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Weyl points and spin-orbit coupling in copper-substituted lead phosphate apatite
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We study the impact of spin-orbit coupling on the topological band properties of copper-substituted lead
phosphate apatite using a combination of group-theoretical analysis and full-relativistic density-functional theory
calculations. We characterize Weyl points at time-reversal invariant momenta and find that a band inversion due
to spin-orbit coupling leads to additional Weyl points close to the Fermi edge at general momenta. To determine
the position of the altogether 66 Weyl points in the Brillouin zone, we develop an algorithm that follows a
Berry-curvature-derived vector field to its monopole: the Weyl point. The emerging surface Fermi arcs and their
spin polarization reveal avoided crossings and a Fermi loop detached from the Weyl points.
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I. INTRODUCTION

Recent pronouncements of room temperature supercon-
ductivity [1–3] have put copper substituted lead apatite
Pb9Cu(PO4)6O into the focus of solid state research. Sub-
sequent work has shown that—without further doping—
Pb10−xCux(PO4)6O is a Mott or charge transfer insulator for
all x [4–14] and that the observed conductivity jumps likely
originate from residual Cu2S [13,15,16].

Even without superconductivity, Pb9Cu(PO4)6O is inter-
esting in its own right. Its band structure in density functional
theory (DFT) [4,17–19] exhibits two almost flat bands which
cross the Fermi edge and are formed by the Cu dxz/dyz or-
bitals. The symmetry properties of the compound imply that
these bands contain Weyl points [20,21] which may impact
thermal as well as electromagnetic transport properties and
give rise to topologically protected surface states. Despite its
importance and topicality, Weyl points in Pb9Cu(PO4)6O also
known as LK-99 have not been deeply investigated hitherto.

Here, we construct a tight-binding model from DFT calcu-
lations of the electronic band structure in Sec. II. We study
the topological properties of this compound with a group-
theoretical analysis to characterize all symmetry protected
Weyl points at time-reversal invariant momenta in the pres-
ence and absence of spin-orbit coupling (SOC) in Sec. III.
In combination with the band-structure calculations this un-
covers the emergence of additional Weyl points at general
momenta due to the influence of SOC. To detect these Weyl
points automatically we present an algorithm in Sec. IV.
With SOC, there are additional Weyl points close to the
Fermi surface resulting in surface Fermi arcs as described in
Sec. V.

Before starting, let us put some caveats here. (i) We con-
sider the lowest energy structure (for a single unit cell) of
Pb9Cu(PO4)6O, as shown in Fig. 1(a). This has a P3 (no.
143) space group, but other structures (other orientations of
the “extra” or channel O and of the Cu) are only ∼6 meV per
unit cell different in energy [4]. This means that observing
a single crystal instead of a disordered compound requires

temperatures well below 6 meV (70 K) or under pressure
>73 GPa according to DFT calculations [22].

(ii) Since Pb10−xCux(PO4)6O is insulating, a slight electron
or hole doping is required to obtain the Weyl points studied
here on the DFT level. Such an electron or hole doping is not
possible by changing x as Cu and Pb are both 2+. Instead O
excess or deficiency, substituting P by S or other means that
change the valence on the Cu sites is needed. With such a
doping, a quasiparticle peak will emerge at the Fermi level
which is a renormalized (more narrow) version of the elec-
tronic structure analyzed in the present paper.

II. BAND STRUCTURE FROM FIRST PRINCIPLE
CALCULATIONS

For our analysis of topological properties we start from
the relaxed crystal structure with P3 (no. 143) space group
displayed in Fig. 1(a). Here, Cu and the additional O occupy
positions farthest away from each other [4]. It has been shown
that the electronic structure close to the Fermi energy can be
effectively described by two flat bands corresponding to Cu
dxz/dyz orbitals [4,17–19].

To construct a tight-binding model that captures the topol-
ogy of this two-band system, we perform a self-consistent
DFT calculation and Wannier projection onto the Cu dxz/dyz

orbitals using the full potential local orbital (FPLO) code [23].
We use a dense (11 × 11 × 15) k mesh and the Perdew-Wang
exchange-correlation potential [24] for a scalar-relativistic
and a fully relativistic DFT calculation, i.e., a DFT calculation
without and with SOC.

