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Site-selective insulating phase in a twisted bilayer Hubbard model
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The paramagnetic phase diagrams of the half-filled Hubbard model on a twisted bilayer square lattice
are investigated using the coherent potential approximation. In addition to the conventional metallic, band
insulating, and Mott insulating phases, we find two site-selective insulating phases where certain sites exhibit
band insulating behaviors while the others display Mott insulating behaviors. These phases are identified by
the band gap, the double occupancy, the density of states, as well as the imaginary part of the self-energy.
Furthermore, we examine the effect of on-site potential on the stability of the site-selective insulating phases.
Our results indicate that fruitful site-selective phases can be engineered by twisting.
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I. INTRODUCTION

Layered systems with twists have recently attracted a great
deal of attention due to the discovery of numerous fascinating
quantum phases, such as the Mott insulator [1–5], supercon-
ductivity [6,7], and topological phases [8–10]. Meanwhile, the
Hubbard model, employed to study various intriguing phases
including the Mott insulator [11], the orbital-selective phase
[12–15], the bond-ordered insulator [16,17], superconductiv-
ity [18,19], antiferromagnetism [20–22], etc., has received
significant interest for decades. Therefore, introducing twists
in the Hubbard model may induce novel phases, which are
currently hot topics. Until now, much effort has been spent
on the Hubbard model describing twisted transition-metal
dichalcogenides [23–27] or twisted bilayer graphene [28],
predicting numbers of correlated phases. In addition, a few
works investigate the Hubbard model on twisted bilayer
square lattices, but they focus primarily on superconduct-
ing phase transitions [29,30]. However, the phase transitions
among Mott insulators, band insulators, and metal in the
Hubbard model on a twisted bilayer square lattice remain
unexplored.

As we know, even for the untwisted bilayer Hubbard
model, the phase transitions at half filling are fascinating and
have been widely investigated. Such a model can not only
describe high-temperature cuprate superconductors [31], but
it can also be experimentally realized through fermionic atoms
trapped in an optical lattice [32]. Quantum Monte Carlo sim-
ulations have revealed that the interlayer hopping suppresses
intralayer long-range magnetic order in such a model on the
square lattice [33]. Applying dynamical mean-field theory
to the bilayer Hubbard model on a Bethe lattice, a smooth
crossover between band and Mott insulators is discovered
within the paramagnetic phase diagram [34]. Furthermore,
the magnetic phase diagram of this model on a square
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lattice is explored by cluster dynamical mean-field theory [35]
and quantum Monte Carlo simulations [36,37], where strong
on-site Coulomb interaction localizes electrons with weak
interlayer hopping, favoring a Mott insulator, while strong
interlayer hopping opens a gap between the bonding and an-
tibonding bands, resulting in a band insulator. Although these
works [35–37] also suggest a paramagnetic metallic phase
in the magnetic phase diagram when both on-site Coulomb
interaction and interlayer hopping are weak, further investiga-
tions clarify it as an antiferromagnetic insulating phase due to
the perfect nesting property of the Fermi surface within the
noninteracting system [38,39]. In contrast, a metallic phase
can appear in the paramagnetic phase diagram with weak
on-site Coulomb interaction present [39]. In addition to these
findings, superconductivity [40–46], non-Fermi-liquid [47],
density-ordered and superfluid phases [48] have also been
reported in the bilayer Hubbard model or its extended versions
as doping away from half-filling.

When the twist is applied to the layered systems, the
well-known moiré pattern emerges, giving rise to distinct hop-
pings present at the inequivalent sublattices due to different
atomic environments. In fact, distinct hoppings on different
sublattices may cause a site-selective phase. A typical ex-
ample is that bond-length disproportionation, corresponding
to inequivalent sublattices having distinct hoppings, leads to
a site-selective insulating phase in RNiO3 (R = Sm, Eu, Y,
or Lu), where certain Ni atoms exhibit a magnetic Mott in-
sulating state while the remaining Ni atoms form a singlet
insulating state [49]. Moreover, site-selective magnetic phases
have also been reported in other materials with inequivalent
sublattices [50,51]. Given that the interlayer hoppings favor
a band insulator in a bilayer square lattice, the instabilities
of the band insulating state against the Mott insulator on
inequivalent sublattices of a twisted bilayer square lattice
may be different in the presence of a strong on-site Coulomb
interaction due to distinct interlayer hoppings. Therefore, a
site-selective insulating phase is likely to appear in such a
twisted system, characterized by some sites entering a Mott
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FIG. 1. The structure of a bilayer square lattice (top view) with
a twisted angle of θ = 53.13◦, where different interlayer hoppings
are also shown, including interlayer nearest-neighbor hopping t⊥,
interlayer next-nearest-neighbor hopping t1, and interlayer third-
nearest-neighbor hopping t2. There are two types of inequivalent
sites within the supercell, containing two overlapping sites and eight
nonoverlapping sites (as viewed from the top), which are located in
region O (green) and region N (light orange), respectively.

insulating state while others remain in a band insulating
state.

