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The study of frustration-free Hamiltonians and their relation to finite bond-dimension matrix product states
(MPS) has a long tradition. However, fractional quantum Hall (FQH) states do not quite fit into this theme since
the known MPS representations of their ground states have infinite bond dimensions, which considerably ob-
scures the relations between such MPS representations and the existence of frustration-free parent Hamiltonians.
This is related to the fact that the latter necessarily are of infinite range in the orbital basis. Here, we present
a theorem tailored to establishing the existence of frustration-free parent Hamiltonians in such a context. We
explicitly demonstrate the utility of this theorem in the context of non-Abelian Moore-Read FQH states but argue
the applicability of this theorem to transcend considerably beyond the realm of conformal-field-theory-derived
MPSs or quasi-one-dimensional Hilbert spaces.
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I. INTRODUCTION

The theory of fractional quantum Hall (FQH) effect is
widely regarded as a theory of beautiful wave functions that
are linked rather directly to effective quantum field theory
descriptions both for the bulk of the system and for the closely
related edge. The close link between microscopic wave func-
tion and effective theory can be brought about through
powerful mappings and conjectures, such as the Moore-Read
(MR) conjecture [1]. Given the great success of such map-
pings between model wave function and effective theory in
the exploration of possible phases in the FQH regime, it
remains perhaps somewhat underappreciated that, in specific
cases, model Hamiltonians can serve to significantly further
corroborate the universal physics of a given wave function
description. The fact that such model Hamiltonians are less
credited for the enormous success of the theoretical descrip-
tion of FQH states may be because known instances were
largely limited to a subset of wave functions to which MR type
arguments can be directly applied: They are lowest-Landau-
level (LLL) holomorphic wave functions that can be obtained
as conformal blocks in some associated rational confor-
mal field theory (CFT). Originally, thus, well-studied parent
Hamiltonians in the field stabilized model wave functions
whose physics are well under control by the MR conjecture.
More recently, however, it has been demonstrated that the
class of FQH wave functions whose long-distance physics
can be fully exposed by a systematic study of zero-mode
spaces of accompanying parent Hamiltonians is considerably
larger than previously thought. It contains, for example, model
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Hamiltonians [2] for the entire positive Jain sequence as well
as non-Abelian partonlike wave functions [3–12]. This recent
progress was made possible not merely by the identification
of appropriate parent Hamiltonians but also by the develop-
ment of new techniques to rigorously study their zero-mode
spaces. These developments were made necessary by the pres-
ence of higher Landau level degrees of freedom that destroy
the holomorphic dependence of the wave function on posi-
tion variables. The latter is the reason why traditional parent
Hamiltonians in the LLL allow rigorous exploration of their
zero-mode spaces by translating the problem into the search
for symmetric polynomials with certain additional clustering
conditions. In the more general cases recently studied, this
connection with symmetric polynomials is lacking. The recent
forays into the rigorous study of FQH parent Hamiltonians
of mixed Landau level states have shown that the desirable
properties of these Hamiltonians, namely, an analytically ac-
cessible topological zero-mode space, are in no way tied to
underlying symmetric polynomials or limited to the appli-
cability of the polynomial techniques traditionally used to
establish these spaces. Indeed, it was only the abandoning of
these techniques that brought into focus a potentially much
larger class of solvable Hamiltonians sharing similar prop-
erties. The characteristic of these new techniques, which are
equally applicable in the LLL and in the broader context, is the
fact that they put greater emphasis on the second-quantized
representation of FQH wave functions.

Special parent Hamiltonians of the kind considered here
have the property that they divide the Hilbert space into a
finite energy subspace (with energies ideally bounded from
below by a gap) and a topological zero energy (zero-mode)
subspace. The latter contains all the universal physics of the
underlying quantum Hall state. This is true both for the bulk
physics as well as the closely related edge theory. In the case
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of the bulk, the zero-mode space contains localized quasihole
excitations whose holonomies encode the exchange statistics
that characterize the low-energy physics in the bulk and are
well suited for applications as protected qubits in topological
quantum computation [13,14]. Localized quasihole states are
not angular momentum eigenstates but can be expanded in
an angular-momentum zero-mode eigenbasis. Such an eigen-
basis will be in one-to-one correspondence with states in the
edge CFT [15]. More concretely, the number of zero modes at
given angular momentum relative to the incompressible state
matches precisely the number of modes at the corresponding
level in the edge CFT. A confining potential proportional
to total angular momentum then renders small angular mo-
mentum �L (relative to the incompressible state) zero modes
the physical gapless edge excitations of the system, whereas
quasiholes in the bulk can be thought of as being formed by
high energy modes in the edge theory. The point is that, up to
angular momenta δL ∼ particle number N (where zero modes
already represent bulk excitations), the number of zero modes
of the microscopic model at given �L exactly matches the
number of modes at level �L in the effective edge theory. In
such models, thus, whenever the zero-mode structure is under
control, a large amount of field-theoretic data can be obtained.
(The holonomies mentioned above, while also encoded in the
zero modes, are very challenging to calculate directly [16–18]
but can be simplified considerably with some assumptions
[19].)

It is well known that, when presented in the orbital (angular
momentum) basis, i.e., in second quantization, FQH parent
Hamiltonians become one-dimensional (1D) lattice models
[20,21]. The long-range character of the interaction in this
presentation renders the rigorous study of zero-mode spaces
nontrivial. It is for this reason that, historically, such models
were studied from as first-quantized models in two spatial
dimensions, even though such a perspective somewhat ob-
scures the relevant dynamical degrees of freedom [22]. The
guiding-center degrees of freedom fully encode the topolog-
ical quantum order. The first clue to this realization was the
observation that rotational invariance is not necessary for the
FQH effect [23]. Subsequent works further explore the conse-
quences of abandoning rotational invariance by constructing
a basis of generalized pseudopotentials for two-body effective
interactions [24], examining its implications with band mass
anisotropy [25–27] and the recent study of an emergent uni-
versal property of FQH liquids [28].

As we have argued, the recent extension of this class
of models actually makes the 1D lattice presentation in-
dispensable. It is for the above reasons that we advocate
the view that known FQH parent Hamiltonians should be
regarded as a broader class of solvable 1D models whose
significance is on par with other analytically tractable mod-
els in 1D, such as 1D integrable models or models with
factorized wave functions (the latter two categories hav-
ing nontrivial overlap [29–32]). From a 1D point of view,
one can distinguish two approaches to these models: (i) a
hybrid approach where a (linear) generating set for the zero-
mode space is postulated/identified in first quantization, but
then the completeness of the space so generated is proven
using second-quantized squeezing techniques. This approach
is extremely powerful in a mixed-Landau-level/parton state

situation, where said completeness is otherwise hard to estab-
lish. (ii) A fully second-quantized machinery: Here, somewhat
in the spirit of Ref. [22], the usual polynomial picture char-
acteristic of FQH trial states is completely abandoned, and
zero-mode spaces are constructed and established entirely
in second quantization. The latter approach has so far been
sparsely explored. It has been achieved for the Laughlin state
[33–35] and for composite fermion states [2,36]. We also
mention the rich Jack-polynomial literature [37,38], which
offers a powerful way to achieve a second-quantized rep-
resentation of states with Jack polynomial wave functions.
What we wish to do here is to further explore the direct
connection between such a second-quantized representation
and the existence of a 1D second-quantized parent Hamil-
tonian. For this, we will emphasize the matrix product state
(MPS) representation for FQH states. MPSs [39–41], which
are 1D tensor networks, are also known as tensor-train decom-
position in computer science and mathematics [42–45]. To
our knowledge, while there have been seminal developments
in understanding FQH states as MPSs [46–53], it is only
for the Laughlin state that the existence of a frustration-free
parent Hamiltonian has been understood as a direct conse-
quence of the underlying MPS structure [35]. In contrast,
we note that, in the context of short-ranged models, the
existence of a (finite bond-dimension) MPS/tensor network
[40,41] ground state is the bread and butter of the study of
frustration-free parent Hamiltonians, such as the AKLT model
[54]. For FQH parent Hamiltonians, this direct connection is
considerably obscured by the long-ranged character of the
Hamiltonian (in the 1D lattice formulation) and the related
infinite bond-dimension MPS. We feel that a more thorough
understanding of the direct relationship between the (infi-
nite bond-dimension) MPS structure of the ground state and
the existence of a (long-ranged) frustration-free 1D parent
Hamiltonian is instrumental for further progress. For one, it
is through this connection that the correspondence between
edge theory and zero-mode spaces becomes most manifest.
More importantly, we feel that a more thorough understanding
may be instrumental for further generalization. In this paper,
we will thoroughly expose this connection in the context of
the non-Abelian MR FQH state [1]. That is, we show how the
MPS structure of these states defined in terms of CFT data
allows for the understanding of the existence of a frustration-
free three-body parent Hamiltonian. Such a Hamiltonian can
be established without resorting to the polynomial description
of the MR state.