The obtained band structure is shown in Fig. 1(c) and
agrees well with previous results [4,9,13,17,18]. While band
crossings can be seen only at the high symmetry points � and
A in the case without SOC (blue, dashed curve), the case with
SOC (red) involves crossings at every time-reversal invariant
momentum. We will discuss their topological properties in
the following section. At the points K and H the bands are
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FIG. 1. (a) Crystal structure of Pb9Cu(PO4)6O. (b) Points of high symmetry in the Brillouin zone: � = (0, 0, 0), M = (1/4, −√
3/4, 0),

K = (1/2, −1/
√

12, 0), A = (0, 0, 1/2), L = (1/4, −√
3/4, 1/2), and H = (1/2, −1/

√
12, 1/2). The blue line is the path along which the

band structure is plotted in the following. (c) Band structure close to the Fermi level. The blue, dashed lines depict the Cu dxz/dyz bands
obtained by a scalar-relativistic DFT calculation without SOC. Band crossings are enforced by symmetry at � and A. The solid red lines are
the Cu d j=5/2

m=±3/2,±1/2 bands obtained by a full-relativistic DFT calculation. TR symmetry enforces Kramers’ degeneracy at all TRIM. (d) Zoom-in
along the � − A direction. Band inversion due to SOC yields additional band crossings close to the Fermi surface (marked by circles).

nondegenerate due to the missing inversion symmetry and the
corresponding eigenstates are dxz ± idyz [25,26].

III. SYMMETRY AND SPIN-ORBIT COUPLING

The presence of time-reversal (TR) symmetry enforces
spin-degenerate bands to cross at time-reversal invariant
momenta (TRIM) if these host complex valued irreducible
representations of their corresponding little groups. The
space-group symmetry of the crystal system is P3 (no. 143)
and therefore the only point symmetry is a C3 rotation around
the z axis. Consequently, the little groups at any k point are
Abelian and have one-dimensional irreducible representations
[27].

The little group of the TRIM � and A is C3 and the
real valued dxz/dyz orbitals can be decomposed into com-
plex valued irreducible representations given by the spherical

harmonics Y ±1
2 . Therefore, LK99 features symmetry protected

band crossings at the TRIM � and A.
Close to a band crossing at momentum k0 the Bloch Hamil-

tonian can be expressed as

Hk = h(q) · σ + E (k0), (1)

where h(q) is a smooth function of momentum q = k − k0,
σ denotes the Pauli matrices, and E (k0) is the energy at the
crossing. The associated Chern number can be calculated as
[28]

C = 1

4π

∫
S2

(
∂ĥ(q)

∂qi
× ∂ĥ(q)

∂q j

)
· ĥ dqi∧dq j . (2)

Here and in the following, sum convention is implied, ĥ(q) =
h(q)

‖h(q)‖ , and S2 denotes a sphere surrounding the Weyl point.
In the language of differential topology, this Chern number is
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just the degree of the smooth map ĥ : S2 → S2, which we can
determine via [29]

C ≡ deg(ĥ) =
∑

q∈ĥ−1(η)

sgn[det(dĥ|q)], (3)

where dĥ|q is the differential (i.e., Jacobian) of ĥ evaluated at
a momentum q from the preimage ĥ−1(η) of any regular value
η of ĥ.η is called a regular value of ĥ if its preimage ĥ−1(η) =
{q1, . . . , qr} consists of points at which the differential of ĥ
has full rank. If s denotes the number of points in ĥ−1(η) at
which ĥ changes orientation, then the degree of ĥ equals r − s.

A band crossing at k0 is a Weyl point if and only if the
Chern number and so the degree of ĥ is nonzero. When
moving away from the crossing, the bands generically have
to split in every direction due to the low symmetry of our
system. This favors the crossings to be Weyl points and indeed
a numerical calculation confirms this for all band crossings we
found. Therefore, we will assume for the following theoretical
considerations that the band crossings have non vanishing
Chern number and are hence Weyl points.

Time-reversal and C3 symmetry almost completely de-
termine the degree of ĥ up to its sign as we explain in
Appendix A. The basic idea is to first infer how ĥ transforms
under symmetry operations from the representation of the
crossing bands. Then this can be used to determine the number
of summation points q in Eq. (3) from the preimage ĥ−1(η) of
a regular value η and also if the Jacobian determinant changes
sign at these points. The overall sign of C, however, is not
fixed by symmetry alone. Thus this information obtained from
symmetry can be used to determine the absolute value of the
Chern number from Eq. (3). To put it differently, the symmetry
properties of ĥ can predict how many momenta q are mapped
via ĥ onto the same value. Counting these and considering the
change in orientation of ĥ gives us the Chern number of the
Weyl point.

