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Nonreciprocal Coulomb drag between quantum wires in the quasi-one-dimensional regime
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Coulomb drag experiments have been an essential tool to study strongly interacting low-dimensional systems.
Historically, this effect has been explained in terms of momentum transfer between electrons in the active and the
passive layer. Here, we report Coulomb drag measurements between laterally coupled GaAs/AlGaAs quantum
wires in the multiple one-dimensional (1D) sub-band regime that break Onsager’s reciprocity upon both layer and
current direction reversal, in contrast to prior 1D Coulomb drag results. The drag signal shows nonlinear current-
voltage (I-V) characteristics, which are well characterized by a third-order polynomial fit. These findings are
qualitatively consistent with a rectified drag signal induced by charge fluctuations. However, the nonmonotonic
temperature dependence of this drag signal suggests that strong electron-electron interactions, expected within
the Tomonaga-Luttinger liquid framework, remain important and standard interaction models are insufficient to
capture the qualitative nature of rectified 1D Coulomb drag.
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I. INTRODUCTION

Since their first experimental realization nearly four
decades ago [1,2], one-dimensional (1D) systems have been
extensively studied, both to deepen our understanding of
strongly correlated systems and for novel quantum applica-
tions such as charge sensing [3], proximity-induced supercon-
ductivity [4], and qubit engineering [5–7]. In one dimension,
the strong confinement leads to reduced screening and in-
creased electron-electron (e-e) interactions [8], giving rise to
unique transport phenomena such as interaction-dependent
universal scaling [9], spin-charge separation [10,11], and
charge fractionalization [12]. These seminal experimental
results are well understood within the Tomonaga-Luttinger
liquid theory [13,14], where the low-energy excitations of
one-dimensional systems are best described by collective spin
and charge modes.

While transport in single quantum wires has been heavily
studied experimentally, these experiments did little to deepen
our understanding of 1D electron interactions, as the sim-
ple conductance measurement in clean systems is expected
to yield the noninteracting quantized value [15], shadowing
potential signatures of non-Fermi-liquid physics. Instead, ex-
periments between coupled 1D systems have yielded the bulk
of the experimental observations of Luttinger liquid physics in
1D systems [10,16]. Owing to its sensitivity to both inter- and
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intrawire e-e interactions, Coulomb drag (CD) [17] is one
of the prime experimental techniques to study these strongly
interacting systems. In a typical CD experiment, a current
(Idrive), sourced in one wire called the drive wire, induces a
voltage (Vdrag) in the adjacent drag wire due to e-e interac-
tions, provided that no current is flowing in said drag wire.

Historically, most CD measurements have been interpreted
in terms of momentum transfer, owing to their compliance
to the Onsager’s reciprocity relations [18], as demonstrated
in both 2D systems [19–25] and closely separated 1D
systems [16,26–28]. However, recent experiments have re-
ported Coulomb drag signals inconsistent with the simple
momentum transfer model, either owing to an unexpected
polarity of the drag signal [29] or to an explicit breaking of
Onsager’s relations [30–33]. These latter discrepancies are
consistent with recent theories [34–38] proposing that, in
mesoscopic structures, alternate drag-inducing mechanisms
involving rectification of charge fluctuations could explicitly
break Onsager’s relations. Understanding the material and
parametric considerations behind the onset of this alternate
drag-inducing mechanism is crucial for future developments
in the field of coupled 1D systems.

In this work, we report CD measured between later-
ally coupled quantum wires. In contrast with past studies
focusing on the single 1D sub-band regime that can be un-
derstood within the conventional momentum-transfer frame-
work [16,26] [see top panel of Fig. 1(a)], we explore the
multiple sub-bands regime at large (d � 150 nm) interwire
separation, where charge rectification has been found to play
a predominant role. The reported drag signal shows a clear
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FIG. 1. Schematics and circuit diagram of the laterally coupled quantum wires. (a) Schematic representation of the drag-inducing
mechanisms due to momentum transfer (top) and energy rectification (bottom). The top wire (blue) is the drag wire and the bottom wire
(green) is the drive wire. (b) Scanning electron microscope image of the laterally coupled quantum wires, constituted of a top (VT ), a middle
(VM ), and a bottom (VB) gate. (c) Circuit diagram for Coulomb drag measurements. A drive current is supplied to the green section of the device
and the drag voltage is measured in the adjacent wire. The drive current is sourced using a Rs = 10 M� resistor in series with the drive wire.
A virtual ground setup is used on the drag side of the experiment.