The remainder of this paper is organized as follows: In
Sec. II, we develop a comprehensive framework that estab-
lishes a connection between the infinite bond-dimension MPS
of FQH states and the presence of frustration-free parent
Hamiltonians for such states. Our focus is on elucidating
the overarching nature of this framework and its potential
applicability within a wider context. In Secs. III and IV, we
apply this framework specifically to non-Abelian MR FQH
states. In Sec. III, we review the MR state and its CFT as well
as associated expressions for the CFT-MPS representation of
this state and its zero-mode excitations. In Sec. IV, we present
the MR parent Hamiltonian in second quantization and prove
the two prerequisites required by the inductive framework
introduced in Sec. II. This proof eliminates the necessity
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of any detour using first quantized-polynomial techniques in
demonstrating that the CFT-MPS of the MR state is associated
with a frustration-free Hamiltonian. We conclude with final
remarks and an outlook in the Sec. V.

II. GENERAL FRAMEWORK

In previous work [35], beginnings of a framework were
developed to connect the infinite bond-dimension MPS of
CFT-FQH states to the existence of a frustration-free parent
Hamiltonian for the same states. However, the only state
thoroughly examined in this framework has been the Laugh-
lin state (at general ν = 1/q), and its quasihole/edge-type
excitations. It is thus not clear what features of the formal-
ism were generic and what features were intrinsic to the
Laughlin state, arguably the simplest case of an FQH state.
In this section, we will summarize the key ingredients used
in the proof that a given class of CFT-MPS wave functions
admits a frustration-free parent Hamiltonian. We will expose
the generic properties that will make generalization to other
classes of CFT-MPS wave function, and even more general
wave function constructions, straightforward in principle. In
subsequent sections, we will rigorously apply this frame-
work in the context of the non-Abelian MR FQH states. In
other words, we demonstrate that, by defining these states
using a CFT-MPS, we can comprehend the existence of a
frustration-free three-body parent Hamiltonian, without re-
sorting to traditional first-quantized polynomial techniques.

To begin, we introduce a k-body Hamiltonian of the form:

Hk =
∑

r

T †
r Tr, (1a)

where

Tr =
∑
j1··· jk

ηr
j1··· jk c j1 · · · c jk (1b)

is the destruction operator associated with a k-particle state
Tr

† |0〉. Here, r is taken from some countable index set. Simi-
larly, the indices ji label a basis of single-particle orbitals and
are likewise taken from a countable index set.

One may further consider general Hamiltonians:

H =
∑
k�K

Hk, (2)

with up to K-body interactions. This will be the case for
the MR parent Hamiltonians discussed below, with K = 3.
However, by positivity, imposing the zero-mode condition
for H is equivalent to imposing the zero-mode conditions for
all Hk jointly. It suffices to study the zero-mode condition for
one Hk at a time. We thus now focus on one such Hk .

Let HN be the N-particle subspace of the Fock space.
Our task is accomplished if we show that, for each N , the
subspace of zero modes H0

N ⊂ HN of the positive semidefinite
Hamiltonian Hk is nontrivial. In this paper, we propose and
examine a particular strategy to achieve this. Our results can
be summarized by the following:

Theorem. Let WN ⊂ HN be N-particle subspaces. If Wk ⊂
H0

k and

c jWN ⊂ WN−1 (3)

for all j and all N > k, then WN ⊂ H0
N for all N � k.

According to this theorem, we only have to establish
that the k-particle zero-mode space is a nontrivial subspace
Wk �= {0}, and that Eq. (3) holds for some likewise nontrivial
sequence of subspaces WN>k . Under the hood, the proof of
this theorem is an induction proof, where the condition Wk �=
{0} represents the induction beginning, and Eq. (3) facilitates
the induction step. To see how this works, one need only to
observe that the following identity holds (Appendix A):

Tr (N̂ − k) = (−1)kξ
∑

j

c∗
j Trc j, (4)

where ξ = 1 for fermions, ξ = 0 for bosons, and N̂ =∑
j c∗

j c j is the particle number operator. More precisely, in
writing this, we have assumed that the operators c j are pseud-
ofermion or boson destruction operators [36,55], respectively.
That is, together with the creation operators c∗

j , they satisfy the
familiar algebra c jc∗

j′ − (−1)ξ c∗
j′c j = δ j, j′ . The only subtle

difference between these pseudoparticle operators and ordi-
nary particle operators is the fact that the Hermitian adjoint
c†

j of c j need not agree with c∗
j (though there are linear re-

lations between these two sets of operators). Physically, this
corresponds to the situation where the orbitals associated with
c j are not orthogonal and/or not normalized. For this section,
the reader not interested in pseudocreation and annihilation
operators may restrict attention to the special case c†

j = c∗
j .

For the following sections, it will, however, be important
that all arguments will work for pseudocreation/annihilation
operators as well as ordinary ones. In either case, however, we
will use the dagger † in Eq. (1a), to ensure the hermiticity and
positive semidefiniteness of the Hamiltonian. It is also worth
emphasizing that the familiar identity for the particle number
operator given below Eq. (4) also holds for pseudoparticle
operators.

The proof of the theorem is now a straightforward in-
duction: Consider the induction assumption WN−1 ⊂ H0

N−1,
for some N > k. Then consider a |ψN 〉 ∈ WN . By positive
semidefiniteness, the state |ψN 〉 is annihilated by each term
T †

r Tr of Hk which, moreover, is equivalent to saying that it
is annihilated by each of the operators Tr . The zero-mode
condition |ψN 〉 ∈H0

N , which we wish to demonstrate, can thus
equivalently be stated as

Tr |ψN 〉 = 0 ∀ r. (5)

We show that this follows from the assumptions about |ψN 〉
by considering the right-hand side of the last equation and
multiplying by N − k �= 0:

(N − k)Tr |ψN 〉 = Tr (N̂ − k) |ψN 〉
= (−1)kξ

∑
j

c∗
j Trc j |ψN 〉 = 0, (6)

In the second line, we utilized the identity given by
Eq. (4). The assumption c j |ψN 〉 ∈ WN−1 ⊂ H0

N−1 then im-
plies Trc j |ψN 〉 = 0, giving the last line. Equation (5) then
follows from N − k �= 0, thus showing WN ⊂ H0

N . The base
case of the induction Wk ⊂ H0

k was a prerequisite of the the-
orem. This completes the induction and proves the theorem.

In this section, we emphasize the general character of this
theorem. Subsequent sections will be devoted to applications
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to CFT-MPS states in the mold of certain FQH trial wave func-
tions, specifically the MR states. This is a natural playground
for this theorem since, as we will argue, Eq. (3) is a natural
property of such trial wave functions, and at the same time,
direct application of the Hamiltonian is quite nontrivial (in the
MPS representation).

For the general relation of this approach with others found
in the literature, a few additional remarks are in order. It is
clear that, for k-body operators, N = k represents the small-
est N suitable for an induction beginning, as the zero-mode
property is trivial for N < k. We contrast this with the case of
Ref. [56], where a scheme was employed that is similar but
more tailored to the case where incompressible ground states
satisfy a certain recursion relation (note that this induction
assumption in that reference is about the incompressible state
only, not the full zero-mode sector, and the induction step
proceeds by adding two particles). There, while k = 3, an
induction beginning from N = 6 was found necessary. We
expect the scheme introduced here to be considerably more
general.

Indeed, we expect this scheme to apply to a large number
of CFT-MPS states formulated in the quantum Hall context.
We believe the property in Eq. (3) to be a generic property
of such variational states. On physical grounds, such states
are expected to yield a complete set of incompressible states
and quasiholelike excitations, and the removal of one elec-
tron (or bosonic particle) can generically be understood as
the introduction of a certain cluster of quasiholes. There-
fore, the right-hand side of Eq. (3) cannot lead outside the
zero-mode space, and the equation follows if WN represents
a complete description of such zero modes. Thus, Eq. (3)
should be considered a requirement for a good variational
description in this context, and the task of finding a parent
Hamiltonian then boils down to finding a Hamiltonian of the
generic form in Eq. (2) for which induction beginnings can
be established. There is nothing, however, in this scheme that
is limited to the lowest Landau (symmetric polynomial) wave
function with nice clustering properties. Thus, we expect that
this scheme may prove fruitful beyond the LLL, the quantum
Hall context, and the context of formally 1D Hamiltonians.