Let us start with the case without SOC. In Appendix A we
find that, for the TRIM � and A the representations of the Cu
dxz/dyz orbitals ensure that the x and y components of ĥ are
even and the z component is odd under time reversal. If we
pick a regular value η with ηz = 0, then its preimage contains
at least two points which are time reversal symmetric partners.
At these points the Jacobian determinant must have the same
sign, since TR reverses orientation in the Brillouin zone, but
also reverses ĥz. Hence the sum in Eq. (3) runs over at least
these two points.

Under the threefold rotation around the z axis ĥ transforms
as a three-dimensional (3D) vector for the given representa-
tion of Cu dxz/dyz bands. Hence this rotation changes ĥ and
therefore does not add further points to the preimage of η.
Consequently, the sum in Eq. (3) generically runs over the two
time reversal partners only and thus ĥ wraps around the sphere
twice, such that Chern numbers at � and A generically have
absolute values equal to two [21,30]. To determine the sign,
we calculate Eq. (2) numerically and obtain Chern numbers
equal to −2 at � and +2 at A, respectively.

The situation changes if we take SOC into account. Then
each of the two bands splits, yielding four bands in total as
shown in Fig. 1(c), where we present the band structure of
a full-relativistic DFT calculation (red curve). These bands

belong to those copper 3d5/2 orbitals which have jz = ±1/2
and jz = ±3/2. However, now having a spin-full represen-
tation of the corresponding double group, the TR operator
squares to −1 thereby enforcing Kramers’ degeneracies of the
bands at every TRIM [31]. Hence there are further Weyl points
at M and L additional to those at � and A. Furthermore, this is
valid for both pairs of bands, which implies that every TRIM
holds two Weyl points at different energies. This is especially
interesting for A where Weyl points are very close to the Fermi
energy εF = 0 as can be seen in Fig. 1(c).

To determine the Chern numbers at TRIM, we proceed as
before and use Eq. (3) together with symmetry arguments.
As discussed in Appendix A, ĥ is odd under TR. Therefore,
TR enforces the band crossings at TRIM, but does not lead
to additional points in the preimage of a regular value η. At
M and L the corresponding little groups are the trivial group,
i.e., only the neutral element leaves these points invariant [32].
Therefore, symmetry does not enforce different momenta q to
be mapped onto the same regular value η. Hence its preimage
generically contains a single point and thus the Chern numbers
at M and L must have an absolute value equal to one.

At � and A the Chern numbers depend on the character of
the bands. Due to the presence of time-reversal symmetry the
degenerate bands have either jz = ± 1

2 or jz = ± 3
2 . From this

we can deduce how the orbitals and hence also h in Eq. (1)
transform under a threefold rotation around the z axis, as
we show in Appendix A. In the case of the jz = ± 3

2 bands,
h and consequently also ĥ remain invariant. Thus there are
always three points q on the sphere related by the threefold
rotation which are mapped onto the same value under ĥ.
At these points the change of orientation is the same, since
rotations preserve orientation. Consequently, Eq. (3) implies
Chern numbers equal to plus or minus three for the jz = ± 3

2
bands.

In the case of the jz = ± 1
2 bands, ĥ transforms as a 3D

vector, as we again detail in Appendix A. This implies that a
rotation changes the value of ĥ, and so for any value there
is generically only a single point mapped onto this value.
Consequently, the sum in Eq. (3) runs over a single point
and therefore the absolute value of the corresponding Chern
number is one.

However, only a direct calculation can determine the char-
acters of the bands. From our full relativistic DFT calculation
we find that at � the upper band is of ± 3

2 character and
the lower one ± 1

2 . Hence we obtain Chern numbers equal
to C = +3 and C = −1, respectively. At A the situation is
reversed yielding C = +1 for the upper and C = −3 for the
lower band.

At M we get a Chern number C = −1 and C = +1 at L
for the upper bands. For the lower ones they are C = +1 at
both M and L. Hence, if we sum up the Chern numbers of the
upper band, we arrive at a total of +4 and +2 for the lower
band (note that L and M are threefold, due to the C3 axis).
Since the Nielsen-Ninomiya theorem enforces a total of zero
Chern numbers [33,34], there must be additional Weyl points
not protected by symmetry.