In this paper, we aim to point out the presence of site-
selective insulating phases in the half-filled Hubbard model
on a twisted bilayer square lattice. To this end, taking the
case with a twisted angle of θ = 53.13◦ as an example, we
investigate the paramagnetic phase diagrams of this model
under the combined effect of on-site Coulomb interaction and
various interlayer hoppings using the coherent potential ap-
proximation (CPA). Interestingly, we obtain two site-selective
insulating phases, where certain sites exhibit band insulat-
ing states while the rest display Mott insulating states, when
one type of interlayer hopping is strong while the remaining
interlayer hoppings are weak if the strong on-site Coulomb
interaction is involved. In addition, we also discover Mott
insulating, band insulating, and metallic phases in this model,
which have been observed in the untwisted bilayer Hubbard
model as well. The Mott insulating phase emerges when
strong on-site Coulomb interaction wins over all the weak
interlayer hoppings. In contrast, strong t⊥, either in cooper-
ation with strong t1 or strong t2, favors the band insulating
phase (the definitions of t⊥, t1, and t2 can be found in Fig. 1).
Furthermore, we have illustrated that the site-selective insu-
lating phases are stable even in the presence of a moderate
site-dependent on-site potential. Our findings not only demon-
strate a fascinating phenomenon that the band insulating state
and Mott insulating state can coexist in twisted strongly cor-
related systems, but they also suggest twist as an effective
approach to access a site-selective phase.

The rest of this paper is organized as follows: Section II
describes the details of the structure, the model, and the
method we used. Section III demonstrates our primary results,
including the paramagnetic phase diagrams under different
parameters, the gaps and double occupancies as functions of
various interlayer hoppings, the density of states (DOS), the
imaginary part of the self-energy, the DOS at the Fermi level
varied with the Lorentzian broadening factor, as well as the
effect of an on-site potential difference on the stability of the
site-selective phases. Section IV includes a discussion of our
results, and Sec. V concludes with a summary.

II. MODEL AND METHOD

To demonstrate the presence of site-selective insulating
phases in the half-filled Hubbard model on a twisted bilayer
square lattice, we take the case with a twisted angle of θ =
53.13◦ as an example since it is the smallest commensurate
structure of a twisted bilayer square lattice as presented in
Fig. 1, which has also been used to study the superconducting
phase transitions [29]. According to the atomic environment,
two types of inequivalent sites are distinguished within the
supercell, containing two overlapping sites and eight nonover-
lapping sites (as viewed from the top), which are located at
region O (green) and region N (light orange), respectively.
Then, the Hamiltonian can be written as

H = Hk + H⊥ + H� + Hμ + HU (1)

with

Hk = −t0
∑
mσ

∑
〈is, js′〉

C†
ismσCjs′mσ ,

H⊥ = −t⊥
∑

iσ

(C†
iA1σCiA2σ + H.c.)

− t1
∑

iσ

∑
〈〈s,s′〉〉

(C†
is1σCis′2σ + H.c.)

− t2
∑

iσ

∑
〈〈〈s,s′〉〉〉

(C†
is1σCis′2σ + H.c.),

H� = �O

∑
imσ

niAmσ + �N

∑
imσ

∑
s∈N

nismσ ,

Hμ = −μ
∑
ismσ

nismσ ,

HU = U
∑
ism

nism↑nism↓, (2)

where Hk is the Hamiltonian of the intralayer nearest-neighbor
hopping. H⊥ is the Hamiltonian describing interlayer nearest-
neighbor, next-nearest-neighbor, and third-nearest-neighbor
hoppings. H� and Hμ denote separately the energies of
the on-site potential and the chemical potential. HU depicts
the on-site Coulomb repulsive interaction between spin-up
and spin-down electrons. Here, i( j), s(s′), m, and σ de-
note separately the cell, sublattice, layer, and spin indexes.
〈is, js′〉, 〈〈s, s′〉〉, and 〈〈〈s, s′〉〉〉 stand for the summations
over the intralayer nearest-neighbor sites, interlayer next-
nearest-neighbor sites, and interlayer third-nearest-neighbor
sites, respectively. t0 and t⊥(t1, t2) represent individually the
intralayer nearest-neighbor hopping integral and the interlayer
nearest (next-nearest, third-nearest)-neighbor hopping inte-
gral. �O and �N are on-site potentials of the inequivalent
sublattices. μ is the chemical potential, and U is the on-site
Coulomb repulsive interaction.

