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Quantum Hall effect in a Weyl-Hubbard model: Interplay between topology and correlation
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The interplay between topology and electronic correlations offer a rich avenue for discovering emergent
quantum phenomena in condensed matter systems. In this work, starting from the Weyl-Hubbard model, we
investigate the quantum Hall effect to explore the consequence of onsite Hubbard repulsion on nontrivial Weyl
band topology in the presence of an external magnetic field. Within the Gutzwiller projected wavefunction
method, we find the system to undergo multiple topological phase transitions by tuning on-site Coulomb
interaction, including two distinct Weyl phases with different numbers of Weyl node pairs and a trivial narrow
band insulator. Crucially, these two Weyl phases may be identified by the sign of their chiral Landau levels.
The possible experimental signature of these topological phases and correlation effects is provided by the
magnetic-field dependent quantum Hall conductivity within the Kubo response theory.
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I. INTRODUCTION

The three-dimensional (3D) Weyl semimetal (WSM) has
been of great interest in the condensed-matter community over
the last decade due to its unique nontrivial band topology.
WSMs, which emerge from breaking either spatial inversion
(IS) or time-reversal (TR) symmetries or both simultaneously,
are characterized by hosting Weyl nodes in the bulk generated
by momentum space touching of nondegenerate valence and
conduction bands at isolated points [1–8]. The topological
properties of WSMs are manifested in the fact that these
Weyl nodes act as the source and sink of Abelian Berry
curvature, and are protected by a nontrivial integral Chern
number C = ±1, which is related to the strength of the mag-
netic monopole enclosed by the Fermi surface [9,10]. As a
consequence, the WSMs host topologically protected surface
states, so called Fermi arcs, that connect Weyl nodes of op-
posite monopole charges. According to the “no-go” theorem,
the Weyl nodes in WSM come in pairs of positive and negative
monopole charges (also called chirality) and the net monopole
charge summed over all the Weyl nodes in the Brillouin zone
exactly vanishes [11,12].

After the discovery of the WSM phase in real materials,
e.g., TaAs family and WTe2, significant attention has been
devoted to understanding the theoretical and experimental
properties induced by the nontrivial topology at the single
particle level [9,13–17]. Moving beyond the single particle
paradigm by including electron-electron correlation effects
brings about an astonishingly rich and complex set of phases
including unconventional superconductivity [18] and colossal
magnetoresistance [19], so the question arises “How does
nontrivial band topology compliment or compete with corre-
lation effects in quantum matter?” In this connection, several
recent works have explored the interplay between Weyl-band
topology and electronic correlations. Specifically, it has been
proposed that intermediate electronic correlations can give

rise to flat bands in WSMs [20], whereas strong electron-
electron interactions can gap out the bulk Weyl nodes, thus
precipitating a phase transition toward either a Weyl-Mott
insulator [21], an axion insulator [22–24], a topological su-
perconducting phase [25], a pair-density wave phase related
to space-time supersymmetry [26], or a Weyl-CDW phase
[27–32]. Another possible consequence of electronic corre-
lations is the emergence of a Weyl-Kondo semimetal, which
has recently been experimentally realized in YbPtBi [33],
RAlGe compounds (with R = La and Ce) [34] and Ce3Bi4Pd3

[35,36]. Very recently, a new route has been proposed to
significantly enhance the dark matter detection efficiency via
strongly correlated topological Weyl semimetal in the absence
of external magnetic field [37]. However, despite these vigor-
ous efforts in just the last few years, very little has been done
to examine the signature of the correlated WSM phase in the
presence of an external magnetic field.

The topological WSMs exhibit a plethora of intriguing
transport phenomena due to their unique band topology in the
presence of external fields, which makes the magnetotransport
one of the most powerful methods to probe its band topology
[9,14–17,38–45]. The magnetotransport in the strong-field
limit in WSMs has attracted intensive attention of late due
to its underlying Landau level (LL) characteristics. In partic-
ular, a 3D quantum Hall effect (QHE) induced by the LLs is
predicted to occur in WSMs since the Fermi arcs at the top
and the bottom surfaces form a closed loop via “wormhole”
tunneling assisted by the Weyl nodes, and therefore, serving
as a direct experimental probe of Weyl band topology [46–48].
Remarkably, the 3D QHE has been realized recently in a
noninteracting Dirac semimetal Cd3As2 [49–51]. In light of
the above discussions, it is natural to ask what will happen to
the Landau level physics and related transport phenomena in
a correlated WSM.