In Fig. 1(c) we can see band crossings at the TRIM, but also
at the line from � to A in Fig. 1(d). The latter crossings are
close to the Fermi energy εF = 0 and also somewhat below.
Due to TR invariance the same crossings must appear at the
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corresponding negative momenta on the line from � to −A.
We calculate the Chern numbers of these crossing points. For
the lowest band there is one Weyl point with C = −1 and its
time-reversal partner with the same Chern number. Thus, for
the lowest band, the total of Chern numbers vanishes. For the
remaining bands, we do the same calculation, but find that
the total does not equal zero. Consequently there must be
additional Weyl points at general momenta that are not on the
high symmetry k path shown in Fig. 1(c). We have to find
them manually.

IV. ALGORITHM TO DETECT WEYL POINTS

Finding Weyl points whose positions are not determined
by symmetry arguments can be a peculiar task. Typical
approaches divide the Brillouin zone into multiple paral-
lelepipeds, integrate the Berry curvature over their surfaces,
and refine the enclosed volume if it has a nonvanishing Chern
number [35]. Alternatively, there is a method based on Wilson
loops [36] and on a direct search for local minima in the band
gap [37]. Here, we propose a different approach that can be
used complementary to the others. It is based on the fact that
Weyl points act as sources and sinks of Berry curvature [38]:

�n
i j = −Im

⎡
⎣∑

m 	=n

〈
ψn

k

∣∣∂ki H (k)
∣∣ψm

k

〉〈
ψm

k

∣∣∂k j H (k)
∣∣ψn

k

〉
[Em(k) − En(k)]2

⎤
⎦. (4)

Here, ψn
k denotes an eigenstate of the Bloch Hamiltonian H (k)

with band index n, momentum k, and energy En(k).
More precisely, for a fixed band index n we can understand

the Berry curvature Eq. (4) as a differential two-form �n :=
�n

i jdki ∧ dk j on the Brillouin zone without the Weyl points.
In 3D we can use the Hodge-	 [39] to identify �n with the
one-form 	�n = �n

i jεi jl dkl =: Xl dkl and use the canonical
isomorphism of tangent and cotangent space to finally identify
it with a vector field X = X i∂ki .

To find a Weyl point, we pick a starting point k in the
Brillouin zone and search for an integral curve γ (t ) of X with
γ (0) = k. That is, we solve the ordinary differential equation

dγ

dt
= X (γ (t )). (5)

If the solution converges to a point in finite time, we have
found a band crossing, which acts as a sink of the vector field
X . Otherwise, we may get a closed curve, and then disregard
it and pick another starting point.

To find all points we apply this procedure to multiple start-
ing vectors distributed over the whole Brillouin zone. This is
trivially parallelizable. In order to also find sources instead
of sinks, we apply the procedure to −X . For the numerical
solution of Eq. (5) we apply the implicit Euler method with
adaptive step size [40]. Therefore, Eq. (4) needs to be evalu-
ated in every step. The partial derivative of the Hamiltonian
with respect to momentum can be done analytically for a
tight-binding or Wannier Hamiltonian. The eigenvalues and
eigenvectors of H (k) are found with standard linear algebra
routines [41].

Thus we can find the remaining Weyl points. For the upper
pair of bands, we detect 32 and 34 for the lower pair of bands
(including those described earlier), which are shown in Fig. 2.

FIG. 2. Weyl points in the Brillouin zone. The color code denotes
the different Chern numbers C. At TRIM, the Chern numbers are
different for the jz = ± 1

2 and jz = ± 3
2 bands (see text).

To confirm the validity of the algorithm, we calculate the
Chern numbers of the points via an integration of Eq. (4) over
a small sphere surrounding a point. This confirmed that we
did not get false positives. We also sum up all Chern numbers
yielding zero as it must be. Our algorithm detected all Weyl
points at TRIM and also those at general momenta without
any guidance. Hence it is suitable for the automatic detection
of Weyl points.

Note that this algorithm is similar to the method used by
Weng et al. [42] in the sense that Weyl points are identified
by their property being sinks and sources of Berry curva-
ture. However, solving the differential equation (5) has two
advantages. First, there is no need for manual inspection and
hence our algorithm allows for automatization, which might
be suitable for high-throughput calculations. Second, solv-
ing an ordinary differential equation reduces the number of
evaluations of the Berry curvature as compared to sampling
it on the whole (irreducible) Brillouin zone. Using an adap-
tive step-size algorithm ensures that the Berry curvature is
sampled more densely only in the vicinity of a Weyl point.
This becomes important in systems where variations in Berry
curvature are very localized or where many bands need to be
included in the Wannier Hamiltonian such that evaluation of
� is computationally expensive.