We now introduce how to employ the CPA to solve this
many-body Hamiltonian. Hubbard views the electron correla-
tion problem as a disordered alloy where an electron with spin
σ moving in the system encounters either a potential of U at
a site with a spin σ̄ present or 0 without [52]. Then, the alloy
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analogy of this Hubbard model has the following form:

HA = Hk + H⊥ + H� + Hμ +
∑
ismσ

Eismσ nismσ , (3)

where Eismσ is a disordered potential depending on the pres-
ence of a spin σ̄ . Specifically, Eismσ = U with a probability
of PU = 〈nismσ̄ 〉 or Eismσ = 0 with a probability of P0 = 1 −
〈nismσ̄ 〉. The Green’s function of this disordered model ne-
cessitates the computation of an average over all possible
disordered configurations. However, performing this calcula-
tion exactly is impossible, and the CPA should be employed
to solve this alloy problem [53–55]. Within the framework
of the CPA, the disordered alloy is self-consistently mapped
into an effective medium, i.e., the disordered potential Eismσ

is substituted with an energy-dependent, site-diagonal, and
translationally invariant self-energy �smσ . Then, the Hamil-
tonian of the effective medium within the CPA becomes

Heff = Hk + H⊥ + H� + Hμ +
∑
ismσ

�smσ nismσ . (4)

The detailed mapping from model (3) to model (4) is given in
Appendix. Noticeably, despite some inherent limitations [56],
the CPA remains valuable as a reliable and computationally
cheap method for capturing the phase transitions among a
band insulator, metal, and Mott insulator in many-body sys-
tems. For example, the CPA successfully reproduces the phase
diagram of the ionic Hubbard model at half-filling [57,58],
the critical on-site Coulomb interaction for the Mott transition
on the honeycomb lattice at half-filling obtained by the CPA
[59] is consistent with the results of the quantum Monte Carlo
simulations [60–62] and cluster dynamical mean-field theory
[63,64], and the experimental discrepancies of the gap in both
bilayer graphene [65,66] and graphene/h-BN heterostructure
[67,68] have been successfully understood by employing the
CPA to investigate their phase diagrams [69,70].

III. RESULTS

Now, we will demonstrate the presence of site-selective
insulating phases in the paramagnetic phase diagrams of
the half-filled Hubbard model on this twisted bilayer square
lattice. To this end, we employ the CPA to calculate the para-
magnetic phase diagrams of this model under the combined
effect of on-site Coulomb interaction and various interlayer
hoppings, where three interlayer hoppings are concerned,
including interlayer nearest-neighbor hopping t⊥, interlayer
next-nearest-neighbor hopping t1, and interlayer third-nearest-
neighbor hopping t2. Figure 2(a) illustrates the phase diagram
in the U/t0-t⊥/t0 plane at t1/t0 = t2/t0 = 0. As can be seen,
when interlayer hoppings are absent, equivalent to two unre-
lated monolayer square lattices, the system undergoes a phase
transition from metal to Mott insulator with increasing on-site
Coulomb interaction, consistent with the results obtained by
other methods [39,71,72]. Thus, the CPA provides reliable
results for two irrelevant monolayer square lattices, and we go
on with the case of interlayer hoppings present. Remarkably,
a site-selective insulating phase (BI+MI), where overlapping
sites exhibit a band insulating state while nonoverlapping
sites display a Mott insulating state, emerges at the re-
gion of strong on-site Coulomb interaction if the interlayer

FIG. 2. The paramagnetic phase diagrams of the half-filled Hub-
bard model on a twisted bilayer square lattice, involving (a) the
U/t0-t⊥/t0 plane at t1/t0 = t2/t0 = 0, (b) the t1/t0-t⊥/t0 plane when
U = 6t0 and t2/t0 = 0, (c) the t2/t0-t⊥/t0 plane when U = 6t0 and
t1/t0 = 0, and (d) the (t1/t0 = t2/t0 )-t⊥/t0 plane at U = 6t0. t0

and t⊥ (t1, t2) are individually the intralayer and interlayer nearest
(next-nearest, third-nearest)-neighbor hopping integrals. BI, MI, and
BI+MI (MI+BI) denote the band insulating phase, Mott insulating
phase, and site-selective insulating phase, respectively. Noticeably,
BI+MI and MI+BI are two distinct site-selective insulating phases.
Specifically, BI+MI (MI+BI) describes a site-selective insulating
phase where the overlapping sites (located at region O) exhibit a
band (Mott) insulating state while the nonoverlapping sites (located
at region N) manifest a Mott (band) insulating state.

nearest-neighbor hopping t⊥ exceeds a critical value. This
is because a strong t⊥ generates interlayer singlets at the
overlapping sites, corresponding to the appearance of a band
insulating state there [37,39], while a strong on-site Coulomb
interaction U stabilizes a Mott insulator state at nonoverlap-
ping sites due to the lack of interlayer hoppings.