In this article, we investigate the quantum Hall effect in an
IS and TR broken Weyl-Hubbard (WH) system to explore the
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FIG. 1. (a) The phase diagram α vs U (inset: d vs U plot) of WH system is shown. The two vertical lines are separating three different
phases (WSM phase I, WSM phase II, and narrow-band insulator) from each other. [(b)–(d)] depict the 3D energy dispersion of different phases
(kz is suppressed) during the phase transition. In this figure, the Weyl cones are at [± cos−1(m/2tnor ), π, 0] and [± cos−1(m/2tnor − 2), 0, 0]
for WSM phase I and WSM phase II, respectively. Here, we choose to measure energy in units of t : t = 1, t ′ = 0.3 t, and m = 0.25 t . Here,
α = 1, 0.06, 0.03 corresponds to U ∼ 0, 15.8 t, 16.2 t, respectively.

effect of onsite Hubbard Coulomb repulsion on the nontrivial
Weyl band topology in the presence of an external magnetic
field. By employing the Gutzwiller approximation to treat
the electronic correlations, we find the WH system to exhibit
multiple topological phases, including two Weyl phases with
different pairs of Weyl nodes and a trivial narrow band insu-
lator by tuning on-site Coulomb interaction. Interestingly, in
the presence of an external magnetic field, we show the chiral
Landau levels to change sign while crossing between Weyl
phases. We calculate the magnetic-field dependent quantum
Hall conductivity (QHC) within the Kubo response theory
to explore possible signatures of the topological phase tran-
sitions and correlation effects. Our results on QHC can be
directly validated by experiments. The recent discovery of
correlated magnetic WSMs, such as Co3Sn2S2 [52–54] and
Pr2Ir2O7 [55], provide a platform to experimentally verify our
predictions.

II. MODEL HAMILTONIAN OF WEYL-HUBBARD SYSTEM

The Weyl-Hubbard semimetal on a cubic lattice (lattice
constant a = 1) can be written as [37]

H =
∑
j,ss′

[−tσx,ss′ (c†
jsc j+x̂,s′ + c†

jsc j+ŷ,s′ + c†
jsc j+ẑ,s′ )

− it ′(σy,ss′c†
jsc j+ŷ,s′ + σz,ss′c†

jsc j+ẑ,s′ ) + H.c.]

+ m
∑
j,ss′

σx,ss′c†
jsc js′ + U

∑
j

n j↑n j↓, (1)

where t, t ′ are the hopping parameters, s, s′ are the spin
indices, and U is the onsite Hubbard-interaction strength
between two electrons carrying opposite spins. Here, m de-
notes site energy which acts as an effective in-plane Zeeman
term and the first two terms of Eq. (1) represent the kinetic
energy part of the Hamiltonian Hkin. In the noninteracting
limit (i.e., U = 0), the model Hamiltonian represents a both
time-reversal symmetry and inversion symmetry breaking
Weyl semimetallic phase containing linearly dispersing Weyl
nodes. Specifically, m, the effective in-plane magnetic field
breaks TR symmetry and the imaginary hopping parameter
t ′ breaks inversion symmetry. Though inversion is formally
broken, all the Weyl nodes of the system lie at the same
energy. We now investigate the effect of onsite Coulomb inter-
actions using the Gutzwiller method approximation [56–58],
which subjects to the following self-consistency equations at
half-filling:

α = 16

(
1

2
− d

)
d and U + ∂α

∂d
〈Hkin〉 = 0, (2)

where d and α are the double occupancy and renormalization
factor, respectively. The phase diagram obtained by solving
the above self-consistency equations is shown in Fig. 1(a). In-
terestingly, we find that, with increasing the U value, the WH
system undergoes two topological phase transitions: (i) from
WSM phase I to WSM phase II at U ∼ 15.4 t eV and (ii) from
WSM phase II to trivial narrow band insulator at U ∼ 16 t eV.
These two Weyl phases are characterized by the ratio of m
and renormalized hopping parameter tnor = α t , in particular,
m/2tnor < 1 and m/2tnor > 1 for Weyl phase I and Weyl phase
II, respectively [37]. The topology of the different phases
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is uncovered via the Berry curvature analysis. Specifically,
calculating positive and negative monopole charge as well as
their location distinguishes two different Weyl phases. On the
other hand, we reveal the insulating phase is Z2 topologically
trivial via Wilson loop analysis.