departure from Onsager’s relations and exhibits nonlinear
current-voltage characteristics. However, its nonmonotonic
temperature dependence departs from the expected quadratic
dependence predicted in mesoscopic systems with negligible
e-e interactions [34], highlighting the likely role that inter-
actions still play within the rectification framework. In the
rectification model, depicted in the bottom panel of Fig. 1(a),
the violation of Onsager’s relations can be understood by
the drive layer creating energy excitations that induce bidi-
rectional momentum transfer in the adjacent layer. However,
the wire’s energy-dependent electron-hole (e-h) asymmetry,
intrinsic to mesoscopic devices, results in a drag voltage that
is primarily generated in a specific direction, independently of
the sign of the drive current. Characterizing this novel drag-
inducing mechanism might prove crucial for the development
of quantum devices harnessing e-e interactions, particu-
larly in the fields of thermoelectricity [39,40] and quantum
computing [41].

The paper is organized as follows. In Sec. II we describe
device fabrication and measurement technique. The central
section of our work is Sec. III where we present key results for
the observed nonreciprocity of the drag response. In Sec. IV
we highlight an anomalous temperature dependence of the
drag resistance, which can not be explained based on the con-
ventional paradigm of the Luttinger liquid theory. This leads
us to invoke the third-order drag originated from the multipar-
ticle interwire scattering processes as a possible mechanism
that could explain the data. We close in Sec. V with a brief
discussion and summary of main results.

II. DEVICE FABRICATION

The coupled quantum wires are fabricated from a
GaAs/AlGaAs heterostructure with a quantum well buried
∼80 nm below the surface. The quantum wires are later-
ally coupled over a length l = 5 µm and are separated by
an electrostatic barrier of width d ∼ 150 nm. A scanning
electron microscope image of a typical device is shown in
Fig. 1(b). The wires are engineered using standard nanofab-
rication procedures, consisting of both electron-beam and

photolithography, and are contacted with evaporated Ge-
Au-Ni-Au ohmic contacts. Additional details concerning the
fabrication can be found in the Supplemental Material [42].

The coupled quantum wires are defined by three gates: a
top gate (VT ), a middle gate (VM), and a bottom gate (VB) [see
Fig. 1(b)]. Unless otherwise specified, standard low-frequency
lock-in techniques, at a frequency of either 9 Hz or 37.3 Hz,
are used for the CD measurements. Additional standard dc
measurements have also been performed. Measurements have
been performed in a Bluefors dilution refrigerator, with a base
lattice temperature of ∼10 mK. A circuit diagram of the CD
measurement scheme utilizing a virtual ground on the drag
side is presented in Fig. 1(c), where Idrive is applied on the
drive wire (green) and Vdrag is measured in the drag wire
(blue).

A typical CD measurement, over a wide range of sub-band
occupancy in both wires, is shown in Fig. 2(a) while the
conductance of both the top and the bottom wire is shown
in Figs. 2(b) and 2(c), respectively, along with a line cut of
the drag voltages. The plateaus observed in the conductance
of both wires do not lie at the integer values of 2e2/h even
after accounting for series resistances in the setup, indicating
the nonballistic nature of the wires. The drag signal shows
pronounced oscillations over both positive and negative po-
larities of drag voltage for a given drive current direction, and
the oscillations are generally concomitant with openings of
1D sub-bands in either the drag or the drive wire. As seen
from the comparison of the drag peaks in Figs. 2(b) and 2(c),
the modulation from the bottom (drive) wire is notably weaker
than the one of the top (drag) wire, especially away from
the single 1D sub-band regime. All drag measurements were
performed with VM = 0.15 V, yielding a tunneling resistance
larger than 30 M�. The drag signal is also frequency indepen-
dent between 9 and 85 Hz (see Fig S4).