Figures 2(b) and 2(c) demonstrate the phase diagrams in
the t1/t0-t⊥/t0 plane at t2/t0 = 0 and the t2/t0-t⊥/t0 plane at
t1/t0 = 0, respectively, under a strong on-site Coulomb in-
teraction of U = 6t0. Interestingly, two distinct site-selective
insulating phases are observed in both phase diagrams, specif-
ically BI+MI and MI+BI, where MI+BI is the counterpart
phase of BI+MI. In MI+BI, a Mott (band) insulating state
is replaced by a band (Mott) insulating state at specific sites
compared with BI+MI. Besides, despite slight differences in
the phase boundaries, both phase diagrams contain the same
phases. This happens because increasing either t1 or t2 will
destroy the Mott insulating state at nonoverlapping sites and
subsequently form a band insulating state there. Consequently,
as either t1 or t2 is increased, the system experiences phase
transitions from the Mott insulating phase to a metallic phase
and then into MI+BI for a weak t⊥ while it evolves from
BI+MI to a metallic phase and then into the band insulating
phase for a strong t⊥.

The phase diagram in the (t1/t0 = t2/t0)-t⊥/t0 plane is
also investigated when U = 6t0 as illustrated in Fig. 2(d).
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FIG. 3. The band gaps as functions of various interlayer hop-
pings. (a) The band gap varies with interlayer nearest-neighbor
hopping t⊥ when t1/t0 = t2/t0 = 0 and U = 6t0. (b) Band gaps as
functions of interlayer next-nearest-neighbor hopping t1 for two in-
dicated t⊥ values, namely 0t0 (solid line) and 6t0 (dotted line), where
t2/t0 = 0 and U = 6t0 are used. (c) Band gaps as functions of inter-
layer third-nearest-neighbor hopping t2 for two specified t⊥ values,
0t0 (solid line) and 6t0 (dotted line), where t1/t0 = 0 and U = 6t0

are adopted. (d) The evolution of band gaps with interlayer nearest-
neighbor hopping t⊥ when t1 = 5t0 and U = 6t0 (solid line) as well
as when t2 = 5t0 and U = 6t0 (dotted line). The green diamonds and
malachite green squares represent two distinct site-selective phases.
The pink pentagram, cyan triangle, and orange ball denote the band
insulating, Mott insulating, and metallic phases, respectively.

Apparently, the enhancement of both t1 and t2 also destroys
the Mott insulating state at nonoverlapping sites. As a result,
although the critical values of t1 and t2 resulting in the phase
transition decrease, the phase transitions in Fig. 2(d) are com-
parable to those in Figs. 2(b) and 2(c) when both t1 and t2 are
weak. However, in the region where both t1 and t2 are strong,
neither BI nor MI+BI will occur as the interlayer singlets
between nonoverlapping sites fail to form when strong t1 and
strong t2 are present simultaneously. Please note that further
increasing t1 in Fig. 2(b), t2 in Fig. 2(c), or both t1 and t2 in
Fig. 2(d) will not induce additional phase transitions.

In brief, in this twisted bilayer Hubbard model, we not
only observe the Mott insulating, band insulating, and metallic
phases proposed in the untwisted case, but we also identify
two site-selective phases with the coexistence of band and
Mott insulating states. These findings suggest twist as an
effective approach to access a site-selective phase in strongly
correlated systems.

Next, we proceed to explain how the phases in the param-
agnetic phase diagrams (Fig. 2) are determined. As the trend
in the band gap with interlayer hopping provides a valuable
distinguishing characteristic for the phases in the untwisted
case [35], we plot the evolution of the band gap in this twisted
system under various interlayer hoppings in Fig. 3, where a
sufficiently strong on-site Coulomb interaction with U = 6t0
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FIG. 4. The double occupancies on different sublattices as func-
tions of various interlayer hoppings. (a) The double occupancies on
different sublattices vary with interlayer nearest-neighbor hopping
t⊥ when t1/t0 = t2/t0 = 0 and U = 6t0. (b) The double occupancies
on different sublattices as functions of t⊥ when t2/t0 = 5, t1/t0 = 0,
and U = 6t0. (c) The double occupancies on different sublattices
vary with interlayer next-nearest-neighbor hopping t2 when t⊥/t0 =
t1/t0 = 0 and U = 6t0. (d) The double occupancies on different sub-
lattices as functions of t2 when t⊥/t0 = 6, t1/t0 = 0, and U = 6t0.