In particular, after turning on the onsite correlations,
the hopping parameters t, t ′ are renormalized by a fac-
tor α and consequently, the location of the Weyl nodes
changes via the expression [± cos−1(m/tnor ), π, 0] and
[± cos−1(m/2tnor ), 0, π ]. In particular, the nodal points of
opposite chirality approach each other with increasing U and
finally annihilate at U ∼ 15.4 t eV. Then the system enters
into the strongly TR broken WSM phase (WSM phase II) with
two Weyl nodes located at [± cos−1(m/2tnor − 2), 0, 0] by
satisfying the condition (m/2tnor > 1). If we further increase
U , the Weyl nodes become gapped and the system encounters
the second phase transition from WSM phase II to a narrow
band insulating phase. The energy dispersion of these three
phases are shown in Figs. 1(b)–1(d). It is important to note
that the velocity at the nodal points are controlled by the
renormalized imaginary hopping parameter t ′

nor (= αt ′). We
note that the increase of U values corresponds to a decrease
of the kinetic energy, which could be driven by a negative
pressure experimentally.

III. LANDAU LEVEL SPECTRUM
IN THE CORRELATED REGIME

To investigate the effect of strong electron correlations on
the quantum Hall transport properties of the Weyl-Hubbard
semimetal, we implement the external magnetic field (B)
contribution via the standard Peierls substitution: ti jc

†
i c j →

ti je−i e
h̄

∫ j
i A(r)·drc†

i c j where A is the vector potential. We con-
sider the Gutzwiller projected wavefunction approach to treat
the strong correlation effect by reducing the statistical weight
of double occupation. Within the Gutzwiller projected wave-
function method [56–58], the renormalized Weyl-Hubbard
Hamiltonian can be written as

H =
∑
j,ss′

{−t (e−iBz jy
√

αj−xsc
†
j−xs + eiBz jy

√
αj+xsc

†
j+xs)

+ mc†
jsσx,ss′ − it ′(

√
αj−ysc

†
j−ys − √

αj+ysc
†
j+ys)σy,ss′

− it ′(eiBx jy
√

αj−z,sc
†
j−zs − eiBx jy

√
αj+z,sc

†
j+zs)σz,ss′

− t[(eiBx jy
√

αj−zsc
†
j−zs + eiBx jy

√
αj+zsc

†
j+zs)

+ (
√

αj−ysc
†
j−ys + √

αj+ysc
†
j+ys)]σx,ss′ }cjs′ + UdNL. (3)

The site-dependent renormalization parameter α js is given by

√
α js =

[
(n̄ js − d j )(1 − n̄ j − d j )

n̄ js(1 − n̄ js)

]1/2

+
[

d j (n̄ js̄ − d j )

n̄ js(1 − n̄ js)

]1/2

(4)
with n̄ js the expectation value of the number operator n js =
c†

jsc js and n̄ j = ∑
s n̄ js. It is important to note that we find,

in the noninteracting limit, the occupation (or carrier density)
and the double occupancy of each site to be the same in the
presence of magnetic field, which motivates us to consider
the renormalization factors to be homogeneous (site indepen-
dent), denoted by α. Therefore, n̄ js = n̄s = n̄s̄, d j = d, and

α js = α. In the above Hamiltonian, the B-field lies within the
xz plane, such that it can be represented by the vector potential
A = (−yBz, 0, yBx ) in Landau gauge, yielding B = ∇×A =
Bz ẑ + Bxx̂. In the following, energy and length are measured
in units of t , and the cubic lattice constant a, respectively. Both
t and a are assumed to be one unless specified otherwise. It is
clear in the Hamiltonian that both kx and kz are good quantum
numbers. To satisfy the y direction periodicity, the magnetic
field strength is restricted to 2π/Q where Q is commensurate
with Ly such that Q = Ly/m reduces to an integer only. Here,
Ly denotes the number of sites along the y direction. We also
note that the effect of external magnetic field on the renormal-
ization parameter α is negligible. Therefore, we use the values
of α and d obtained from the zero-magnetic field calculation
throughout the rest of this work.