III. MOORE-READ CFT

The framework detailed above generalizes the one intro-
duced in Ref. [35] to study the connection between Laughlin
state parent Hamiltonians and the MPS representation of their
ground states. The latter are arguably the simplest in the
CFT-MPS class. To demonstrate the generalizability of this
scheme along the lines of the preceding section, we consider
now the MR state as a concrete example. That is, we wish
to understand the zero-mode property of this non-Abelian
quantum Hall state and its bosonic as well as Majorana-like
excited states strictly from an MPS point of view, given the
frustration-free parent Hamiltonian of the state. The latter has,
of course, originally been obtained from the first-quantized
polynomial representation of these states [57]. In this paper,
we will only use this polynomial representation to review its
relation to the MPS but will otherwise not use it.

To start, let us review the MR state and its connection
to CFT correlators. The MR state at filling factor ν = 1/q,

omitting Gaussian factors, is given by the following polyno-
mial [1,14,58,59]:

ψ (z1, · · · , zN ) = 〈ψe(zN ) · · ·ψe(z1)〉

= Pf

(
1

zi − z j

)∏
i< j

(zi − z j )
q, (7)

where the particle operator for this state is the product of a
chiral Majorana field in the Ising CFT and the vertex operator
of a free massless chiral boson CFT: ψ (z) = χ (z) × V (z).
The bosonic or Coulomb sector is analogous to similar pre-
sentations for the Laughlin state. We proceed by summarizing
some of the most important properties of this CFT and refer
the interested reader to other references [47,48,50,52,60,61].
The holomorphic (chiral) part of the vertex operator V√

q(z) =:
ei

√
q φ(z) : generates the Jastrow factor [1,48–53,60–63] in

Eq. (7):

〈V√
q(zN ) · · ·V√

q(z1)〉. (8)

More precisely, V√
q(z) is a primary field in a chiral-free mass-

less bosonic CFT in 1 + 1d with U (1) charge
√

q. It can be
given the mode expansion:

V√
q(z) =

∑
λ

V−λ−hzλ, (9)

where h = q/2 is the conformal dimension of V√
q. The neutral

excitations of this theory can be expressed in terms of modes
an, which are the modes of the chiral bosonic field:

φ(z) = φ0 − ia0 log (z) + i
∑
n �=0

1

n
anz−n. (10)

The an’s obey the algebra: [φ0, a0] = i and [an, am] =
nδn+m,0. Additionally, their action on states can be described
as follows:

an |N〉 = 0, n > 0,

〈N | an = 0, n < 0, (11)

a0 |N〉 = √
qN |N〉 , (12)

where |N〉 is a primary state of the bosonic CFT.
In the Ising sector of the CFT, the Majorana field χ (z) can

be chosen to have one of two monodromy properties [60,61].
With periodic or Neveu-Schwarz (NS) boundary conditions,
the correlator of two χ (z) is given by

〈χ (z)χ (w)〉 = 1

z − w
, (13)

so the correlator of N of these fields generates the Pfaffian:

〈out|χ (z1) · · · χ (zN )|0〉 = Pf

(
1

zi − z j

)
. (14)

Here, the 〈out| state must be defined with care depending
on whether the particle number is odd or even, where in the
former case, it must contain a Majorana mode. We give details
below. In this NS sector, on the plane, one has the mode
expansion of the chiral Majorana field:

χ (z) =
∑
n∈Z

χn−1/2z−n, (15)
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which implies

χn−1/2 =
∮

dw

2π i
wn−1χ (w), n ∈ Z. (16)

The positive (negative) index modes annihilate the vacuum
when acting from the left (right):

χn−1/2 |0〉 = 0, n > 0,

〈0| χn−1/2 = 0, n � 0. (17)

These Majorana modes obey the anticommutation algebra:

{χn−1/2, χm−1/2} = δn+m,1, n, m ∈ Z. (18)

The correlator of two Majorana fields in the Ramond sector
(or antiperiodic sector) does not generate the Pfaffian func-
tion, so we will work only with the NS sector of this free
(Majorana) fermion theory. The twist operator of the Ising
CFT connects these two sectors.

Moreover, the twist operator is used for the creation of lo-
calized quasiholes when inserted into the correlator. However,
quasiholes are always created in pairs [1], and a pair of twist
operators can fuse to the identity or to χ only. Therefore, to
generate a complete set of edge excitations, hence zero modes,
it should be sufficient to insert operators χr−1/2 into the Ising
part of the correlator [47], as in the expression:

〈0|χr1−1/2 · · · χrF −1/2χ (zN ) · · · χ (z1)|0〉, (19)

apart from bosonic excitations that will similarly correspond
to insertions of the an, see below. In Eq. (19), the condition
(N − F ) ∈ 2 × N must also be satisfied to ensure that the
expression, which still can be written as a Pfaffian, is nonzero.
This implies that excitations χr−1/2 must be added in pairs,
except for a single extra factor that we may choose to be χ1/2

when N is odd (see below). Also, the restriction to N − F
even represents a superselection rule between the charged
(Coulombic) sector and the Majorana sector that is somewhat
reminiscent of global selection rules governing spin-charge
separation in the edge theory of Halperin states [64]. The
anticommutation relation of χr−1/2 implies that, in Eq. (19),
these modes have to be distinct from one another, except for
the extra χ1/2 in the odd case, which we will, however, absorb
into the 〈out| bra below. Also, we must have ri � 1 for a
nonzero result in Eq. (19), as stated by Eq. (17).

The CFT-MPS representation of the MR state can be
obtained by combining the Majorana field and the vertex op-
erator mode expansion in Eqs. (15) and (9), respectively. For
details, we refer the reader to the pertinent literature [47–53].
This yields the following expression:

ψ (z1, · · · , zN ) =
∑
{ki}

∑
{λi}

〈χλN −kN −1/2 · · · χλ1−k1−1/2〉

× 〈N |V−λN −h · · ·V−λ1−h|0〉
N∏

i=1

zki
i , (20)

where {ki}, {λi} denote unrestricted sets of index variables. We
can introduce an ordered set of index variables via

(ki )
N :

{
kN � · · · � k1 for bosons,

kN > · · · > k1 for fermions,
(21)

and translate the MR state in Eq. (20) to a second-quantized
language by noticing that, for fixed {ki}, the sum over {λi}
renders the product of correlators (anti)symmetric in the ki

for q odd (even). Thus, the sum over {ki} (anti)symmetrizes
the product over zki

i , yielding a bosonic (fermionic) occupation
number eigenstate |(ki )N 〉 with the ki orbitals occupied:

|ψN 〉 =
∑
(ki )N

C(ki )N

∣∣(ki )
N
〉
, (22)

where

C(ki )N = 1∏
i li!

∑
{λi}

〈χλN −kN −1/2 · · · χλ1−k1−1/2〉

× 〈N |V−λN −h · · ·V−λ1−h|0〉 . (23)

Here, li is the occupancy of the ith angular momentum state,
which is only relevant for bosons. For fermions li ∈ {0, 1}.
The orbital basis elements |(ki )N 〉 are defined via

〈z1, · · · , zN |(ki )
N 〉 = 1

N!

∑
σ∈SN

(sgn σ )q
N∏

i=1

z
kσi
i . (24)

This implies that |(ki )N 〉 = (
√

N!)−1c∗
k1

· · · c∗
kN

|0〉, where c∗
k is

a pseudoparticle creation operator, which creates a particle in
a state with unnormalized wave function zk exp(−|z|2/4). As
mentioned in Sec. II, the associated destruction operators ck

may be defined such that [ck, c∗
k′ ]± = δk,k′ holds. We empha-

size again that c∗
k is not the Hermitian adjoint of ck; however,

simple rescaling ck → Nkck , c∗
k → N−1

k c∗
k does turn these

pseudocreation/annihilation operators into ordinary ones. The
particle number operator is still N̂ = ∑

k c∗
k ck .

A more concise notation for these coefficients can be
achieved by expressing them in terms of the modes of the
particle-field operator:

C(ki )N = 1∏
i li!

〈out|ψ−kN −h−1/2 · · · ψ−k1−h−1/2|in〉 , (25)

where

ψ−k−h−1/2 =
∑

λ

χλ−k−1/2V−λ−h. (26)

The modes of this particle operator satisfy (anti)commutation
relations for fermions and bosons, respectively. The relevant
range of the ki’s as well as their total angular momentum

∑
i ki

are governed by conservation laws in the CFT as well as the
choice of in and out states, |in〉 and |out〉. For the MR state,
the proper choice, which was implicitly assumed already in
Eq. (7), is

〈out| = 〈out|χ ⊗ 〈out|V , (27)

where the states 〈out|χ and 〈out|V are associated with the Ma-
jorana and Coulomb gas CFT sectors, respectively. Formally,

〈out|V .= 〈N | , (28)

and

〈out|χ .=
{〈0| if N even,
〈0| χ1/2 if N odd.

