the system size, the
energy spectrum increases its spreading along the imaginary
direction and does not converge. This nonconvergence of the
energy spectrum as N → ∞ is in stark contrast to ordinary
two-dimensional Hermitian lattices in which increasing the
system size makes the energy spectrum converge to a contin-
uous band structure, except for possible edge-localized states.
The origin of the nonconvergence of our energy spectrum is
because, even though the imaginary magnetic field is fixed
and constant over the entire lattice, the hopping strength such
as e−Bx keeps increasing in the x direction.

The spectral bounds we have obtained assume that the
imaginary magnetic field B = iB is small. As the magnetic
field becomes larger, the spread of the energy spectrum of
H (B) can go beyond the bounds obtained by assuming small
B. Even in such a case, the spectral bounds can be obtained
by decomposing H (B) into the symmetric and asymmetric
parts. This predicts that the bounds on both the real and
imaginary parts grow exponentially as the imaginary magnetic
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FIG. 2. Energy spectrum under the periodic boundary condition
along the y direction (cylindrical configuration) with Nx = 40 for (a),
(b) B = 0.001i and (c), (d) B = 0.01i. The x coordinates are labeled
as x = 0, 1, 2, . . . , 40 for (a), (c) and x = −20, −19, . . . , 19 for (b),
(d). All the axes are in units of J .

field or the system size increases. However, the numerical
diagonalization of H (B) becomes more and more difficult as
B becomes larger because of the existence of matrix elements
which significantly differ in their magnitudes. In this paper,
we focus our analysis on the case of small B, where we can
make definite statements, both numerically and analytically,
about the spectral structure and bounds.

Although the energy spectrum does not converge when
both sides of the lattice are taken to increase, we will see
later that the energy spectrum does converge when we fix the
length of one side and take the other direction to increase. We
discuss the asymptotic spectrum when one side is made longer
in Sec. V.

B. Cylindrical configuration

We next consider the case of the periodic boundary condi-
tion along the y direction under the Landau gauge, namely,
the cylindrical configuration. The energy spectrum can be
obtained by performing the Fourier transformation in the y
direction and diagonalizing the Hamiltonian for each momen-
tum separately. Writing ψx,y = ψxeik , the equation to solve is

Eψx = J{ψx−1 + ψx+1 + (e−xB−ik + exB+ik )ψx}. (2)

We note that this is an analog of the Harper equation for
the imaginary magnetic field [4]. In Fig. 2, we plot the
energy spectrum in the cylindrical configuration with two
different values of the imaginary magnetic field and two
different ways to choose the origin of x = 0. We find an
unexpected feature that the energy spectrum depends on the
origin of the coordinates. Under open boundary conditions,
we saw that shifting of x → x + x0 is achieved by the gen-
eralized gauge transformation of f (x, y) = e−Bx0y. However,
this gauge transformation is not periodic in the y direction and
thus is not compatible with the cylindrical configuration. The
energy spectrum therefore depends on how the origin of x is

FIG. 3. (a)–(c) Asymptotic energy spectrum fixing Nx = 40 un-
der open boundary conditions for B = 0.01i. (a) Ny = 50. (b) Ny =
100. (c) Ny = 150. (d) Asymptotic energy spectrum predicted from
the non-Bloch band theory. All axes are in units of J .

taken. This is a unique feature of the imaginary magnetic field;
the energy spectrum of the real magnetic field is independent
of how the origin of x is taken, even when the cylindrical
configuration is taken along the y direction under the Landau
gauge.

V. ASYMPTOTIC SPECTRUM

Even though the spectrum does not converge keeping Nx =
Ny, we find that the spectrum does converge as one fixes the
size of one side and makes the other side become longer. In
this section, we discuss the asymptotic behavior of the energy
spectrum as one side is made longer. In Fig. 3, we plot the
energy spectrum under open boundary conditions when B =
0.01i, fixing Nx = 40 and choosing Ny = 50, 100, 150. One
sees that the overall shape tends to stabilize as Ny becomes
large. We can understand this asymptotic energy spectrum in
the limit of large Ny by means of the non-Bloch band theory
[31,32]. The non-Bloch band theory is a formalism to obtain
the continuous energy spectrum of non-Hermitian systems un-
der open boundary conditions. To understand the asymptotic
behavior of fixing Nx and making Ny → ∞, we now regard the
index x to be an internal index of a one-dimensional system
elongated along the y direction.