is adopted. We discover that the band gap first closes and then
reopens as t⊥ increases in the absence of other interlayer hop-
pings [Fig. 3(a)], confirming the presence of two insulating
phases separated by a metallic phase within the U/t0-t⊥/t0
plane [Fig. 2(a)]. By inspecting the effect of t1 [Fig. 3(b)]
and that of t2 [Fig. 3(c)] on the band gap of these two in-
sulating phases, four insulating phases are distinguishable in
both the t1/t0-t⊥/t0 plane [Fig. 2(b)] and the t2/t0-t⊥/t0 plane
[Fig. 2(c)]. This can be understood by the following facts: the
band gaps of two insulating phases observed in the U/t0-t⊥/t0
plane gradually vanish as t1 or t2 is increased, indicating their
disappearances, meanwhile the gaps reopen and increase for
strong values of both t1 and t2, implying the occurrence of
additional insulating phases which are confirmed by Fig. 3(d)
as two new insulating phases.

Besides the behavior of the band gap, we further confirm
the presence of four distinct insulating phases by analyzing
the double occupancy. Figure 4 demonstrates the evolutions
of double occupancies on inequivalent sites as functions of
t2 (t⊥) at two fixed values of t⊥ (t2), i.e., two vertical and
two horizontal line slices in the phase diagram of Fig. 2(c)
which cross all the phases discovered. As can be seen, in the
insulating phase located at the region where both t⊥ and t2 are
weak, all double occupancies are suppressed to small values
[MI region in Figs. 4(a) and 4(c)]. For this insulating phase,
increasing either t⊥ or t2 will cause an increase in double
occupancies on corresponding sites due to the formation of in-
terlayer singlets there, whereas the double occupancies on the
other sites remain nearly unchanged. This ultimately results in
the emergence of two distinct insulating phases characterized
by the coexistence of both small and large double occupancies
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(o)

FIG. 5. The upper panel (a)–(e) depicts the DOS at various parameter points, where ρO(ω) (pink shadow) and ρN (ω) (blue shadow)
represent the DOS at each site in regions O and N of the supercell, respectively. The middle panel (f)–(j) displays the imaginary part of
self-energies under various parameter points, where Im(�O) (red line) and Im(�N ) (blue line) describe the imaginary part of the self-energy
at each site in regions O and N, respectively. The lower panel (k)–(o) shows the DOS at the Fermi level varied with the Lorentzian broadening
factor η under various parameter points, where ρO(Ef ) (red line) and ρN(Ef ) (blue line) separately denote the DOS at the Fermi level of each site
in regions O and N. Specifically, (a), (f), and (k) correspond to a Mott insulating phase, where U = 6t0, t⊥ = t0, and t1/t0 = t2/t0 = 0. (b),(g),(l)
(U = 6t0, t⊥ = 6t0, and t1/t0 = t2/t0 = 0) as well as (c),(h),(m) (U = 6t0, t2 = 6t0, and t1/t0 = t⊥/t0 = 0) depict two distinct site-selective
insulating phases. Parts (d), (i), and (n) characterize a band insulating phase when U = 6t0, t2 = t⊥ = 6t0, and t1/t0 = 0. Parts (e), (j), and
(o) describe a metallic phase under the parameters of U = 6t0, t⊥ = 3t0, and t1/t0 = t2/t0 = 0. A Lorentzian broadening factor of η = 0.01t0

is used in the upper and middle panels. As the MI+BI and BI in the t1/t0-t⊥/t0 plane are the same as those in the t2/t0-t⊥/t0 plane, we only
present the corresponding physical quantities for the MI+BI and BI in the latter here.

[BI+MI region in Fig. 4(a) and MI+BI region in Fig. 4(c)].
Besides, all double occupancies exhibit relatively large values
in the insulating phase where both t⊥ and t2 are strong [BI re-
gion in Figs. 4(b) and 4(d)]. Therefore, based on the behavior
of the band gap and double occupancy, four distinct insulating
phases are identified.

To clarify the natures of the aforementioned four insulating
phases, we select one parameter point within each insulating
phase [the parameter points are indicated above Figs. 5(a)–
5(d), where the unspecified parameters are all set to 0] to
calculate the corresponding DOS, the imaginary part of the
self-energy, and the Lorentzian broadening factor η depen-
dence of DOS at the Fermi level, as shown in Fig. 5, where the
imaginary part of the self-energy is used to identify the Mott
and band insulating states, while the DOS serves to distin-
guish the insulating phases from a metallic phase. Obviously,
the opening of the band gap within the DOS in Figs. 5(a)–5(d)
and the disappearance of both ρO(E f ) and ρN(E f ) as η ap-
proaches zero in Figs. 5(k)–5(n) further confirm the insulating
behaviors of these phases.