III. NONRECIPROCAL COULOMB DRAG

To further investigate the discrepancy in the modulation
of the drag signal between the top and bottom wires, we
measured CD upon layer reversal. Figure 3(a) shows the CD
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FIG. 2. Characterization of the quantum wires. (a) Drag voltage as a function of top (drive) and bottom (drag) gate voltages. Interwire
crosstalk is only visible on the lower end of the top wire gating range. The vertical (red) and horizontal (black) dashed lines represent the line
cuts used for panels (b) and (c) taken at VB = −1.7 V and VT = −0.8 V, respectively. (b), (c) Drag voltage along their respective line cut in
the top and bottom wires. The conductance plateaus are not quantized at integer values of 2e2/h as the wires are nonballistic.

signal with the bottom wire as the drive wire and Fig. 3(b) with
the top wire as the drive wire. The oscillations observed in the
drag signal are primarily correlated with the drag wire gate
and not strongly correlated with the drive wire gate, as seen
from the presence of the horizontal stripes in Fig. 3(a) and ver-
tical stripes in Fig. 3(b). This is a clear violation of Onsager’s
reciprocity [18], which is expected to be satisfied within the
conventional momentum transfer approach to CD. A similar
violation occurs upon current direction reversal, as shown in

FIG. 3. Onsager’s relations of the drag signal. The drag voltage is
plotted as a function of both top and bottom gate voltages for various
measurement configurations. (a) The top wire is used as the drag wire
while the bottom wire is used as the drive wire. (b) The top wire is
used as the drive wire while the bottom wire is used as the drag wire.
Onsager’s relation is not obeyed when the drag and the drive wires
are exchanged as the signals are not identical. (c) Same setup as (a),
but over a different cool down. (d) The position of current injection
in the wire is reversed. Onsager’s relation is broken yet again as
the signal’s polarity remains virtually unchanged when the current
direction is reversed.

Figs. 3(c) and 3(d). As the current direction is inverted without
exchanging the drag voltage probes, Onsager’s reciprocity
would result in a sign reversal of the drag signal, whereas
our measured signal showed minimal changes. These changes,
observed when extracting the symmetric and antisymmetric
contributions to the drag signal (see Fig. S5), are less than
∼20% of the symmetric signal, and exhibit reduced modu-
lation with 1D sub-band occupancy. These results strongly
suggest that conventional momentum-transfer models for 1D
CD are inadequate to explain our data.

An alternate drag mechanism explaining the violation of
Onsager’s relationships in mesoscopic systems is due to rec-
tification [34] [Fig. 1(a), bottom panel]. This model predicts
that strong asymmetry, either in e-h transmission probability
or the circuit itself, could induce a rectified CD signal that
is independent of the drag current direction. A model for
rectified CD in coupled quantum point contacts (QPCs) pre-
dicts two dominant contributions to drag: a linear contribution
from near-equilibrium thermal noise rectification due to e-h
asymmetry and a nonlinear contribution, dominating at larger
drive currents due to the rectification of quantum shot noise,
which is sensitive to the circuit intrinsic asymmetry. Both
terms are predicted [34] to provide the following contribution
to the drag signal:
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Here, RQ = 2π h̄
e2 is the quantum resistance, ω is the frequency

of the rectified noise from the drive circuit, �2 is the energy
scale of the confinement potential of the drag wire, α±(ω) is
a dimensionless transimpedance kernel that captures circuitry
of interwire interactions approximated in Eq. (3). Z1 is the
load impedance of the drive circuit, CC is the mutual capaci-
tance between both quantum wires, CL(CR) is the capacitance
of the left (right) side of the drag wire to ground. Finally, �1(2)

are the rectification coefficients of the drive (drag) wire, given
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FIG. 4. Current dependence of the dc drag signal with the top
wire as the drive wire and the bottom wire as the drag wire. (a) dc
drag as a function of top and bottom gate voltages with right-flowing
Idrive ∼ 10 nA.(b) Same measurement but with the current source
position reversed. (c) dc drag as a function of top and bottom gate
voltages for right-flowing current Idrive ∼ −10 nA. (d) Same mea-
surement as in (c), but with left-flowing current.

by:

� = 2e

RQ

∑
n

∫
dε[ f (ε−) − f (ε+)][|tn(ε+)|2 − |tn(ε−)|2],

(4)
where ε−(ε+) is the energy of the electrons (holes) with the
corresponding occupations f (ε±), and tn is the transmission
probability across the nth channel of the wire. Higher-order
effects can also contribute additional nonlinear terms to the
drag signal [43]. We note that, in the linear regime, an e-h
asymmetry is essential for the onset of a drag signal, and
its sign will depend on whether the carrier’s transmission
probability is locally increasing or decreasing with energy.
Within this framework, the left-right Onsager’s relation is
explicitly broken through the current rectification. In addition,
owing to the finite bias across the drive wire, its chemical
potential is between ∼60 and ∼200 µeV larger than that
of the drag wire, assuming a drive current of 10 nA and a
drive wire conductance ranging from 0.65 to 2.25 × 2e2/h.
The lack of layer inversion symmetry implies that �1(ω, ε +
60 µeV)�2(ω, ε) �= �2(ω, ε + 60 µeV)�1(ω, ε), i.e., that the
wire’s rectification coefficients are not identical. Studying the
dc response of the drag signal simplifies the measurement by
fixing the electrons chemical potential to a single value in the
drive wire. As presented in Fig. 4, we measured the dc 1D
drag with the top wire as drive wire and the bottom wire as
the drag wire, in both current directions and with both positive
[Figs. 4(a) and 4(b)] and negative current sources [Figs. 4(c)
and 4(d)]. As in the ac drag, the dc drag violates Onsager’s
relation upon reversal of the current direction. However, the
signal changes both in magnitude and sign by going from
positive to negative voltages. This further corroborates the
rectified CD model, as only the chemical potential of the
drive wire has an incidence on the drag signal, and not the
direction of the current flow. As expected for rectified drag

FIG. 5. Nonlinearity of the dc drag signal. The I-V relationship
of the drag signal is presented for both current directions (setups A
and B) and for both polarity of the drive current at a top gate voltage
of −1.51 V and a bottom gate voltage of −0.284 V. The data is well
fitted by third-order polynomial function.

dominated by the linear component, the sign of the drag
voltage also inverts when the sign of the drive voltage is
inverted. To quantify the nonlinearity of the drag signal, we
present in Fig. 5 the I-V relationship of the dc drag voltage.
In setup A (see Fig. 4), the drag voltage is well described
by Vdrag = −5.5I + 0.058I2 − 3.4 × 10−4I3, with the current
given in nA and the voltage in μV. A cubic fit was selected,
as neither a linear fit nor a quadratic fit provided a good match
to the data.

A similar nonlinearity of the drag I-V relation is observed
in the ac regime, as shown in Figs. 6(a) and 6(b). Con-
sistently with the microscopic model for rectified drag in
mesoscopic circuits, quantitative details of the drag nonlin-
earity strongly vary with gate voltage. Over all gate voltages
analyzed, the linear coefficients (in μV/nA) are between 1
and 2 orders of magnitude stronger than the quadratic terms
(in μV/nA2), which are themselves between 1 and 2 orders
of magnitude larger than the cubic terms (in μV/nA3) (see
Tables S3 and S4 for parameters details). As such, the predom-
inant contribution to the drag signal appears to be rectification
of near-equilibrium thermal noise, but quantum shot noise
rectification is still significant for certain gate voltage configu-
rations. The discrepancy in the fitting parameters between the
dc and the ac measurements can be explained by microscopic
changes in the wires’ potential landscape between different
cool downs. Indeed, in the mesoscopic regime, one would
naturally expect that the magnitude of CD fluctuations is
controlled by the Thouless energy, ETh = h̄D

L2 = h̄vF l
2L2 [44,45].

Here, D is the mesoscopic system diffusion coefficient, L is
the wire’s length, l is the electron mean-free path, vF = π h̄n1D

2m∗
is the Fermi velocity, n1D is the electronic density, and m∗ is
the electron effective mass.