A. Non-Bloch band theory

To apply the non-Bloch band theory, we perform the
Fourier transformation along the y direction, as done in
Eq. (2) above. In the non-Bloch band theory, we replace
eik by a general complex number β, and solve the above
eigenvalue equation for a given value of E . Writing the
above eigenvalue equation as E �ψX = HX (β ) �ψX , where �ψX

is a vector whose element is ψx, solutions to the eigenvalue
equation for a given value of E are given by the solutions
of det[HX (β ) − E ] = 0. This equation is an algebraic equa-
tion for β with degree 2Nx, and thus we generally have 2Nx
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solutions of β. Writing 2Nx solutions of β in the ascending
order of their magnitudes and labeling them as β1, β2, . . .,
the eigenvalue E belongs to a continuum of energy band if
and only if |βNx | = |βNx+1| [31]. The corresponding values
of βNx and βNx+1 form the generalized Brillouin zone in the
complex plane.

As we show below, the generalized Brillouin zone coin-
cides with the ordinary Brillouin, namely, β = eik for real k,
when the x coordinate is labeled so x = 0 is in the center
of the system. We want to look for the generalized Bril-
louin zone and the continuum of energy bands by solving
det[HX (β ) − E ] = 0. Remembering that the spectrum under

open boundary conditions is independent of the choice of
the origin of x = 0, we can choose the coordinates most
convenient for our purpose. It turns out to be particularly
useful to take a coordinate system where x = 0 is in the
center, namely, if Nx is an odd number, we write Nx = 2p + 1
with a positive integer p and take the x coordinate to be
x = −p,−p + 1, . . . ,−1, 0, 1, . . . , p − 1, p. If Nx is an even
number, we write Nx = 2p with a positive integer p and take
x = −p + 1

2 , . . . ,− 3
2 ,− 1

2 , 1
2 , 3

2 , . . . , p − 1
2 .

Let us first consider the case where Nx is an odd number:
Nx = 2p + 1. We take the x coordinate label as above so x = 0
is in the center. Then,

HX (β ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−pBβ + epB 1
β

1

1 e(−p+1)Bβ + e(p−1)B 1
β

. . .

. . .
. . .

e−Bβ + eB
1
β 1

1 β + 1
β

1

1 eBβ + e−B 1
β

. . .

. . .
. . . 1

1 epBβ + e−pB 1
β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)

in units of J . One thus sees that if β is a solution of
det[HX (β ) − E ] = 0, so is 1/β, namely, det[HX (1/β ) − E ] =
0. The same holds for even Nx.

This implies that, upon writing 2Nx solutions of
det[HX (β ) − E ] = 0 in ascending order, we should have
βNx+1 = 1/βNx . From this condition, together with the con-
dition that |βNx | = |βNx+1| for E to be in the continuum
of energy bands [31], we arrive at the condition |βNx | =
|βNx+1| = 1. This implies that β belonging to the generalized
Brillouin zone can be written as β = eik with a real number
k, namely, the generalized Brillouin zone coincides with the
ordinary Brillouin zone with quasimomentum 0 � k < 2π .

Conversely, for a given value of β = eik with a real k, all
Nx eigenvalues of HX (eik ) belong to the continuum of energy
bands. This is because any eigenvalue E of HX (eik ) satisfies
det[HX (eik ) − E ] = 0, and when writing 2Nx solutions of β

in an ascending order, β = e±ik must appear at Nxth and
Nx + 1th positions. We have thus shown that the continuum
of energy bands obtained upon fixing Nx and making Ny large
is nothing but the energy spectrum in the cylindrical configu-
ration where coordinates in the x direction are taken so x = 0
is placed at the center.

This implies that the solutions of Eq. (2) for real k, which
are nothing but the energy spectrum of the cylindrical con-
figuration, are the asymptotic spectrum when fixing Nx and
making Ny large under open boundary conditions. The fact
that the generalized Brillouin zone coincides with the ordinary
Brillouin zone implies that there is no non-Hermitian skin
effect. This absence of the non-Hermitian skin effect is related
to the PT -symmetry present in the system [33].

In Fig. 3(d), we show the continuum bands obtained from
the energy spectrum of a cylindrical configuration, taking x =
0 to be at the center. We see that the spectra in Figs. 3(a)–3(c)
indeed approach that of Fig. 3(d). With different values of B
and Nx, we find that there is a general structure of a contin-
uous spectrum along the real axis and several oval structures
spread along the imaginary direction, but the exact number of
ovals and the spread along the imaginary direction depend on
specific values of the parameters. We stress that the energy
spectrum under open boundary conditions does not depend on
how the coordinates are chosen. Nevertheless, the asymptotic
spectrum coincides with the energy spectrum in the cylindrical
configuration where the coordinates are chosen in a symmetric
manner.