We now focus on the imaginary part of their self-energies.
It is apparent from Fig. 5(f) that both Im(�O) and Im(�N)
diverge in proximity to zero frequency, which is a typical
character of a Mott insulating phase [15,73]. In contrast, both

Im(�O) and Im(�N) vanish at ω = 0 in Fig. 5(i), clearly indi-
cating the occurrence of a band insulating phase. Surprisingly,
Im(�O) and Im(�N) exhibit distinct behaviors at zero fre-
quency for both Figs. 5(g) and 5(h), where Im(�N) diverges
but Im(�O) vanishes in Fig. 5(g) while Im(�N) vanishes but
Im(�O) diverges in Fig. 5(h), suggesting the presence of two
distinct site-selective phases with the coexistence of band and
Mott insulating states in the system.

For comparison, we also calculate the same physical quan-
tities for a metallic phase. Apparently, the closure of the
gap in the DOS [Fig. 5(e)] and the finite values of both
ρO(E f ) and ρN(E f ) as η approaches zero [Fig. 5(o)] are
key features of a metallic phase. It is necessary to mention
that the nonzero imaginary part of the self-energy at ω = 0
[Fig. 5(j)] is attributed to the failure of the CPA to repro-
duce a Fermi-liquid state [74]. However, this does not affect
its conclusion regarding the metallic phase. Therefore, by
conducting comprehensive analyses of the band gap, double
occupancy, DOS, the imaginary part of the self-energies, as
well as the Lorentzian broadening factor dependence of DOS
at the Fermi level, we distinguish a Mott insulating phase, a
band insulating phase, two distinct site-selective phases, and
a metallic phase within the paramagnetic phase diagrams of
this twisted system, which have been summarized in Fig. 2.
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FIG. 6. The upper panel (a)–(c) illustrates the DOS at various pa-
rameter points, where ρO(ω) (pink shadow) and ρN(ω) (blue shadow)
denote the DOS at each site in region O and region N of the supercell,
respectively. The lower panel (d)–(f) presents the imaginary part of
self-energies at various parameter points, where Im(�O) (red line)
and Im(�N ) (blue line) describe separately the imaginary part of
the self-energy at each site in region O and region N. Parts (a) and
(d) adopt the parameters of U = 6t0, t⊥ = 6t0, t1/t0 = t2/t0 = 0,
and �O − �N = 1.25t0. U = 6t0, t1 = 6t0, t⊥/t0 = t2/t0 = 0, and
�O − �N = 1.25t0 are used in (b) and (e). U = 6t0, t2 = 6t0, t⊥/t0 =
t1/t0 = 0, and �O − �N = 1.25t0 are employed in (c) and (f).

Finally, we will examine the effect of an on-site poten-
tial difference on the stability of the site-selective insulating
phases. As we know, the Mott insulating state has already
been pointed out to be unstable to the ionic potential in the
ionic Hubbard model [75]. In the twisted system we studied,
due to the emergence of two types of inequivalent sites, it also
possesses two distinct on-site potentials including �O and �N,
which are analogous to the ionic potentials. Thus, it is neces-
sary to study whether the site-selective insulating phases (the
Mott insulating state present at some sites) disappear as long
as there is an on-site potential difference. In Fig. 6, we demon-
strate the DOS and the imaginary part of the self-energy for
the site-selective insulating phases (at three parameter points)
under the effect of a moderate on-site potential difference
with �O − �N = 1.25t0. It is clear from Figs. 6(a)–6(c) that,
although the on-site potential difference breaks the particle-
hole symmetry, the band gap is still preserved, indicating the
system in certain insulating phases. By further examining the
imaginary parts of the self-energies of these insulating phases,
we discover that Im(�N) in Fig. 6(d) as well as Im(�O) in
both Figs. 6(e) and 6(f) exhibit a divergent behavior within
the band gap at a nonzero frequency. It has been pointed
out that this divergence means the infinite values of both the
scattering rate and the effective mass of quasiparticles, namely
the Mott physics at corresponding sites induced by strong
electronic correlation [69]. Conversely, Im(�O) in Fig. 6(d) as
well as Im(�N) in both Figs. 6(e) and 6(f) are negligibly small
near the Fermi level, an indication of a band insulating state
at related sites. Therefore, these two site-selective insulating
phases are still stable even in the presence of a moderate
on-site potential difference.