(29)
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The mode χ1/2 is necessary for describing a system with an
odd number of particles, and it corresponds to a Majorana
fermion that is located at infinity [47]. The |in〉 state is defined
as the respective vacuum in both CFT sectors:

|in〉 = |0〉⊗ |0〉 . (30)

The bra 〈N | can be interpreted as the result of the background
charge operator acting on the Coulomb gas CFT vacuum bra,
ensuring charge neutrality. In the following, we will need to
evaluate expressions where 〈N | is acted upon on the right by
V−λ−h. This motivates the introduction of an alternative set of
neural bosonic modes that generate the same algebra as an>0.
Indeed, V−λ−h removes one unit of charge from 〈N |, so one
may write

〈N |V−λ−h = 〈N − 1|
q(N−1)−λ∑

l=0

bl
q(N−1)−λ, (31)

where bl
k
′s are a collection of l neutral excitations related to

the an>0 via [35]

bl
k =

(−√
q
)l

l!

∑
i1+···+il =k

ai1

i1

ai2

i2
· · · ail

il
, i j > 0 ⇒ k � l;

b0
k =

{
1, k = 0,

0, k > 0.
(32)

Thus far, the MPS in Eq. (22) generates the incompressble MR
state, both for even and odd particle numbers. To generate a
complete set of zero modes for the frustration-free MR parent
Hamiltonian to be discussed below, we need to introduce ad-
ditional bosonic and fermionic mode operators modifying the
〈out| bra, as anticipated earlier. Formally, a basis of zero-mode
states can be obtained in MPS form via the following ansatz:∣∣ψan···χr ···

N

〉 =
∑
(ki )N

Cn···r···
(ki )N |(ki )

N 〉 , (33)

where the MPS coefficients have additional superscripts
n · · · r · · · to indicate the excitations that have been added in
the bosonic sector n · · · , and in the Majorana sector r · · · :

Cn···r···
(ki )N = 1∏

i li!
〈out|an · · ·χr

· · · ψ−kN −h−1/2 · · · ψ−k1−h−1/2|in〉. (34)

Here, an · · · χr · · · denotes a finite string of an and (an even
number of) χr operators, e.g., a1a2a4χ3/2χ5/2. If the asso-
ciated superscripts are omitted, i.e., the string is empty, we
are referring to the coefficients defined in Eqs. (23) and (25),
which yield the incompressible MR state. In the following,
an · · · χr · · · will always represent a string that may or may
not be empty in both the bosonic sector and the Majorana
sector, i.e., the notation in Eq. (33) may or may not refer
to the incompressible state unless further specified. As both
the an and χr insertions increase the angular momentum of
the state by an amount equal to the respective subscripts, the
incompressible MR will be the densest zero mode in the sense
of lowest angular momentum.

IV. MOORE-READ HAMILTONIAN AND THE
ZERO-MODE PROPERTY INDUCTION

As is well established, the MR state is the densest zero
mode of a local three-body parent Hamiltonian [57,65–68].
For q = 1 and 2, the latter is easily expressed in terms of
δ functions or derivatives thereof. Second-quantized expres-
sions for these cases have been given in the literature [69–71].
In general, the three-body operator must give positive energy
to any three particles in a state of relative angular momentum
3q − 2 or less. Alternatively, it must give positive energy to
any three particles in a state of relative angular momentum
equal to 3q − 3 if additional two-body operators are present
[67]. There is no loss of generality in discussing the former
variety. We will discuss the relevant two-body operators later
below. A second-quantized Hamiltonian giving finite energy
to three-body states with relative angular momentum Lrel �
3q − 2 can be constructed as follows:

H3bd
1
q

=
∑

0�|t |<(3q−1)

∑
J�0

T t†
J T t

J , (35a)

where

T t
J =

∑
m+n+p=J

f t (m, n, p)cmcncp. (35b)

The operator T t
J annihilates three particles in a state with

a total angular momentum of J , labeled by a multi-index
t = (t1, t2, t3), and f t is a polynomial in m, n, p of degree
|t | = t1 + t2 + t3 (except in those cases where it vanishes)
defined by f t = S (m − n)t1 (m − p)t2 (n − p)t3 . Here, S de-
notes the (anti)symmetrizer in m, n, p for q odd (even). In
the sum in Eq. (35), it is also implied that all ti � 0. Despite
appearances, with the form factor being polynomial in the
separation between orbitals, this interaction is exponentially
cut off at very large distances. To see this, we pass to ordinary
creation/annihilation operators, which brings back the afore-
mentioned normalization factors Nk . Clearly H3bd

1/q is positive
(semidefinite) and moreover is of the general form in Eq. (1)
with k = 3 and the index r corresponding to the multi-index
(t, J ). We restate the zero-mode condition in Eq. (5) here for
this special case as

T t
J

∣∣ψan···χr ···
N

〉 = 0, (36)

for all t and J that appear in the sum in Eq. (35). To see that
this second-quantized Hamiltonian has all the desired proper-
ties, we first observe that a Hamiltonian of the form in Eq. (35)
should be regarded as just one representative of an entire class
of Hamiltonians with identical zero-mode space. Indeed, re-
placing T t

J with new linearly independent linear combinations
of themselves (at fixed J , which is of greatest interest) leads
to equivalent zero-mode conditions in Eq. (36). Now a three-
particle state with total angular momentum J and relative
angular momentum Lr can be created by an operator whose
adjoint is of the general form in Eq. (35b), i.e., with some form
factor f (m, n, p). The latter will be a polynomial of degree
Lr . Now any such f (m, n, p) can be linearly generated from
terms of the form (m − n)t1 (m − p)t2 (n − p)t3 (m + n + p)t4 ,
with Lr = ∑4

i=1 ti. In such expressions, however, the term
(m + n + p)t4 is just a constant when plugged into Eq. (35b).
It follows thus that the zero-mode condition associated
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with any three-particle state of relative angular momentum
<3q − 1 can be obtained from Eq. (36). One might still worry
if, by summing over all possible t , we have kept too many
zero-mode conditions. This, however, turns out not to be the
case since we will show below that Eq. (35) has all the zero
modes any MR parent Hamiltonian is supposed to have.

As mentioned, the MR state and its holelike
excitations/edge excitations are also annihilated by certain
two-body operators, which we discuss next. Let

H2bd
1
q

=
∑

0�t<q−1
(−1)t =(−1)q−1

∑
J

Qt†
J Qt

J , (37a)

where

Qt
J =

J/2∑
x=−J/2

xt cJ/2−xcJ/2+x, (37b)

and t now labels an ordinary nonnegative integer. For
t = 0, 1, one obtains the Haldane pseudopotential projections
onto relative angular momenta 0 (bosons) and 1 (fermions),
respectively. Again, this becomes manifest by passing from
pseudocreation/annihilation operators to ordinary ones. For
t > 1, the relation with Haldane pseudopotentials becomes
more complicated; however, the zero-mode condition derived
from Eq. (37):

Qt
J

∣∣ψan···χr ···
N

〉 = 0, (38)

for all t and J appearing in Eq. (37), is equivalent to that
obtained by summing the Haldane pseudopotential projec-
tions with indices <q − 1 [keeping only oven or odd ones as
in Eq. (37)]. This is so since, to pass to bona fide Haldane
pseudopotentials, we only need to form certain linearly inde-
pendent new linear combinations of Qt

J and reason in the same
way as done above for the three-body case.

Although this section primarily considers the disk geom-
etry, the same principles are applicable to other genus-zero
geometries, such as the cylinder and sphere. In these ge-
ometries, the MR state remains consistent, characterized
by appropriately defined pseudofermions [72]. Going to
genus-one geometries, such as the torus geometry, is not
straightforward but is worth exploring in the future. The MPS
representation of several FQH states has also been explored
in various geometries [50] as well as for the Haldane-Rezayi
state in the torus geometry [73].

We note now that the combined Hamiltonian:

H 1
q

= H2bd
1
q

+ H3bd
1
q

, (39)

which serves as a parent Hamiltonian for the MR state at
filling factor 1/q, is a K = 3 special case of the general Hamil-
tonian discussed in Sec. II, with k = 2 and 3 terms present.
The zero-mode condition of H 1

q
is the combined zero-mode

condition associated with H2bd
1
q

and H3bd
1
q

. We may thus study

its zero modes by connecting with the theorem of Sec. II,
where we identify the spaces WN with the spaces spanned
by the MPS states |ψan···χr ···

N 〉 (for given N). To show that
these states are zero modes, all we need to do is hence to
ensure that the prerequisites of the theorem are met. That
is, we demonstrate the induction step in Eq. (3) and the

induction beginnings for these classes of MPS. Only the in-
duction beginnings must be done separately for H2bd

1
q

and

H3bd
1
q

. The induction step in Eq. (3) is universal. We thus begin

with the latter.