VI. AHARONOV-BOHM EFFECT
FOR IMAGINARY MAGNETIC FIELDS

We now discuss an effect analogous to the Aharonov-
Bohm effect [34] for imaginary magnetic fields. The non-
Hermitian Aharonov-Bohm effect in a parameter space due to
the complex Berry phase has been experimentally observed
for synthetic mechanical metamaterials [35,36], but, to our
knowledge, it has never been observed in real space. We first
formulate the non-Hermitian Aharonov-Bohm effect, which
is the amplification and/or decay of the magnitude of the
wave function due to the imaginary magnetic flux enclosed
by a closed trajectory. Following the standard argument of the
Aharonov-Bohm effect in Hermitian systems [37], the wave
function �ψ of a wave packet, which we assume to be well
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localized in real space, is transported over a path C in the
presence of a vector potential. Then, the wave function �ψ is
related to the wave function �ψ0 transported over the same path
C but in the absence of a vector potential by

�ψ = exp

(
i
∫ r f

ri,C
A(r′) · dr′

)
�ψ0, (4)

where the line integral is taken along the particular path C,
connecting its initial position ri and the final position r f of the
wave packet, has been transported. This formula is also valid
in non-Hermitian systems, where A(r) becomes a complex
number. Taking a closed path C, the wave function after the
transportation is related to the wave function in the absence of
a magnetic field by

�ψ = exp

(
i
∮
C

A(r′) · dr′
)

�ψ0 = ei� �ψ0, (5)

where � is the total flux through a surface that the path C
encloses. In our case, since the flux is pure-imaginary, the
prefactor ei� is a real number, giving rise to the amplification
and/or decay of the norm of the wave function. Since the
Hamiltonian we are considering is Hermitian in the absence of
the imaginary vector potential, the norm of the wave function
�ψ0 remains one during the transportation. Therefore, the effect

of the Aharonov-Bohm factor ei� can be obtained directly by
looking at the norm of the wave function in the final state.

To numerically demonstrate this non-Hermitian Aharonov-
Bohm effect in real space, we consider the setup where we
start from a localized wave packet around the center of the
lattice, and then add external forces to make the wave packet
move. As the trajectory of the wave packet forms a closed
path, the change of the magnitude of the wave function is
precisely related to the imaginary magnetic flux enclosed by
the path. We now numerically demonstrate the effect.

As an initial state, we choose a normalized Gaussian
wave packet ψx,y ∝ e−{(x−x0 )2+(y−y0 )2 )}/(2σ 2 ) centered around
the point (x0, y0) with the spread σ = 5. We apply a force
changing sinusoidally in time, created by a potential Vx,y =
Ex sin(2πt/T )x + Ey sin(2πt/T )y, so the wave packet makes
a rectangular trajectory either in the counter-clockwise or
clockwise direction. For the counter-clockwise trajectory, we
apply

(Ex, Ey) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 0) for 0 � t � T
(0, 1) for T � t � 2T
(−1, 0) for 2T � t � 3T
(0,−1) for 3T � t � 4T .

(6)

For the clockwise trajectory, we make the wave packet move
in the opposite direction by applying

(Ex, Ey) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 1) for 0 � t � T
(1, 0) for T � t � 2T
(0,−1) for 2T � t � 3T
(−1, 0) for 3T � t � 4T .

(7)

We use T = 5/J in the numerical simulation.
In the following numerical simulation, we choose a lattice

of size Nx = Ny = 50 with an imaginary magnetic field B =
0.001i under open boundary conditions. We use coordinates

Landau
Symmetric

Landau
Symmetric

Landau
Symmetric

Landau
Symmetric

Landau
Symmetric

Landau
Symmetric

(a1) (b1)

(a3)

(a2)

Counter-Clockwise
Trajectory

Clockwise Trajectory

(b2)

(b3)