IV. DISCUSSION

In this paper, we have demonstrated the presence of site-
selective insulating phases in the half-filled Hubbard model
on a twisted bilayer square lattice using the CPA. While
the CPA provides a critical on-site Coulomb interaction of
Uc ≈ W/2 = 4t0 (W is the Bloch bandwidth) for the metal-
Mott insulator transition in the monolayer square lattice,
which differs slightly from other methods [39,72] (consistent
with Ref. [71]), previous research indicates that the critical
Uc is quite complicated and depends strongly on the Hub-
bard model under investigation and the methods employed
[76]. Regardless of the specific critical phase transition point,
the CPA remains a reliable approach capable of handling
phase transitions among band insulating, Mott insulating, and
metallic states [57–59,69,70]. Therefore, our discovery of the
site-selective insulating phases is qualitatively reliable, as the
site-selective insulating phases we found are merely com-
posed of a band insulating state and a Mott insulating state.
Noticeably, the CPA ignores the spatial fluctuations of the ef-
fective medium (the self-energy is momentum-independent),
and it is interesting to employ other methods like CDMFT
[77] to precisely determine the detailed phase boundaries
when taking into account the effects of short-range spatial
correlations.

As we know, as long as a weak on-site Coulomb interaction
is present, an antiferromagnetic insulating phase emerges in
the region of weak interlayer hopping within the magnetic
phase diagram for the Hubbard model on an untwisted bi-
layer square lattice, which is attributed to the perfect nesting
property of the Fermi surface within the noninteracting system
[38,39]. However, when the twist is employed between two
layers, the perfect nesting property of the Fermi surface is de-
stroyed by the hoppings between two relatively twisted layers,
which may have a significant impact on its phase diagram.
In addition, we observe the site-selective phases even in the
paramagnetic phase diagrams. Therefore, it is foreseeable that
there will be various fascinating phases in the magnetic phase
diagram of twisted bilayer square lattices.

Twist and pressure can manipulate interlayer hoppings
and thereby induce novel phases in the layered systems; for
example, the interlayer ferromagnetic and interlayer antiferro-
magnetic states can coexist in bilayer CrI3 when twisting two
layers with an angle of θ � 3◦ [78], and the phase transition
from a nonmagnetic state to a ferromagnetic state emerges
in twisted bilayer graphene nanoflake when applying pres-
sure perpendicular to the layers [79]. We have demonstrated
that the site-selective phases depend on the detailed values
of interlayer hoppings. Therefore, it is quite intriguing to
consider whether more complicated site-selective phases exist
at different twisted angles or if phase transitions from the
site-selective insulating phases to other phases occur under
pressure.

Our discovery of the site-selective insulating phases in
a twisted bilayer square lattice suggests twist as an effec-
tive approach to access a site-selective phase in the strongly
correlated system. While our proposal remains a theoretical
prediction, it may still stimulate tremendous research interest
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for the following reasons. First, one may be interested in ex-
ploring whether a site-selective superconducting phase, where
certain sites exhibit a superconducting state while the others
are in a normal state, exists in twisted layered superconducting
materials since there are currently mature experimental tech-
niques for synthesizing monolayer superconducting material
[80,81] and constructing two superconducting crystals along
the c axis with a twist (c-axis twisted Josephson junctions)
[82–88]. Second, while we predict the site-selective phase in
a square lattice, it is possible that a site-selective phase may
also be present in twisted systems with other lattice struc-
tures, making it intriguing to explore a site-selective insulating
phase with the coexistence of band and Mott insulating states
in twisted layered strongly correlated materials, not limited
to square lattice materials. Finally, the nature of the Mott
insulator observed in magic-angle twisted bilayer graphene
[1] is worth reexamining since the DOS of the flat bands is
primarily contributed by the atoms located at the AA-stacking
zone [89]. Considering that in the absence of Coulomb inter-
actions, atoms in the AB-stacking zone lack electrons near
the Fermi level, it is likely that this observed insulating
phase (induced by the interaction) is a site-selective phase,
where the atoms located at the AA-stacking zone exhibit a
Mott insulating state while others maintain a band insulating
state.

V. CONCLUSION

In conclusion, we systematically investigate the param-
agnetic phase diagrams of the half-filled Hubbard model on
a twisted bilayer square lattice by employing the CPA. The
site-selective insulating phases are discovered, characterized
by the coexistence of band insulating states at some sites and
Mott insulating states at the remaining, in addition to the pure
metallic, band insulating, and Mott insulating phases in the
whole lattice. We attribute the appearance of site-selective
insulating phases to the differentiation of interlayer hoppings
in different regions with the help of strong on-site Coulomb
repulsions. We find that the site-selective insulating phases are
stable even in the presence of a moderate site-dependent on-
site potential. Our findings not only demonstrate a fascinating
phenomenon that a band insulating state can coexist with a
Mott insulating state in strongly correlated systems, but they
also suggest that varieties of site-selective phases might be
realized by applying twist to layered materials.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (No. 12004283 and No. 12274324)
and Shanghai Science and technology program (No.
21JC405700).