V. SURFACE STATES

Due to the bulk-boundary correspondence, the presence of
Weyl points implies the existence of Fermi arcs, i.e., states of
constant energy that are localized on a surface of the crystal.
They appear if the corresponding reciprocal surface in k space
contains projections of Weyl points with opposite chiralities
that do not fall on the same point [43]. Fermi arcs can be
determined by angle resolved photoemission spectroscopy
(ARPES) [44,45] and can be calculated via the surface
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(a) (b)

FIG. 3. Surface spectral density A(ky, kz, ω = εF ) calculated from Eq. (6) for a semi-infinite crystal terminated at the x = 0 surface.
(a) Without SOC there are two Fermi arcs connecting those parts of the Fermi surface that surround the projections of Weyl points at �

and A with Chern numbers equal to −2 and +2, respectively. (b) SOC leads to the appearance of further Fermi arcs. The Weyl points are color
coded as in Fig. 2, but we show only those close to the Fermi level. Two Weyl points with C = +1 are projected onto the same point as A
(orange). To the left and right of A, Weyl points (gray) with C = +1 are projected onto the same point as well.

spectral density of a semi-infinite crystal [46]

A(ky, kz, ω) = −Im

[
Tr

(
1

ω + i0+ − H (ky, kz )

)]
. (6)

Here we choose to terminate the crystal at the x = 0
surface. Hence H (ky, kz ) denotes the Fourier-transformed
tight-binding Hamiltonian where hopping is retained in the
positive x direction only. The trace Tr runs over all states local-
ized at the surface. For numerical calculations we truncate the
system after 1344 layers and choose the positive infinitesimal
to be 0+ = 10−4.

Figure 3(a) shows the projected Fermi surface and Fermi
arcs for our calculation without SOC. The Fermi surface con-
sists of three disconnected parts. The central one encloses the
projection of the Weyl point at A. Due to periodicity of the
Brillouin zone, the other two parts sandwich the projection
of the Weyl point at �. Since the Chern number of the Weyl
point at A in the center (kz = 1/2) is +2 and that of � at the
top or bottom (kz = 0, 1) is −2, there are two arcs connecting
the different parts of the Fermi surface. Note, the arcs do not
exactly terminate at A and � because these momenta are not
precisely at the Fermi energy.

If we consider the full-relativistic calculation, that includes
SOC, the situation becomes more complex due to the presence
of multiple Weyl points as shown in Fig. 3(b). Due to SOC
the bands are wider and the projected Fermi surface merges in
the kz direction, such that compared to the case without SOC
we only have two disconnected parts: a central one and the
merged top/bottom part. Outside those parts we observe two
isolated Weyl points (white circles) which are essentially at
the Fermi level. Therefore, from each of them one arc emerges
and connects the Weyl points to the top/bottom part of the
Fermi surface.

The central part encloses multiple projections of Weyl
points which are a bit farther away from the Fermi energy.
Hence we observe two additional arcs that do not start at a
Weyl point, but connect the central part with the top/bottom

part of the Fermi surface. Tangential [47] at the central part
we can see two further arcs, which are small and almost hori-
zontal. They connect Weyl points of opposite chirality (white
and gray) that are both projected onto the same component
of the Fermi surface. For all these arcs we confirm their
topological nature by calculating the surface-projected band
structure along loops surrounding a Weyl point and observe
topological edge states that connect the upper bulk-projected
band with the lower one [45]. Hence, compared to Fig. 3(a),
SOC enriches the Fermi surface with additional topologically
protected states.

Furthermore, SOC can lead to interesting patterns in the
spin polarization or spin texture of a surface. This can be mea-
sured with spin-resolved ARPES [48,49]. In the following, we
study the spin polarization of the surface states at different
Fermi levels. For the same semi-infinite crystal as above, we
can calculate the surface spin polarization via

P(ky, kz, ω) = −Im

[
Tr

(
S

ω + i0+ − H (ky, kz )

)]
, (7)

where S denotes the spin operator and the trace is again taken
over all states localized at the surface. The results are shown
in Fig. 4.