The evolution of the Landau Level spectrum of the WH
system for various values of U (α) obtained by diagonalizing
the above Hamiltonian is shown in Fig. 2. Here, we apply
the external B parallel to the separation of the Weyl nodes of
opposite chiralities (i.e., B ‖ x̂). In the WSM phase I (α = 1
and 0.5), a pair of doubly degenerate chiral modes (n =
0th LL with n as the Landau level index) clearly appear
in the system traversing across the Weyl nodes at kx =
± cos−1(m/2 tnor ), with positive and negative slopes with re-
spect to the applied field direction. The slope of the chiral
LLs is determined by the monopole charge of the Weyl node,
where a positive (negative) monopole charge gives rise to
a chiral mode with a positive (negative) slope. The degen-
eracy of the Landau levels arises from the conservation of
monopole charge. As onsite correlations U are introduced,
the LLs flatten while maintaining characteristic band features.
Figure 2(c) shows the LL spectrum of WSM phase II with
two Weyl nodes. Similar to WSM phase I, a pair of chiral
LLs with opposite slopes traverse across the Weyl nodes
at kx = ± cos−1(m/2 tnor − 2). In contrast to WSM phase I,
however, the LLs are nondegenerate in this case. Interestingly,
the chiral LLs change sign (slope) during the phase transition
from WSM phase I to WSM phase II. Finally, in the large-U
limit [Fig. 2(d)], the LL spectrum is gapped, indicative of a
correlated insulating phase, and all the LLs are nondegener-
ate. Clearly, chiral LLs do not exist in this phase due to the
gapping out of the Weyl nodes. It is important to note that the
LL spectrum in each case is independent of the value of kz.

Furthermore, we would like to point out that when B is
applied parallel to the z axis, the counter propagating chiral
LLs in each WSM phase cross each other linearly at kz = 0
within the bulk gap of achiral LLs, since they lie on the same
momentum projection axis. Compared to the case B ‖ x̂, the
main difference is that the bulk LLs are doubly degenerate for
both WSM phases irrespective of momentum kx. It is impor-
tant to note that if we increase the strength of B by integer
multiple, n, of B0 = 2π/Ly for a fixed U , the degeneracy of
the LLs will increase n fold due to the Brillouin zone folding
along the y direction.

IV. QUANTUM HALL EFFECT

To demonstrate the possible experimental signatures of the
topological phase transitions as a function of U , we calculate
the Hall conductivity using the Kubo linear-response theory,

085111-3



NANDY, LANE, AND ZHU PHYSICAL REVIEW B 109, 085111 (2024)

FIG. 2. [(a)–(d)] depict the evolution of the LL dispersion of different phases (WSM phase I, WSM phase II, and narrow-band insulator)
as a function of kx during the phase transition. Here, the external magnetic field is applied along the x direction. The red line in LL spectrum
indicates the chiral Landau levels. We have chosen kz = 0, Ly = 200, Bx = Bz = B0 = 2π/Ly. The other parameters we choose to measure
energy in units of t : t = 1, t ′ = 0.3 t, and m = 0.25 t . Here, α = 1, 0.5, 0.06, 0.03 corresponds to U ∼ 0, 12 t, 15.8 t, 16.2 t, respectively.

which can be expressed as [46,48]

σ H
i j = ie2

hN

∑
α,β �=α

fα − fβ
εα − εβ

〈ψα|vi|ψβ〉〈ψβ |v j |ψα〉
(εα − εβ + iδ)

, (5)

where fα denotes the Fermi-Dirac distribution function, εα

represents the eigenvalue of the eigenstate |ψα〉, N = nx nz

is the normalization factor (nx and nz are the lengths of the
system along x and z directions, respectively), vi = ∂H