APPENDIX: THE MAPPING OF MODELS FROM A DISORDERED ALLOY TO AN EFFECTIVE MEDIUM
WITHIN THE FRAMEWORK OF THE CPA

To derive the mapping from model (3) to model (4) within the framework of the CPA, we start by calculating the single-particle
Green’s function of the effective medium. Based on model (4), the corresponding Hamiltonian of the effective medium in
momentum space reads

Heff =
∑
k,σ

|ψk,σ 〉M̂(k)〈ψk,σ |, (A1)

where

M̂(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�O−μ+�A1 −t0 −t0e−ikx −t0e−i(kx+ky ) −t0e−iky −t⊥ 0 0 0 0

−t0 �N−μ+�B1 −t0 −t0e−iky −t0 0 −t2 0 0 −t1
−t0eikx −t0 �N−μ+�C1 −t0 −t0eikx 0 0 0 −t1 −t2

−t0ei(kx+ky ) −t0eiky −t0 �N−μ+�D1 −t0 0 0 −t1 −t2 0

−t0eiky −t0 −t0e−ikx −t0 �N−μ+�E1 0 −t1 −t2 0 0

−t⊥ 0 0 0 0 �O−μ+�A2 −t0 −t0e−iky −t0e−i(kx+ky ) −t0e−ikx

0 −t2 0 0 −t1 −t0 �N−μ+�B2 −t0 −t0e−ikx −t0

0 0 0 −t1 −t2 −t0eiky −t0 �N−μ+�C2 −t0 −t0eiky

0 0 −t1 −t2 0 −t0ei(kx+ky ) −t0eikx −t0 �N−μ+�D2 −t0

0 −t1 −t2 0 0 −t0eikx −t0 −t0e−iky −t0 �N−μ+�E2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

and

|ψk,σ 〉 = (C†
kA1σ

, C†
kB1σ

, C†
kC1σ

, C†
kD1σ

, C†
kE1σ

, C†
kA2σ

, C†
kB2σ

, C†
kC2σ

, C†
kD2σ

, C†
kE2σ

). (A3)

Here, all of these self-energies �A1, . . . , �E2 are both complex and energy-dependent. Noticeably, the Hamiltonian matrix
M̂(k) omits the spin indices as we are interested in the paramagnetic phase. Thus, the Green’s function of the effective medium
in momentum space can be readily calculated as

Geff(k, ω) = 1

ω − M̂(k) + iη
, (A4)
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where η stands for the Lorentzian broadening factor. Using
the Green’s function in momentum space, the corresponding
Green’s function of the effective medium in real space reads

Geff
ism,ism(ω) = 1


BZ

∫

BZ

Geff
sm,sm(k, ω)dk, (A5)

where the integral is over the first Brillouin zone of the system.
Then, the cavity Green’s function Gism(ω) can be obtained
through the Dyson equation

G−1
ism(ω) = [

Geff
ism,ism(ω)

]−1 + �sm(ω) (A6)

for a given s sublattice at the m layer of the ith supercell, which
describes a medium with removed self-energy at a chosen
site. It is necessary to mention that the self-energies of the
effective medium arise from the disordered potentials of the
disordered alloy within the framework of the CPA, suggesting
that the cavity Green’s function for a given site of the effective
medium is equal to that of the disordered alloy. Therefore, the
cavity can now be filled by a real “impurity” with disorder
potential, resulting in an impurity Green’s function of the
disordered alloy

Gism(ω) = 1

G−1
ism(ω) − Eism

(A7)

with impurity configurations of

Eism = 0, P0 = 1 − 〈nismσ̄ 〉,
Eism = U, PU = 〈nismσ̄ 〉. (A8)

Then, the average Green’s function of the disordered alloy can
be calculated by summing all the impurity Green’s functions
with corresponding probability weights, namely

〈Gism(ω)〉 = P0

G−1
ism(ω) − 0

+ PU

G−1
ism(ω) − U

. (A9)

Once the average Green’s function of the disordered alloy and
the Green’s function of the effective medium satisfies

〈Gism(ω)〉 = Geff
ism,ism(ω), (A10)

the model (3) can be successfully mapped into model (4).
Noticeably, since we focus on the case at half-filling, the extra
condition must be satisfied,∑

sm

〈nismσ 〉 = 5, (A11)

where

〈nismσ 〉 = − 1

π

∫ 0

−∞
Im

[
Geff

ism,ism(ω)
]
dω. (A12)

These calculated average occupation numbers need to be ap-
plied to compute the new probability of impurities (A8).
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