At a Fermi energy equal to −57.0 meV in Fig. 4(a), we
see two U-shaped surface arcs, where the spin projection onto
the yz plane points into different directions for the arcs. If
the Fermi energy is increased to −56.5 meV [4(b)] the arcs
touch and the spin projection winds around the touching point.
Upon further increase in the Fermi energy [4(c), 4(d)] we
observe avoided crossings which turn the two U-shaped arcs
into two horizontal arcs and a detached loop in the center. The
spin projection winds around this loop and near the avoided
crossings we can observe changes in polarization as expected
in such a situation. This is the same for the projection of P
onto the xz plane as shown in the Appendixes. Hence all spin
components of the surface states wind around the central loop.
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(a)

(c) (d)

(b)

FIG. 4. Surface spectral spin density P(ky, kz, ω = εF ) calculated from Eq. (7) for a semi-infinite crystal terminated at the x = 0 surface.
Colors represent the angles between the y and z component of the spin density (see color bar at the bottom); brightness corresponds to
magnitude ‖P‖. The Weyl points with energies between −65 and −45 meV are color coded as in Fig. 2. When increasing the Fermi energy
from (a) to (b) the two Fermi arcs touch and the spin polarization winds around the touching point. A further increase leads to avoided crossings
(c) and a surface loop, which is detached from the Weyl points. The spin polarization winds around the loop which becomes larger for higher
εF (d), (a) εF = −57 meV, (b) εF = −56.5 meV, (c) εF = −55 meV, (d) εF = −52 meV.

An early study proposed that such a detached loop reflects
the topological invariant associated with a transition between
normal and topological insulators via a Weyl-semimetal phase
[50]. A different publication [51] attributed the emergence
of a loop to a delicate interplay between inter- and intraval-
ley interactions in a four-valley model for Weyl semimetals.
Furthermore, contractible loops on the Fermi surface have
also been interpreted as track states [52] or as gapped surface
states as a result of quadrupole topology in higher order Weyl
semimetals [53]. Here we demonstrated the presence of a
detached loop in an ab initio derived tight-binding model.
To verify whether it is related to the latter concept, further
calculations are necessary.

VI. CONCLUSION

We have shown that SOC significantly modifies the
band structure of Pb9Cu(PO4)6O leading to the presence of

66 Weyl points and developed an algorithm to efficiently
identify their positions. Furthermore, we described the corre-
sponding surface states and found that depending on the actual
value of the Fermi energy these can show different features.
Especially an avoided crossing is possible that influences the
spin polarization of surface states and results in a detached
loop not connecting any Weyl points.

The very complex and beautiful Weyl physics described
here should be observable in Pb9Cu(PO4)6O1−δ if the material
is cooled to a few kelvin so that the Cu sites order in a long-
range pattern. Further, an oxygen off stoichiometry (δ 	= 0) or
another means of electron or hole doping of the Mott insulator
is needed to turn it into a metal. Different δ’s then correspond
to different Fermi energies in our theoretical calculation.

Let us also briefly discuss the effects of electronic correla-
tions. Without SOC and symmetry breaking, the self-energy
of both Cu orbitals crossing the Fermi energy is locally the
same. Thus if the momentum dependence of the self-energy
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can be neglected, as it is the case, e.g., in dynamical mean-
field theory (DMFT) [54], we have exactly the same dispersive
(quasiparticle) bands as in DFT, only renormalized (shrunk)
by a momentum independent constant.

With spin-orbit coupling, the self-energy can be different
for both Kramers pairs. However, the difference will not be
huge since the overall bandwidth is a much larger energy
scale than the spin-orbit coupling. This implies electronic
correlations can quantitatively change the dispersion and the
position of the Weyl points to some extent, but qualitatively
we expect the same behavior.

The data of our calculations and the code for the detec-
tion of Weyl points are openly available at [55] and [56],
respectively.
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APPENDIX A: SYMMETRY

For a Weyl point at a TRIM the absolute value of its
Chern number can be derived from symmetry arguments as
we have done in Sec. III. Here we provide the details of these
arguments starting with the case without SOC, where the TR
operator can be represented as  := e−iπLyK [57]. Ly is the
y component of orbital angular momentum and K denotes
complex conjugation. In the basis of the spherical harmonics
Y ±1

2 it can thus be expressed as

 =
(

0 −1
−1 0

)
K. (A1)

This allows us to directly calculate how the Pauli matrices
in Eq. (1) transform under TR. If we choose the basis of
Y ±1

2 for the dxz/dyz orbitals, which is much more practical

(a)

(c) (d)