∂ki
is

the velocity operators, and disorder is included via the level
broadening factor δ, i.e., δ → 0 indicates clean system. It is
important to note that in the current work, within the chosen
Landau gauge such that the translation invariance along the
y direction is broken, the system Hamiltonian can be repre-
sented by a mixed basis of the momentum space (i.e., kx and
kz) and the real space (i.e., y direction). Then the eigenin-
dex α in the general Hall conductivity formula described by
Eq. (5) can be decoupled into (kx, kz, and α) with α the
site index corresponding to the y direction in real space. We
first investigate the two-dimensional sheet Hall conductivity
(SHC) σ 2D

i j (kl ) with i �= j �= l , which can be obtained from
Eq. (5) by summing over only the momenta parallel to B, with
dimensionality e2/h. Then the 3D Hall conductivity (QHC)
can be written as σ 3D

i j = ∑
kl

σ 2D
i j (kl )/nl with dimensionality

e2/h per length, where nl is the length along the l direction.
Figure 3 presents the SHC (σ H,2D

i j ) as a function of doping
μ for various values of α. In this work, we restrict μ to lie
within the bulk gap of achiral LLs to clearly examine the
contribution of the chiral LLs to the SHC signal. It is clear
from Fig. 3 that when B is applied along the vector connecting
Weyl nodes (i.e., x direction), σ H,2D

yz (kx ) in WSM phase I

and II, and the insulating phase, exhibit a quantized staircase
profile with quantization changes when μ crosses from one
kz-independent flat LL to another. In the bulk gap of achiral
LLs, the SHC is purely composed of chiral LLs in the various
WSM phases, whereas the SHC vanishes within the gap for
the insulating phase due to the absence of chiral LLs. The
width of the plateau of the SHC is determined by the gap
size between two consecutive flat LLs. Interestingly, in WSM
phase I the quantization of the SHC changes in steps of ±2
due to the twofold degeneracy of LLs, whereas in WSM phase
II the SHC jumps by ±1 since the LLs are nondegenerate.
This fact allows us to track the phase transition between Weyl
phases.

In the case of B applied perpendicular to the vector con-
necting Weyl nodes, i.e., z direction, the SHC σ H,2D

xy (kz ) in
both Weyl phases displays a similar staircase profile, but with
quantization steps of ±2 in both Weyl phases in contrast to the
B = Bxx̂. We note that σ H,2D

i j in WSM phase I is symmetric

about μ = 0 (σ H,2D
i j (k, μ) = −σ H,2D

i j (k,−μ)) due to particle-
hole symmetric LL spectrum. On the other hand, the above
relation does not hold in WSM phase II, specifically when
B ‖ x̂, σ H,2D

yz (kx, μ) �= −σ H,2D
yz (kx,−μ) due to the asymmet-

ric nature of the flat LL spectrum. This striking sensitive
dependence on the B direction allows us to distinguish differ-
ent Weyl phases. The SHC profile we obtained as a function
of doping for fixed B may also be realized by varying the
magnetic field with μ kept fixed. We would like to point out
that the k-resolved 3D WH system can be thought of as an
effective 2D system. This implies the 2D sheet longitudinal
conductivity (σ 2D

ii ) will be nonvanishing analogous to the in-
teger quantum Hall regime in pure 2D systems, specifically,
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FIG. 3. The 2D SHC (in unit of e2/h) of WH system as a function of μ for different strengths of U is depicted. The blue solid line and red
dash-dot line represent the SHC when B is applied along z and x directions, respectively. We fix kx = cos−1(m/2tnor ) for WSM phase I and
kx = cos−1(m/2tnor − 2) for WSM phase II, as well as insulating phase to obtain σ H,2D

yz . We keep kz = 0 for all the phases to calculate σ H,2D
xy .

Here, we have chosen Ly = 70, Bx = Bz = 2π/Ly and all the other parameters are the same as Fig. 2.

showing peaks with one-to-one correspondence to the step
jumps in SHC only when the Fermi energy is within a Landau
band where the back-scattering process are present. To obtain
the usual peak structure of σ 2D

ii one can simply include a small
random onsite disorder in the Hamiltonian to broaden the LLs
and induce a minimal effect on the staircase profile of SHC,
but we leave this to a future study.