Counter-Clockwise Trajectory

Clockwise Trajectory

FIG. 4. Simulation of the Aharonov-Bohm effect under imagi-
nary magnetic fields for the lattice size of 50 × 50 with B = 0.001i
under open boundary conditions. (a1) The counter-clockwise trajec-
tory of the mean position of the wave function, starting from the
center of the lattice, which we take to be (x0, y0 ) = (0,0). (a2) | �ψ |
as a function of time (in units of 1/J) for the counter-clockwise
trajectory. The horizontal dotted line is the theoretical value of the
Aharonov-Bohm factor eiBAArea = e−BAArea ≈ 0.965. (a3) | �ψ | as a
function of time for the clockwise trajectory. The horizontal dotted
line is at eBAArea ≈ 1.037. We also performed the same simulation
with a different starting point located at (x0, y0 ) = (−5,−5), whose
trajectory is plotted in (b1). The modulus of the wave function
| �ψ | as a function of time for the counter-clockwise trajectory and
clockwise trajectory are plotted in (b2) and (b3), respectively, for the
wave packet starting from (x0, y0 ) = (−5, −5). We note that, al-
though the | �ψ | during the evolution is different for (a2), (a3) and (b2),
(b3), the final values, which are solely determined by the enclosed
imaginary magnetic flux, are common. In all plots, the solid lines
and curves are for the Landau gauge, whereas the dashed lines and
curves are for the symmetric gauge, respectively.

so (x, y) = (0, 0) is located at the center of the lattice. Starting
from a wave packet centered around (x0, y0) = (0, 0), and
evolving in time until t = 4T , the center of the wave packet
forms rectangles as plotted in Fig. 4(a1) for the counter-
clockwise trajectory. In Fig. 4(a2), we plot the modulus of

the wave function, | �ψ | ≡
√∑

x,y |ψx,y|2, as a function of time

for both the Landau and symmetric gauges for the counter-
clockwise trajectory. The same quantity for the clockwise
trajectory is also plotted in Fig. 4(a3). We see that dur-
ing the time evolution, | �ψ | is generally different between
the two gauges, but it is the same after the closed trajec-
tory is formed. The Aharonov-Bohm factor corresponding
to this trajectory is ei� = eiBAArea = e−BAArea ≈ 0.965 for the
counter-clockwise trajectory, where the area enclosed by the
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trajectory is AArea ≈ 36 for both gauges. For the clockwise
trajectory, ei� = e−iBAArea = eBAArea ≈ 1.037. Those values are
also plotted in Figs. 4(a2) and 4(a3). Although, both for
counter-clockwise and clockwise trajectories, the time evolu-
tion of | �ψ | depends on the choice of gauge, the final values
of Figs. 4(a2) and 4(a3) agree well with the Aharonov-Bohm
factor and are independent of the gauge choice.

The detailed time-dependence of | �ψ | can also be under-
stood from the Aharonov-Bohm factor during the evolution,
which is exp(i

∫ r f

ri,C A(r′) · dr′). For example, during 0 �
t � T , | �ψ | remains to be 1 both for the Landau and sym-
metric gauges in Fig. 4(a2). This is because, both for the
Landau gauge A = (0, Bx) and the symmetric gauge A =
(−By/2, Bx/2), the line integral along the horizontal direction
is zero if the wave packet starts from (x0, y0) = (0, 0).

This observation also implies that the time evolution of | �ψ |
depends on the initial position of the wave packet, whereas
the final values of | �ψ | are independent of the initial posi-
tion and the gauge one chooses. This has been numerically
demonstrated in Figs. 4(b1)–4(b3), where the initial wave
packet is centered around (x0, y0) = (−5,−5). Comparing
Fig. 4(a2) with Fig. 4(b2) for counter-clockwise trajectories,
and Fig. 4(a3) with Fig. 4(b3) for clockwise trajectories, we
confirm that the final values of | �ψ | are e±i�, whereas the
values during the evolution depend on the initial position of
the wave packet and the gauge choice.

VII. CONCLUSION

We have studied spectral and geometrical properties of
two-dimensional lattices under a uniform imaginary magnetic
field. Our results unveil features of imaginary magnetic fields
which are intrinsically different from real magnetic fields,
such as the impossibility to take periodic boundary conditions
in both directions and nonconvergence of the energy spectrum
in the limit when both sides are taken large. On the other
hand, there also are similarities to the real magnetic field,
such as description in terms of the Harper equation and the
analog of the Aharonov-Bohm effect. Although we focused
on the cases of purely imaginary magnetic fields, general
results presented in the paper, such as the non-Bloch band
theory when increasing the length of one direction and the
non-Hermitian Aharonov-Bohm effect, should be valid also
for more general complex magnetic fields including both real
and imaginary components.