(b)

FIG. 5. Same as Fig. 4 but now the colors represent the angles between the x and z component of the spin density. (a) εF = −57 meV, (b)
εF = −56.5 meV, (c) εF = −55 meV, (d) εF = −52 meV.
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for the following calculations, σx and σy stay invariant and
σz changes sign. Since the Hamiltonian h(q) · σ must be TR
invariant, this implies that the x and y components of ĥ(q) are
even functions of q and ĥz(q) is odd, i.e.,

ĥ(q) :=

⎛
⎜⎜⎝

ĥx(q)

ĥy(q)

ĥz(q)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ĥx(−q)

ĥy(−q)

−ĥz(−q)

⎞
⎟⎟⎠. (A2)

Now we can deduce the Chern numbers at the TRIM �

and A using Eq. (3). If we pick a regular value η = ĥ(q0)
at which ĥz(q0) = 0, we can conclude from Eq. (A2) that
the preimage ĥ−1(η) contains at least two points {q0,−q0} at
which the change in orientation is the same. Hence the degree
of ĥ is at least ±2. In principle every even number would be
allowed by symmetry, but one could always introduce a small
perturbation that is consistent with symmetry such that the
degree would become ±2. Thus we conclude that the Weyl
point’s Chern number is ±2 without SOC. The sign cannot be
determined by symmetry only.

For spin-full bands, i.e., with SOC, the situation is differ-
ent, as the TR operator can be expressed as  = e−iπJyK with
total angular momentum Jy, which has half-integer eigenval-
ues as opposed to Ly. On the basis of the ( j = 5

2 , jz = ± 1
2 )

orbitals this takes the form

 =
(

0 −1
1 0

)
K (A3)

and up to an overall minus sign this is the same for the ( j =
5
2 , jz = ± 3

2 ) orbitals. Again, we can use this to determine
how the Pauli matrices transform under TR. Now all of them
change sign, which implies that every component of ĥ(q) is
an odd function of momentum q.

If there is only the trivial point group present at a Weyl
point as it is the case for the TRIM L and M, then the most
generic Chern number is ±1, because without any symme-
tries the preimage ĥ−1(η) in Eq. (3) of any regular value
η generically contains a single point, i.e., symmetry does
not enforce ĥ to have the same value at multiple points.

However, at � and A the point group symmetry can give
additional constraints on ĥ depending on the representation
of the orbitals.

Under a threefold rotation around the z axis the orbitals
acquire phases of exp(− 2π i

3 jz ). From these we can con-
clude how the Pauli matrices in Eq. (1) transform: σz = |+
jz〉〈+ jz| − |− jz〉〈− jz| remains invariant as it does not mix
orbitals with opposite jz. The matrices σ± := (σx ± iσy)/2 =
|± jz〉〈∓ jz| mix orbitals with opposite jz and thus acquire
phases of exp(∓2 · 2π i

3 jz ).
In the case of the jz = 3

2 bands this phase is just unity, such
that σ± and consequently also σx and σy are invariant under
the threefold rotation. As the Hamiltonian in Eq. (1) must be
invariant, h must transform dual to the Pauli matrices, which
in this case means it stays invariant as well. Thus there are
always three points related by the threefold rotation which
are mapped onto the same value under ĥ. At these points the
change of orientation is the same, since rotations preserve ori-
entation. Consequently, Eq. (3) implies Chern numbers equal
to plus or minus three for the jz = ± 3

2 bands.
In the case of the jz = 1

2 bands the σ± matrices acquire a
phase of exp(∓ 2π i

3 ) such that (σx, σy, σz ) transforms as a 3D
vector. Again the Hamiltonian in Eq. (1) must be invariant
under the threefold rotation and therefore h must transform as
a (dual) vector. However, this implies that a rotation changes
the value of ĥ and so for any value there is generically only
a single point mapped onto this value. Consequently, the sum
in Eq. (3) runs over a single point and therefore the absolute
value of the corresponding Chern number is one.

APPENDIX B: SURFACE STATES

The surface spectral spin density P(ky, kz, ω = εF ) in
Fig. 4 only shows how spin changes in the yz plane when
tracing the surface states over the surface Brillouin zone.
However, spin is not restricted to this plane. To show this,
we present P(ky, kz, ω = εF ) in the xz plane (see Fig. 5). We
observe the same features as in Fig. 4 from which we con-
clude that all three spin components wind around the central
detached loop.
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