A. The induction step

From the above, we need to prove Eq. (3) for the specific
situation at hand. Note that, for this step, we will not require
detailed knowledge of the operators T t

J and Qt
J . Instead, the

zero-mode property will apply to any Hamiltonian of the
generic makeup of Eqs. (35) and (37) (including k-body gen-
eralizations) for which the induction beginning Wk ⊂ H0

k can
be proven. Hence, we defer the latter and turn to the induction
step c jWN ⊂ WN−1. The crucial ingredient is thus to analyze
the action of an annihilation operator ck on the MPS state in
Eq. (33). Therefore, we investigate
√

Nck

∣∣ψan···χr ···
N

〉 =
∑

(ki )N−1

〈out| an · · · χr · · ·ψ−k−h−1/2

×
N−1︷ ︸︸ ︷

ψ−kN −h−1/2 · · · ψ−k1−h−1/2 |in〉 ∣∣(ki )
N−1

〉
,

(40)

where we moved the particle mode ψ−k−h−1/2 with index k
appearing in the MPS representation of |ψan,χr1 ,χr2

N 〉, Eq. (33),
all the way to the left. This is possible because the particle
operator modes ψ−k−h−1/2 (anti)commute for q odd (even).
(Moving ψ−k−h−1/2 then compensates a minus sign possi-
bly arising from the action of ck .) Then using the following
(anti)commutation relations:

[an, ψ−k−h−1/2] = √
q

∑
λ

χλ−k−1/2V−λ+n−h

= √
qψ−(k−n)−h−1/2, (41)

[an,V−λ−h] = √
q V−λ+n−h, (42)

{χl−1/2, ψ−k−h−1/2} =
∑

λ

{χl−1/2, χλ−k−1/2}V−λ−h

= V−(k−l+1)−h, (43)

[V−λ−h,V−μ−h]q = [V−λ−h, ψ−k−h−1/2]q = 0, (44)

where [O1,O2]q = O1O2 + (−1)qO2O1, we can pull the
electron operator mode ψ−k−h−1/2 even further to the left.
The commutator [χl−1/2,V−λ−h] = [χl−1/2, an] = 0 because
χl−1/2 and V−λ−h (or an) are entities living in different CFT
sectors. When utilizing the relations in Eqs. (41)–(43), it
is clear that new terms appear, where either a ψ or V
mode is either acting directly on 〈out| on the right or is
still separated from 〈out| by a string of modes an and/or
χr−1/2. However, with each application of the commutators,
the string of modes an and/or χr−1/2 separating the ψ or
V mode from 〈out| will get shorter. Hence, eventually, we
will have only terms left where ψ−k−h−1/2 or V−λ−h is acting
directly on 〈out| on the right, followed by a (possibly empty)
string of modes an and/or χr−1/2, followed by the string
ψ−kN −h−1/2 · · · ψ−k1−h−1/2 present in Eq. (40). We should thus
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evaluate 〈out| ψ−k−h−1/2 and 〈out|V−λ−h. It turns out, in treat-
ing the former, we will automatically cover the latter. Hence,
we consider

〈out| ψ−k−h−1/2 = 〈out|
∑

k<λ�q(N−1)

χλ−k−1/2V−λ−h. (45)

The modes χλ−k−1/2 and V−λ−h operate on distinct CFT sec-
tors. Therefore, we can split the expression in the following
manner:

〈out| ψ−k−h−1/2 =
∑

k<λ�q(N−1)

〈out|χ χλ−k−1/2

⊗ 〈out|V V−λ−h. (46)

Now applying V−λ−h to the N-particle state 〈out|V = 〈N |
yields a (N − 1) particle 〈out|V = 〈N − 1| state along with
a collection of bosonic excitations an, with n > 1, as exposed
in Eq. (31). The net result is that Eq. (45) can be written as

〈out|χ ⊗〈N − 1|
q(N−1)∑
λ=k+1

q(N−1)−λ∑
l=0

χλ−k−1/2bl
q(N−1)−λ. (47)

The case 〈out|V−λ−h is similar but without the χ modes and
the sum over λ. As the modes bl

q(N−1)−λ are expressible in
terms of an via Eq. (32), in the end, we are left with a string
a′

n · · · χ ′
r times ψ−kN −h−1/2 · · ·ψ−k1−h−1/2 between the |in〉

and the (N − 1) particle 〈out| (this requires pulling a χ1/2 out
of the original N particle 〈out|χ , Eq. (29), if N is odd). Putting
things together, we infer that Eq. (40) yields a superposition
of terms of the form |ψa′

n···χ ′
r ···

N−1 〉, that is,
√

Nck

∣∣ψan···χr ···
N

〉 =
∑

a′
n···χ ′

r ···

∣∣ψa′
n···χ ′

r ···
N−1

〉
, (48)

where the sum goes over all strings that are generated in
the process described above. As by definition, the stated
|ψan···χr ···

N 〉 spans the spaces WN , this proves Eq. (3) for the
case under consideration, and we are done with the induction
step.

B. The induction beginning: Three-particle zero-mode property

The theorem in Sec. II relies on another prerequisite, the
condition Wk ⊂ H0

k . Technically, this serves as the induction
beginning. Interestingly, it is the only aspect of the theo-
rem that explicitly depends on the Hamiltonian. As we are,
in principle, applying the theorem separately to H2bd

1/q and
H3bd

1/q , we must establish two separate induction beginnings.
We begin with the (more challenging) case of three-particle
Hamiltonian H3bd

1/q . In the present subsection, thus, H0
N refers

to the zero-mode spaces of H3bd
1/q . The condition Wk ⊂ H0

k is
the equivalent to Eq. (36) for N = 3, that is, for all states
|ψan···χr ···

3 〉 with, in principle, an arbitrary number of bosonic
and/or Majorana excitations present. We may, however, in
general limit the number of each type of excitation, bosonic
or Marorana, to be no more than the number of particles N :
A MPS with N particles and more than N edge excitations in
either the Majorana or bosonic sector can always be expressed
as a linear combination of N-particle MPSs with no more than
N excitations of each kind. The proof of this statement for the
bosonic CFT sector is the same as the one presented for the

edge excitations in the Laughlin states in Ref. [35]. The proof
for the Majorana sector is provided in Appendix B. Hence,
any three-particle MR state with more than three excitations
in each CFT sector can be expressed as a linear combination
of states with no more than three excitations in each sector.
Nonetheless, we still need to demonstrate the validity of the
zero-mode condition for the cases where �N excitations are
present in each sector, for N = 3 and 2, according to Eqs. (36)
and (38), respectively. For N = 3, there are three different sce-
narios: one Majorana mode; one Majorana mode, including
χ1/2, and 1, 2, or 3 bosonic modes; and three Majorana modes
with 1, 2, or 3 bosonic modes. Similarly, for the two-body
Hamiltonian, we need to prove that the zero-mode condition
holds for the two-particle states in two different cases: one
or two bosonic modes with no Majorana modes and two
Majorana modes with one or two bosonic modes.

Let us first focus on the case where there is only one
excitation in the Majorana sector. The coefficients of the MPS
representation of the three-particle MR state in Eq. (23) with
a single excitation in the Majorana sector χr−1/2 are

Cr
k1,k2,k3

= 1∏
i li!

∑
λ1,λ2,λ3

〈χr−1/2χλ3−k3−1/2χλ2−k2−1/2

× χλ1−k1−1/2〉〈3|V−λ3−hV−λ2−hV−λ1−h|0〉 , (49)

where li is the number of occurrences of i among k1, k2, k3. If
r = 1, we recover the three-particle densest MR state coeffi-
cients. Plugging in the results from Appendixes B and C, we
find

Cr
k1,k2,k3

= 1∏
i li!

[ ∑
λ2>k2

hq(k1 − r + 1, λ2,−λ2 + k2 + k3 + 1)

−
∑
λ1>k1

hq(λ1, k2 − r + 1,−λ1 + k1 + k3 + 1)

+
∑
λ1>k1

hq(λ1,−λ1 + k1 + k2 + 1, k3 − r + 1)

]
.

(50)

Here, hq is a real function and is defined in Eq. (C3).
The above Eq. (50) can be expressed in a more symmetrical

form as follows:

Cr
k1,k2,k3

= (−1)q∏
i li!

∑
λ>0

[hq(λ + k2, k1 − r + 1,−λ + k3 + 1)

− (−1)qhq(λ + k1, k2 − r + 1,−λ + k3 + 1)

+ hq(λ + k1, k3 − r + 1,−λ + k2 + 1)], (51)

where we rearrange the summation over λ to start at zero for
each of the three terms and permute the arguments of hq while
using the (anti)symmetry in the arguments, adding a factor of
(−1)q for each permutation. All nonzero coefficients possess
angular momentum equal to k1 + k2 + k3 = 3q + r − 2. The
densest N-particle MR state has total angular momentum L =
q(N − 1) − �N/2�, where �� denotes the integer part. As a
consequence, the Majorana excitation χr−1/2 raises the overall
angular momentum of the three-particle system by r − 1.