Experimental realization of the imaginary magnetic field
we discussed in the paper requires constructing an extended
lattice with desired nonreciprocal hopping amplitudes, which
can be achieved in the platforms of mechanical metamaterials
[16,17] and electrical circuits [18,19,35] in a straightforward
manner. The model, in the Landau gauge, can also be realized
by aligning a collection of one-dimensional Hatano-Nelson
models and coupling them; such a collection of Hatano-
Nelson models can be realized through Floquet methods,
e.g., through the method described in Ref. [38], in various
photonic systems such as coupled waveguides or coupled
resonators. In these classical setups, change of the norm of
the wave function due to the non-Hermitian Aharonov-Bohm
effect is observable through the amplification and/or decay of

corresponding signals. There is also a recent theoretical pro-
posal of an Aharonov-Bohm-type setting where the complex
vector potential emerges after postselection [39].

Our results provide a starting point toward the research
field of non-Hermitian magnetic fields. We have focused on
physics on lattices; understanding unique properties under an
imaginary magnetic field in continuous two-dimensional sys-
tems is also an open field of study. Moreover, understanding
properties under more general gauge fields such as complex
electromagnetic fields and non-Abelian gauge fields (e.g.,
spin-orbit coupling) is left for future study.

ACKNOWLEDGMENTS

The authors thank S. Murakami for helpful discussions on
the non-Bloch band theory. This work is supported by JSPS
KAKENHI Grants No. JP20H01845, No. JP21H01007, No.
JP21H01084, JST PRESTO Grant No. JPMJPR2353, and JST
CREST Grant No. JPMJCR19T1.

APPENDIX: SPECTRAL BOUNDS OF MATRICES

We show that the real part of the eigenvalues of a diag-
onalizable matrix M is bounded by the eigenvalues of its
symmetric component, and the imaginary part of the eigen-
values is bounded by the eigenvalues of its antisymmetric
components. For the discussion in the main text, we only need
to consider the case where M is a real diagonalizable matrix,
but here we provide a more general property which holds even
when M is a complex diagonalizable matrix.

Assume that M is a complex diagonalizable matrix. We
then write

M = M + M†

2
+ M − M†

2
, (A1)

where M† is the Hermitian conjugate of M. Defining the first
term as S = M+M†

2 and the second term as M−M†

2 , we can see
that S is a Hermitian matrix and A is an anti-Hermitian matrix,
namely, S† = S and A† = −A. We note that eigenvalues of a
Hermitian matrix and an anti-Hermitian matrix are real and
pure imaginary, respectively.

For any normalized vector |v〉, we see the following prop-
erty:

〈v|S|v〉 = 〈v|M + M†

2
|v〉 = 1

2
(〈v|M|v〉 + 〈v|M|v〉∗)

= Re(〈v|M|v〉). (A2)

Since S is a Hermitian matrix, the minimum value of the left-
hand side is given when |v〉 is an eigenvector of the minimum
eigenvalue λmin of S:

min〈v|S|v〉 = λmin. (A3)

Similarly, the maximum value of the left-hand side is equal
to the maximum eigenvalue λmax of S. Thus, we obtain the
following inequality:

λmin � Re(〈v|M|v〉) � λmax. (A4)
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Now, taking |v〉 to be an eigenvector of M with an eigenvalue
E , M|v〉 = E |v〉, we finally obtain the desired inequality:

λmin � Re(E ) � λmax. (A5)

We note that the equality is not necessarily achieved be-
cause eigenvectors of M are not orthogonal and there can be
ways to minimize Re(〈v|M|v〉) by choosing |v〉 to not be an
eigenvector of M.

We now prove a similar relation for the spread of the
eigenvalues of M along the imaginary axis. The property of
the imaginary part of the eigenvalues that we want to show
can be mapped to the problem of the real part by writing

−iM = −iS − iA; (A6)

the second term −iA is Hermitian and the first term −iS
is anti-Hermitian. This implies that the spread of the eigen-
values of −iM along the real axis is bounded by the real
eigenvalues of −iA. Therefore, the spread of the eigen-
values of M along the imaginary axis is bounded by the
eigenvalues of A.

We have thus proved that, writing an arbitrary diago-
nalizable complex matrix M in terms of its Hermitian and
anti-Hermitian parts by M = S + A, the spectral range of
M along the real part is bounded by the eigenvalues of S
and the imaginary part is bounded by the eigenvalues of A.
When M is a real matrix, the same result holds when writing
M = S + A, with S being a symmetric matrix and A being an
antisymmetric matrix.
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