Estimating our 1D electron density from magnetic depop-
ulation measurements [46] (see Supplemental Material [42]),
a 1D density of n1D ∼ 8.94 × 108 m−1 is estimated when the
wire has five populated sub-bands, and n1D ∼ 1.06 × 109 m−1

when the wire has six populated sub-bands. The mean-
free path can be estimated from the typical size at which
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FIG. 6. Waveform and I-V characteristics of the drag signal in two different setups. (a) Drag voltage as a function of drive current, for
setup A, as shown in the top of panel (c). (b) Same plot for setup B, with inverted current direction. The solid lines represent a cubic fit. The
I-V relationship deviates from the linear behavior predicted by momentum transfer models. (c) The waveforms of the drag signal at different
drive currents: 1.46 nA, 5.38 nA, and 18.34 nA (from bottom to top) for wire setup A. (d) Same plot as (d) for setup B. The peak of the
waveform increases in magnitude as the drive voltage is increased from 1.46 nA to 18.34 nA. (e) The waveform of the drag signal at different
gate voltages for setup A. (f) Same waveform plot as (e) for setup B. (g) Drag voltage as a function of top gate and bottom gate voltages. The
colored points on the plot corresponds to the waveform plots in (e) and (f).

quantized 1D conduction is observed, which is ∼1 µm in
shallow 2DEGs. From these estimates, we obtain a Thouless
energy in the range of ETh ∼ 6–10 µeV, in good agreement
with the typical size of the oscillations observed in our
Coulomb drag signal.

The nonlinearity of the current-voltage characteristics
should also result in a deformation of the sinusoidal drag
signal in ac measurements. Figures 6(c) and 6(d) show the
waveforms of the drag signal from −π/2 to −π/2 at different
drive currents (1.46 nA, 5.38 nA, and 18.34 nA from bottom
to top) for wire setups A [Fig. 6(c)] and B [Fig. 6(d)], respec-
tively, with bottom gate at −1.52 V and top gate at −0.38 V.
These waveforms were calculated by adding the first nine har-
monics of the drag signal. The shape of the waveform is drive
current dependent and its magnitude increases as the drive
current is increased. Figures 6(e) and 6(f) show the waveforms
for Idrive = 11.8 nA, at different top and bottom gate voltages,
which are represented by the filled circles in Fig. 6(g). Due to
the nonlinear I-V relation, we expect the waveforms to digress
from the expected sinusoidal shape, and exhibit significant
dependence on values of the gate voltages. The waveforms
display nonidentical characteristics upon current direction
reversal, likely caused by a small momentum-transfer con-
tribution to the drag signal or different line resistances into
the wires, changing the electron’s chemical potential. We also
note that Joule heating from the drive current (∼1 mV voltage
drop at 10 nA) is unlikely to be at the origin of the I-V
nonlinearity, since, as shown in Fig. 7, the drag signal

resulting from a 10 nA drive current exhibits a nonmonotonic
temperature dependence down to ∼180 mK, a much lower
temperature than the voltage temperature of the drive circuit
(∼1.6 K).

IV. TEMPERATURE DEPENDENCE

In the Fermi liquid regime, CD induced from charge den-
sity fluctuations is expected to depend quadratically on the
temperature. However, as presented in Fig. 7(a), the observed
temperature dependence of the drag signal is nonmonotonic.
The observation of both an increasing drag signal with a
decreasing temperature [47] and of a nonmonotonic temper-
ature dependence [17,48] are hallmarks of interaction effects
within the Luttinger liquid model, albeit in a framework where
the drag signal is induced by momentum transfer. However,
to describe this effect in the diffusive limit of multichannel
quantum wires, one must go beyond the usual approxima-
tions of the Fermi liquid and Luttinger liquid theories of
drag. In particular, the three-particle interwire correlations
remove the constraints of particle-hole asymmetry and may
lead to a strong drag effect in the low-temperature regime.
In the diffusive limit, T τ � 1, with τ being the intrawire
transport scattering time, the resulting temperature depen-
dence of the third-order drag mechanism of transconductivity
can be extracted from Ref. [49] with modifications appro-
priate for the 1D system. We find σD ∼ R−1

Q (νU0)3LT ∝ 1/T
for the case of short-ranged interactions (strong screening),
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FIG. 7. Temperature dependence of the CD signal. (a) Temperature dependence of the CD signal with Ndrive � 1 and Ndrag < = 4 (black),
Ndrive � 1 and Ndrag � 3 (red) and Ndrive � 1 and Ndrag � 5 (green). (b) Log-log plot of drag voltage and temperature for Ndrive � 1 and Ndrag �
4. The blue straight line is the linear fit for high-temperature regime and the offset is V0 = 0.16451 µV . (c) Arrhenius plot of drag voltage and
temperature for Ndrive � 1 and Ndrag � 4, with a linear fit (blue straight line) in the high-temperature regime. The offset is V0 = 0.16451 µV .