The zero-mode condition in Eqs. (36) and (38) can be
shown by directly applying T t

J (and Qt
J ) to the three-particle
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MR state. We focus first on the three-body Hamiltonian part:

T t
J

∣∣ψχr
3

〉 = T t
J

∑
{ki}

∏
i li!

3!
Cr

k1,k2,k3
c∗

k1
c∗

k2
c∗

k3
|0〉 . (52)

The three annihilation operators in T t
J are contracted

with the three creation operators in |k3, k2, k1〉. The ex-
change of two of any two arguments of the form factor
f t of T t

J adds a factor phase (−1)t . Therefore, we can
make the replacement f t (m, n, p)cmcncpc∗

k1
c∗

k2
c∗

k3
≡ 3[1 −

(−1)q(−1)t ] f t (m, n, p)δp,k1δn,k2δm,k3 in the resulting sum. As
the symmetry of the form factors (−1)t in Eq. (35) is con-
strained to be the same as that of the particle statistics
(−1)q−1, we have [1 − (−1)q(−1)t ] = 2. Consequently, we
can express the above equation as follows:

〈0| T t
J

∣∣ψχr
3

〉 =
∑

m+n+p=J

f t (m, n, p)

(∏
i

li!

)
Cr

p,n,m. (53)

Observing the commutation properties of hq as detailed in
Appendix C and the symmetry of f t , (−1)t , we find that
we may make the replacement (

∏
i li!) f t (m, n, p)Cr

p,n,m ≡
3 f t (m, n, p)

∑2q
λ=1 hq(λ + n, p − r + 1, m − λ + 1) inside

the sum over m, n, p. The factor of three arises from the
presence of three hq functions in Eq. (51). Therefore, we can
express the equation above as follows:

〈0| T t
J

∣∣ψχr
3

〉 = 3
(−1)q∏

i li!

∑
m+n+p=J

f t (m, n, p)

×
2q∑

λ=1

hq(λ + n, p − r + 1, m − λ + 1)

= 0. (54)

Appendix D demonstrates that the above expression evaluates
to zero.

Let us now examine a situation where there exists a single
bosonic mode excitation and one Majorana excitation. This
analysis will also show that extending the procedure to two or
three bosonic modes is straightforward. The MPS coefficient
for a single excitation in each CFT sector, represented by the
superscripts r, l , can be expressed as

Cr,l
k1,k2,k3

= 1∏
i li!

∑
λ1,λ2,λ3

〈χr−1/2χλ3−k3−1/2χλ2−k2−1/2χλ1−k1−1/2〉

× 〈3|alV−λ3−hV−λ2−hV−λ1−h|0〉 . (55)

By utilizing the commutation relation provided in Eq. (42),
we can derive the following expression for the bosonic-sector

correlator by commuting al to the right:

〈alV−λ3−hV−λ2−hV−λ1−h〉 = √
q
〈
V−λ3+l−hV−λ2−hV−λ1−h

〉
+ √

q
〈
V−λ3−hV−λ2+l−hV−λ1−h

〉
+ √

q
〈
V−λ3−hV−λ2−hV−λ1+l−h

〉
.

(56)

After the substitution of this expression into Eq. (55)
and shifting summation variables, we can rewrite the three-
particles MPS coefficient with a single bosonic and a single
Majorana excitation as follows:

Cr,l
k1,k2,k3

= √
q
(
Cr

k1,k2,k3−l + Cr
k1,k2−l,k3

+ Cr
k1−l,k2,k3

)
. (57)

Hence, we conclude that the state with MPS coefficients as
defined in Eq. (55) can be expressed as follows:∑

(ki )3

Cr,l
k1,k2,k3

|k3, k2, k1〉 = √
qpl

∑
(ki )3

Cr
k1,k2,k3

|k3, k2, k1〉 ,

(58)

where (ki )3 is defined in Eq. (21), and pl is the operator pl =∑
k c∗

k+l ck , whose action within the variational subspace thus
has the same effect as the addition of a bosonic field al in the
MPS description. It is well known [34] that, more generally,
this operator facilitates the multiplication with the power-sum
polynomial

∑N
i=1 zl

i in first quantization.
It turns out that the state in Eq. (58) is annihilated by T t

J .
This happens because[

T t
J , pl

] =
∑

m+n+p=J−l

gt,l (m, n, p)cmcncp. (59)

Here, the form factor gt,l (m, n, p), defined as gt,l (m, n, p) =
f t (m, n, p + l ) + f t (m, n + l, p) + f t (m + l, n, p), has the
same symmetry as f t (m, n, p) and likewise depends only on
the variables (m − n), (m − p), and (n − p). The operator on
the left-hand side of Eq. (59) thus closely resembles T t

J , dif-
fering only in the form factor and the decreased total angular
momentum from J to J − l . In Eq. (54), we had previously
proven that T t

J annihilates three-particle states with one Ma-
jorana mode for an arbitrary value of J . Since gt,l shares the
same essential properties with f t , the same demonstration can
be performed by substituting f t with gt,l . Therefore, when
T t

J is applied to the state in question, the result is zero. This
argument can be repeated systematically in the presence of
multiple bosonic modes excitations.

We can apply the same methodology used for the case with
one Majorana mode to obtain the outcome for the state of three
particles with three excitations in the Majorana sector, specif-
ically χr3−1/2, χr2−1/2, and χr1−1/2. The MPS coefficient of
this state is

Cr1,r2,r3
k1,k2,k3

= 1∏
i li!

[hq(k1 − r1 + 1, k2 − r2 + 1, k3 − r3 + 1) − (−1)qhq(k2 − r1 + 1, k1 − r2 + 1, k3 − r3 + 1)

+ (k1, k2, k3) → (k2, k3, k1) + (k1, k2, k3) → (k3, k1, k2)]. (60)
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The operators T t
J can be applied to the MR state

with three excitations in the Majorana sector, like what
was done in Eq. (53). However, this time, the re-
sulting replacement inside sums over of m, n, and p
is

∏
i li! f t (m, n, p)Cr1,r2,r3

p,n,m ≡ 6 f t (m, n, p)hq(p − r1 + 1, n −
r2 + 1, m − r3 + 1). This yields

〈0| T t
J

∣∣ψχr1 ,χr2 ,χr3
3

〉 = 6
∑

m+n+p=J

f t (m, n, p)

× hq(p− r1 + 1, n − r2 + 1, m − r3 + 1)

= 0. (61)

Appendix E demonstrates that the above equation evaluates to
zero.

It remains again to consider the introduction of bosonic
modes an. Introducing any number of an modes to the bosonic
sector will solely result in negative integers being added to
each index of the vertex operators. For instance, the first term
in Eq. (60) would be a linear combination of terms hq(k1 −
r1 − n1 + 1, k2 − r2 − n2 + 1, k3 − r3 − n3 + 1). It is evident
that we can redefine ri + ni → ri. Given that the r′

is are es-
sentially arbitrary, the MPS coefficients that are written in
Eq. (60) above already account for the addition of any number
of edge excitations in the bosonic sector when considering
three excitations in the Majorana sector.

C. The induction beginning: Two-particle zero-mode property

It remains to fully demonstrate the application of the theo-
rem to the two-body Hamiltonian H2bd

1/q . To this end, we must
also establish Wk ⊂ H0

k for this case, where in this subsection,
H0

N denotes the zero-mode spaces of H2bd
1/q . To do so, we start

with the general MR MPS state of two particles, which can be
expressed as ∣∣ψan...,χl ...