Having explained 2D SHC, we now turn our focus on 3D
quantum Hall conductivity σ H,3D

i j , which as a function of dop-
ing μ for various values of α are shown in Fig. 4. The different
Chern insulator planes combine to yield the 3D QHC with
quantized SHC along the kx direction. It is clear from Fig. 4
that the 3D QHC does not exhibit a staircase profile structure
as observed for 2D SHC. Since there exists nx/nz degener-
ate LLs associated with each perpendicular momentum mode
kz/kx, after the summation, the quantization is destroyed due
to interference among various σ H,2D

i j (kz/kx) profiles. We find
that the 3D QHC varies linearly with μ within the bulk gap
of achiral LLs indicating solely the chiral LLs contribution in
both WSM phases and vanishes in insulating phase. However,
when μ is varied outside the bulk gap of achiral LLs, the 3D
QHC follows a nonlinear behavior in μ due to the admix-
ture of bulk LLs, thereby destroying the linear behavior. The
particle-hole asymmetric LL spectrum is inherited from its 2D
SHC components for WSM phase II, see Fig. 4. Moreover,
the slope of 3D QHC within the bulk gap of achiral LLs
increases as we change the magnetic field direction from the
x axis to the z axis in both Weyl phases. We further note that
the magnitude of the 3D QHC is decreasing as we tune the

system from the weakly interacting regime (WSM phase I)
to the strongly correlated phase (WSM phase II) due to the
flattening of the band dispersions and concomitantly reducing
the band velocity.

V. DISCUSSIONS

In summary, we study both 2D SHC and 3D QHC in a
model Weyl-Hubbard system with both IS and TRS broken to
explore the effect of onsite Hubbard correlations on nontrivial
Weyl band topology in the presence of an external B field.
Interestingly, along with narrowing bandwidth, we find the
chiral LLs change sign from WSM phase I to WSM phase
II. We calculate the magnetic-field dependent quantum Hall
conductivity within the Kubo response theory which shows
distinct signatures of topological phase transitions and corre-
lation effects. In particular, the 2D SHC in both Weyl phases
depicts staircase profile as a function of doping and displays a
qualitatively different quantization between two Weyl phases.
However, since the 3D QHC is constructed from the sum of
interfering 2D SHCs, it does not show any quantized profile.
Interestingly, a linear-μ behavior appears within the bulk gap
of achiral LLs of WSM phases due to chiral LLs where its
slope can be quantitatively changed by changing the magnetic
field direction. The recently proposed correlated magnetic
WSMs such as Co3Sn2S2, Pr2Ir2O7 can be the candidate ma-
terials to verify the behavior of QHC obtained in this work
directly in experiments. We would like to point out that the
strong correlation effect is determined by the ratio of onsite
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FIG. 4. The 3D QHC (in unit of e2/hnl ) of the WH system as a function of μ for different phases is depicted. The blue solid line and red
dash-dot line represent the 3D QHC when B is applied along the z and x directions, respectively. Here, we have chosen Ly = 70, Bx = Bz =
2π/Ly, and all the other parameters are the same as Fig. 2. nl is the length of the system along the applied magnetic field direction.

Coulomb interaction to the hopping parameter, U/t . Since the
onsite Coulomb interaction U is local, it is relatively difficult
to tune this quantity in experiment. Therefore, to access the
Weyl phase II, a realistic Weyl system with a reduced kinetic
energy (i.e., hopping) is desirable, which can be achieved via
the effective negative pressure.

For a typical WSM, the lattice constant a ∼ 1 nm. There-
fore, considering the length of the sample L = 100 a gives the
magnetic field strength B ∼ 41 T. In this case, the magnetic
length turns out to be lc ∼ 4 nm which satisfies the condition
L � lc � a (away from the butterfly regime) and also well
within reach in experimental feasibility. We would like to
point out that the surface Fermi arc contribution can also
be important to QHC. However, in the present study, this
contribution is negligible due to the following reason: It has
been shown that when the external B is greater than Bsat where
Bsat = k0/L with k0 is the arc length of the Fermi arc, the
majority of the magnetic cyclotron orbit takes place in the
bulk, and the surface Fermi arc contribution becomes negli-
gibly small [59]. In the present case, considering a thick slab
of WSM with L � lc and B(= 2πm/L) > Bsat leading to the

fact that the QHC will be dominated by bulk chiral and achiral
LLs. In addition, periodic-boundary condition along the y
direction might also reduce finite size effects [48]. However,
investigating the Fermi arc contribution to QHC in detail is an
important question we leave for future studies.

Overall, our study demonstrates that the QHE persists even
in the presence of strong electron-electron interactions and
provides distinct signatures of different topological phases.
This makes QHE an efficient direct probe of band topology
in correlated quantum materials.
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