where LT = vF
T is the thermal de Broglie lengths, ν is the

1D density of states, and U0 is the characteristic strength of
the interwire interaction for forward scattering with small
momentum transfer. The surprising feature of this result is
that it is independent of τ , both for the temperature de-
pendence and its prefactor. For long-ranged interactions, we
find the same temperature dependence, but with a more
rapid decay of drag with the interwire separation, namely
σD ∼ R−1

Q (νU0)3LT /(κd )3 for κd � 1 where κ is the inverse
Thomas-Fermi screening radius. An extension of the formal-
ism from Refs. [49,50] to the ballistic limit of transport T τ >

1 results in the Fermi-liquid-like temperature dependence of
drag conductivity σD ∼ R−1

Q (νU0)3(vF τ )(T τ )2 ∝ T 2. There-
fore, that three-particle mechanism of drag can result in both a
nonmonotonic temperature dependence and an upturn of drag
at low temperatures, even from the forward electron scattering
at small momentum transfer between the wires. This analy-
sis should be contrasted to the Arrhenius behavior predicted
to occur in ballistic wires for interwire backscattering be-
tween strongly correlated wires [47] and for interwire forward
scattering [51,52].

We present the result of power-law fits of the drag tem-
perature dependence in Figs. 7(b) and 7(c), in log-log and
Arrhenius form, respectively. The blue solid line in Figs. 7(b)
and 7(c) indicates the regime where the log-log plot and the
Arrhenius plot is nearly linear, and the exponent for these
fittings were calculated as Vdrag ∝ T γ ; γ = −0.98 ± 0.04 for

the power-law function and Vdrag ∝ e
β

T ; β = 1.03 ± 0.01 for
the Arrhenius function. Analysis at different sub-band occu-
pancies lead to a comparable power-law fit: Vdrag ∝ T γ ; γ =
−0.8 ± 0.2. We note that, owing to a sign change at high
temperature in our data, an offset voltage V0 has been included
in the fit. Additional details about the fitting procedure can be
found in the Supplemental Material [42]. While the power-law
exponent value is consistent with the three-particle mecha-
nism for CD described prior, the limited range where the drag
signal is showing an increase with decreasing temperature
prevents us from ruling out the possibility that a more con-
ventional Arrehenius-like behavior is occurring. Additional
experimental and theoretical work will be required to confirm
this conclusion.

V. DISCUSSION AND SUMMARY

The results reported in this paper are fairly different from
prior 1D drag results [16,27,53] where the CD signal ap-
peared to be consistent with the momentum-transfer model.
The reason behind this discrepancy is not readily apparent.
However, it is likely that a combination of the large sub-band
occupancy in the wires, the significant interwire separation
and the sample’s innate disorder could be the source of
these fundamental differences in the nature of the dominant
drag-inducing mechanism. It should also be noted that, as
highlighted by recent studies [29,31,32,54], observations of
a negative and/or nonreciprocal CD is not uncommon in
mesoscopic systems. Additional experimental and theoreti-
cal work will be required to determine the universality of
rectification-induced drag across various material platforms
and to assess the parametric onset of both momentum transfer
and rectification-induced drag.

In summary, we present an experimental study of 1D
Coulomb drag between quantum wires in the multiple sub-
band regime. Our CD measurements deviate from the standard
momentum-transfer models by clearly violating the Onsager
reciprocity relations, both upon layer reversal and current
reversal. Subsequent measurements of the nonlinearity of the
drag signal are consistent with a microscopic energy rectifi-
cation model for Coulomb drag. However, the nonmonotonic
temperature dependence of the drag signal highlights the im-
portance of including electron-electron interactions beyond
the Luttinger liquid framework in future theoretical descrip-
tion of rectification-induced drag.

The supporting data for this paper are openly available
from the Institutional Repository at the University of Florida
(IR@UF) [55].
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