2

〉 =
∑
k1,k2

C{r,n}
k1,k2

|k1, k2〉 , (62)

where the indices r, n represent the edge excitations in the Ma-
jorana and bosonic sectors, respectively. It is important to note
that any MR state of two particles can be written as a linear
combination of states with two or no Majorana excitations up
to two arbitrary bosonic excitations. We first demonstrate the
zero-mode condition for a state with two excitations in the
Majorana sector. The corresponding MPS coefficient is

Cr1,r2
k1,k2

=
∑
λ1,λ2

〈χr1−1/2χr2−1/2χλ2−k2−1/2χλ1−k1−1/2〉

× 〈2|V−λ2−hV−λ1−h|0〉 . (63)

Utilizing Eq. (B5) for the correlator of Majorana modes,
we obtain

Cr1,r2
k1,k2

= 〈2|V−(k2−r2+1)−hV−(k1−r1+1)−h|0〉
− 〈2|V−(k2−r1+1)−hV−(k1−r2+1)−h|0〉 . (64)

Note that each of these MPS coefficients (where ri � 1) are
exactly in the same form as the Laughlin two-particle MPS
coefficients described in Ref. [35], where the zero mode
condition has already been proven for the same two-body
Hamiltonian. Therefore,

Qm
J

∣∣ψχr1,χr2
2

〉 = 0. (65)

By analogy with the MR state with three particles, we can also
redefine r1 and r2 upon introduction of one or two bosonic
excitations. Using the result from Eq. (65) shows that the
two-particle MR state with two Majorana and two bosonic
excitations then satisfies the zero mode condition for the two-
body Hamiltonian Qm

J .
In the following, we will prove that this statement remains

valid for the MR state of two particles and exclusively bosonic
excitations. The MPS of this state is

Cn,l
k1,k2

=
∑
λ1,λ2

〈χλ2−k2−1/2χλ1−k1−1/2〉〈2|V−λ2+n−hV−λ1+l−h|0〉

=
k1∑

λ=0

〈2|V−(−λ+k1+k2+1)+n−hV−λ+l−h|0〉 . (66)

The third line of this equation is obtained through the
contraction of two Majorana fields: 〈χλ2−k2−1/2χλ1−k1−1/2〉 =
δλ1−k1+λ2−k2,1, under the additional constrain that λ2 − k2 � 1.
To calculate the correlator of two vertex modes, we can
use the last equation from Appendix B of Ref. [35]:
〈2, 0|V−a−hV−b−h|0〉 = δq,a+b(−1)b

(q
b

)
. Consequently, we

obtain

Cn,l
k1,k2

= δq−1+n+l,k1+k2 (−1)k1−l

(
q − 1

k1 − l

)
. (67)

To obtain this closed form, we utilized the identity of the
alternating sums and differences of binomial coefficients up
to k, which states that

k∑
λ=0

(−1)λ
(

q

λ

)
= (−1)k

(
q − 1

k

)
. (68)

Plugging the coefficient from Eq. (67) into Eq. (62), we
obtain

〈0| Qm
J

∣∣ψan,al
2

〉 =
J/2∑

x=−J/2

xm
Cn,l

k1,k2

2
〈0| cJ/2−xcJ/2+xc∗

k1
c∗

k2
|0〉

=
J/2∑

x=−J/2

xm Ck1,k2

2
[δJ/2+x,k1δJ/2−x,k2 + (−1)q−1δJ/2−x,k1δJ/2+x,k2 ]

=
J/2∑

x=−J/2

xmδq−1+n+l,k1+k2 (−1)k1−l

(
q − 1

k1 − l

)
δJ/2+x,k1δJ/2−x,k2
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= δq−1+n+l,J

q−1+n∑
x=−l

(
x − q − 1 + n − l

2

)m

(−1)x

(
q − 1

x

)

= 0, if m < q − 1. (69)

Here, in going to the final line, we used Eq. (D3), cf. Ref. [74].
The Qm

J operators in the MR two-body Hamiltonian [Eq. (37)]
are limited to m < q − 1. This implies that the two-particle
MR state with two or fewer (n, l can assume zero value)
bosonic excitations satisfies the zero-mode condition. Hence,
we have shown that the two-body Hamiltonian in Eq. (37)
stabilizes the MR state with any number of excitations in both
CFT sectors.

Taken together, we have now shown using the theorem that
the MPS states lie in the intersection of the zero-mode spaces
of both H2bd

1/q and H3bd
1/q ; thus, the MPS variational spaces WN

comprise zero modes of the full Hamiltonian H1/q, Eq. (39).

V. CONCLUSIONS

We have proven a theorem that may establish the exis-
tence of a frustration-free parent Hamiltonian in situations
where the direct application of such a Hamiltonian to trial
ground-state wave functions presents significant challenges.
A major motivation for this theorem derives from scenarios
in which trial wave functions take the form of infinite bond-
dimension MPSs generated by CFT, as are well known to
emerge in the realm of FQH physics. The need for such a
theorem is evident from the fact that traditional MPSs with

finite bond dimensions have historically been well suited for
constructing parent Hamiltonians. Conversely, the connection
between these Hamiltonians and infinite-dimensional MPSs
has remained somewhat unclear in the FQH literature. We
have extensively discussed the utility of our theorem in the
context of the non-Abelian MR state. We submit that this
utility extends beyond LLL CFT-inspired wave functions. For
instance, in mixed Landau levels, there exists an abundance
of promising parton states [75–84] that should meet the same
conditions required by our theorem whenever a parent Hamil-
tonian exists. There is, moreover, no particular reason why our
theorem should be limited in application to the FQH regime
or, more generally, to quasi-1D Hamiltonians. We are thus
hopeful that the progress made in this paper may open up
avenues for the creation of solvable models.
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APPENDIX A: THE PRODUCT OF T r AND N̂

In this Appendix, we demonstrate Eq. (4). This identity can be simply obtained by calculating the product between the
operators Tr and N̂ as follows:

TrN̂ =
∑
j1··· jk

∑
j

ηr
j1··· jk c j1 · · · c jk c∗

j c j

=
∑
j1··· jk

∑
j

ηr
j1··· jk c j1 · · · [δ jk , j + (−1)ξ c∗

j c jk ]c j

=
∑
j1··· jk

ηr
j1··· jk c j1 · · · c jk + (−1)ξ

∑
j1··· jk

∑
j

ηr
j1··· jk c j1 · · · c∗

j c jk c j

...

= k
∑
j1··· jk

ηr
j1··· jk c j1 · · · c jk + (−1)kξ

∑
j1··· jk

∑
j

ηr
j1··· jk c∗

j c j1 · · · c jk c j

= kTr + (−1)kξ
∑

j

c∗
j Trc j . (A1)

In the second line, we used the canonical commutation relation between c∗
j and c jk . In the fourth line, we repeatedly applied the

commutation relation for c∗
j and c ji , where i = 1, . . . , k − 1. It is important to note that c ji c j = (−1)ξ c jc ji , ensuring that each

term with the string of operators c j1 · · · c jk has the phase (−1)ξ canceled out. The final result is derived by invoking the definition
of Tr .
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APPENDIX B: WICK EXPANSION OF CORRELATORS

This Appendix presents the Wick expansions of the correlators of the modes in the Majorana sector that are used in the
main text. These are related to MPS coefficients for two and three particles with considering 1, 2, or 3 Majorana excitations,
respectively. Furthermore, we demonstrate that a MR MPS with N particles and with any number of excitations in the Majorana
sector can be expressed as a linear combination of such MPSs with only N excitations.

The correlator of the three-particle Majorana modes with one excitation is given by

〈0|χr1−1/2χl3−1/2χl2−1/2χl1−1/2|0〉 = 〈0|χr1−1/2χl3−1/2|0〉 〈0|χl2−1/2χl1−1/2|0〉 − 〈0|χr1−1/2χl2−1/2|0〉 〈0|χl3−1/2χl1−1/2|0〉
+ 〈0|χr1−1/2χl1−1/2|0〉 〈0|χl3−1/2χl2−1/2|0〉

= θ (l2 − 1)δl3,−r1+1δl1,−l2+1 − θ (l1 − 1)δl2,−r1+1δl1,−l3+1 + θ (l1 − 1)δl1,−r1+1δl2,−l3+1, (B1)

where r1 � 1, and

θ (x) =
{

0, if x < 0,

1, if x � 0 (B2)

is the Heaviside function. This effectively restricts the Majorana mode indexes to

l2 � 1, for the first term,

l1 � 1, for the second term,

l1 � 1, for the third term. (B3)

The correlator of the three-particle Majorana modes with three excitations is

〈0|χr3−1/2χr2−1/2χr1−1/2χl1−1/2χl2−1/2χl3−1/2|0〉 = 〈0|χr1−1/2χl1−1/2|0〉 〈0|χr2−1/2χl2−1/2|0〉 〈0|χr3−1/2χl3−1/2|0〉
− 〈0|χr1−1/2χl2−1/2|0〉 〈0|χr2−1/2χl1−1/2|0〉 〈0|χr3−1/2χl3−1/2|0〉
+ 〈0|χr1−1/2χl2−1/2|0〉 〈0|χr2−1/2χl3−1/2|0〉 〈0|χr3−1/2χl1−1/2|0〉
− 〈0|χr1−1/2χl3−1/2|0〉 〈0|χr2−1/2χl2−1/2|0〉 〈0|χr3−1/2χl1−1/2|0〉
+ 〈0|χr1−1/2χl3−1/2|0〉 〈0|χr2−1/2χl1−1/2|0〉 〈0|χr3−1/2χl2−1/2|0〉
− 〈0|χr1−1/2χl1−1/2|0〉 〈0|χr2−1/2χl3−1/2|0〉 〈0|χr3−1/2χl2−1/2|0〉

= δ−r1,l1−1δ−r2,l2−1δ−r3,l3−1 − δ−r1,l2−1δ−r2,l1−1δ−r3,l3−1

+ δ−r1,l2−1δ−r2,l3−1δ−r3,l1−1 − δ−r1,l3−1δ−r2,l2−1δ−r3,l1−1

+ δ−r1,l3−1δ−r2,l1−1δ−r3,l2−1 − δ−r1,l1−1δ−r2,l3−1δ−r3,l2−1, (B4)

where ri � 1 in the terms above.
The correlator of the two-particle Majorana modes with two excitations is

〈χr1−1/2χr2−1/2χl2−1/2χl1−1/2〉 = 〈0|χr1−1/2χl1−1/2|0〉〈0|χr2−1/2χl2−1/2|0〉 − 〈0|χr1−1/2χl2−1/2|0〉〈0|χr2−1/2χl1−1/2|0〉
= δl1,−r1+1δl2,−r2+1 − δl2,−r1+1δl1,−r2+1. (B5)

As mentioned before, the equations presented above require that ri � 1 since 〈0| χri−1/2 would otherwise be zero.
We will now demonstrate that any number of excitations in the three-particle MR state can be expressed in terms of one

or three excitations. Suppose we add two more excitations, χr4−1/2 and χr5−1/2, to the correlator of the three-particle Majorana
modes with three excitations. Because there are three modes from three particles and five excitation modes in total, when we
apply Wick’s theorem, each term in the expansion will contain a factor that involves the correlator of two Majorana modes with
excitation indices 〈χri−1/2, χr j−1/2〉. However, because of the anticommutation relation for the χ ′

rs and the relations in Eq. (17),
this factor will be either zero or one. Thus, we have demonstrated that any combination of excitations can always be expressed as
a linear combination of three excitations or fewer. Moreover, for N particles, N Majorana mode excitations or fewer are required.

APPENDIX C: THREE-VERTEX CORRELATOR

In this Appendix, we will compute the correlator of three vertex operators and express it in terms of a simple real function hq.
This result is useful in demonstrating the zero-mode property of the MR state with three particles. The correlator of three vertex
modes is

〈3|V−a−hV−b−hV−c−h|0〉 = 1

(2π i)3

∮
dz1

za+1
1

∮
dz2

zb+1
2

∮
dz3

zc+1
3

〈3|V (z1)V (z2)V (z3)|0〉

= 1

(2π i)3

∮
dz1

za+1
1

∮
dz2

zb+1
2

∮
dz3

zc+1
3

(z1 − z2)q(z1 − z3)q(z2 − z3)q
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=
q∑

k1,k2,k3=0

(−1)k1+k2+k3

(
q

k1

)(
q

k2

)(
q

k3

) ∮
dz1

2π i

∮
dz2

2π i

∮
dz3

2π i

z2q−k1−k2
1

za+1
1

zq+k1−k3
2

zb+1
2

zk2+k3
3

zc+1
3

=
q∑

k1,k2,k3=0

(−1)k1+k2+k3

(
q

k1

)(
q

k2

)(
q

k3

)
δ2q−k1−k2,aδq+k1−k3,bδk2+k3,c

= δ3q,a+b+c

q∑
k=0

(−1)k+c

(
q

k

)(
q

a + k − q

)(
q

b − k

)
. (C1)

The binomial expansion was applied in the second line to obtain the expression in the third line. It is important to note that the
following restrictions must be imposed to ensure nonzero results:

0 � a, b, c � 2q. (C2)

These restrictions arise due to the addition of a background charge of three units in the out state and zero units in the in state,
which constrains the angular momentum associated with any vertex mode above [35]. To reduce notation, we define

hq(a, b, c)
.= 〈3|V−a−hV−b−hV−c−h|0〉 . (C3)

The commutation properties of the modes of the vertex operator are also reflected by the (anti)symmetry of the real function hq

as follows: hq(a, b, c) = (−1)qhq(b, a, c) = (−1)qhq(c, b, a) = hq(c, a, b).

APPENDIX D: N = 3 ZERO-MODE PROPERTY WITH SINGLE MAJORANA MODE

In this Appendix, we demonstrate that the three-body operator T t
J annihilates a MR state with three particles and a single

Majorana mode excitation. In this proof, we compute the overlap of the resulting zero-particle state T t
J |ψ r

3〉 with the vacuum.
This overlap is

〈0| T t
J

∣∣ψχr
3

〉 = 3δ3q+r−2,J

∑
m+n+p=J

2q∑
λ=1

(m − n)t1 (m − p)t2 (n − p)t3

×
q∑

k=0

(
q

k

)
(−1)k−λ+m+1

(
q

k + n − q + λ

)(
q

−k + p − r + 1

)
(D1a)

= 3
∑

0�k,p�q

3q+r−2∑
n=0

(−1)k−p(3q − k − 2n − p − 1)t1 (n − k − p − r + 1)t2 (3q − 2k − n − 2p − r)t3

(
q

k

)(
q

p

)

×
q∑

λ=1+n+k−q

(−1)−λ

(
q

λ

)
(D1b)

= −3
∑

0�k,p�q

3q+r−2∑
n=0

(−1)q−p−n(3q − k − 2n − p − 1)t1 (n − k − p − r + 1)t2 (3q − 2k − n − 2p − r)t3

×
(

q

k

)(
q

p

)(
q − 1

k + n − q

)
(D1c)

= −3
∑

0�k,p�q

q−1∑
n=0

(−1)k+n+p(k − 2n − p + q − 1)t1 (q + n − 2k − p − r + 1)t2 (2q − k − n − 2p − r)t3

×
(

q − 1

n

)(
q

p

)(
q

k

)
(D1d)

= 0 ♦ (D1e)

We performed a change of variables on p → p + r − 1 + k and λ → λ − 1 − n − k + q in Eq. (D1b)—the range of the sums
is changed using the binomial coefficient equal to 0 if its lower index is negative and following to restrict the range of the sum.
In Eq. (D1c), we used the identity:

q∑
λ=1+ j

(−1)−λ

(
q

λ

)
= −(−1)− j

(
q − 1

j

)
. (D2)
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One can derive this identity by splitting the Kronecker δ sum realization δq,0 = ∑q
λ=0(−1)−λ

(q
λ

)
into two parts: from 0 to j and

from j + 1 to q. Then by applying the alternating sum and difference of binomial coefficient up to k identity [Eq. (68)], the
desired result is obtained. In Eq. (D1d), we substituted the variable n and adjusted the limits of the sum. The final result, in
Eq. (D1e), was obtained using the relation [74]:

β∑
i=0

(−1)i

(
β

i

)
iα = 0, for 0 � α < β. (D3)

Expanding the polynomial in Eq. (D1d) into monomials on the variables k, n, and p, we observe that, for each monomial, at least
one of the powers of k, n, or p is <q or q − 1 since the maximum power of the polynomial is t = 3q − 3. Using the relation in
Eq. (D3), we can conclude that at least one sum in k, n, or p is zero. Therefore, the overlap above is zero.

APPENDIX E: N = 3 ZERO-MODE PROPERTY WITH THREE MAJORANA MODES

In this Appendix, we demonstrate that the three-body operator T t
J annihilates a MR state with three particles and three

Majorana modes excitations. In this proof, we compute the overlap of the resulting zero-particle state T t
J |ψ r

3〉 with the vacuum.
This overlap is

〈0|T t
J

∣∣ψχr1 ,χr2 ,χr3
3

〉 = 6δJ,3q+r1+r2+r3−3

q∑
k=0

∑
m+n+p=J

(m − n)t1 (m − p)t2 (n − p)t3 (−1)k+m−r3+1

×
(

q

k

)(
q

p − r1 + 1 + k − q

)(
q

n − r2 + 1 − k

)
(E1a)

= 6δJ,3q+r1+r2+r3−3

q∑
k=0

J−r1+1+k−q∑
p=−r1+1−k−q

J−r2+1−k∑
n=−r2+1−k

J∑
m=0

(
q

k

)(
q

n

)(
q

p

)
(−1)k+m−r3+1(−k + m − n − r2 + 1)t1

× (k + m − p − q − r1 + 1)t2 (2k + n − p − q − r1 + r2)t3 (E1b)

= 6
∑

0�k,p,n�q

(
q

k

)(
q

n

)(
q

p

)
(−1)k+n+p(2k + n − p − q − r1 + r2)t1

× (k − n − 2p + q − r1 + r3)t2 (2q − k − 2n − p − r2 + r3)t3 (E1c)

= 0 ♦ (E1d)

We performed a change of variables in Eq. (E1a) and then used the binomial factor to restrict the range of the sum to obtain
Eq. (E1b). The result in Eq. (E1c) was obtained using a similar argument as in Appendix D. Expanding the polynomial in
Eq. (E1c) into monomials on the variables k, n, and p, we observe that, for each monomial, at least one of the powers of k, n,
or p is <q or q − 1 since the maximum power of the polynomial is t = 3q − 3. Using the relation in Eq. (D3), we can conclude
that at least one sum in k, n, or p is zero. Therefore, the overlap above is zero.
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