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Signatures of Kondo-Majorana interplay in ac response

Krzysztof P. Wójcik ,1,2,* Tadeusz Domański ,2,† and Ireneusz Weymann 3,‡
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We analyze dynamical transport properties of a hybrid nanostructure, comprising a correlated quantum dot
embedded between the source and drain electrodes, which are subject to an ac voltage, focusing on signatures
imprinted on the charge transport by the side-attached Majorana zero-energy mode. The considerations are
based on the Kubo formula, for which the relevant correlation functions are determined by using the numerical
renormalization group approach, which allows us to consider the correlation effects due to the Coulomb repulsion
and their interplay with the Majorana mode in a nonperturbative manner. We point out universal features of
the dynamical conductance, showing up in the Kondo-Majorana regime, and differentiate them against the
conventional Kondo and Majorana systems. In particular, we predict that the Majorana quasiparticles give rise to
universal fractional values of the ac conductance in the well-defined frequency range below the peak at the Kondo
scale. We also show this Kondo scale to actually increase with strengthening the coupling to the topological
superconducting wire.
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I. INTRODUCTION

Dynamical transport properties, such as shot noise or ac
response, give valuable information about the charge carri-
ers and can provide evidence for their unique character [1].
They are hence useful for exploring exotic phases of matter
[2–5] and for uncovering the subtle fingerprints of interactions
[6–12]. The dynamical properties can also be studied with
optical means [13,14], including quantum dots (QDs) coupled
to microwave cavities [15–18], where they provide insight into
photon-assisted transport [19] or inelastic scattering processes
[20,21]. Measurements of dynamical transport properties have
been reported both for normal [22,23] and superconducting
nanostructures [24,25] and they are nowadays attainable with
unprecedented precision [26], opening up the field for exciting
experiments.

In particular, dynamical response studies could be adopted
to identify unique signatures of hybrid nanostructures with
topological superconductors (TSs), harboring the Majorana
quasiparticles. Fluctuations of the charge currents through
various arrangements of TSs and QDs attached to them have
been recently studied, focusing on the shot noise [27–31]
and coupling to a microwave cavity [32–37]. Moreover, dy-
namical properties of the Majorana bound states have been
analyzed by the nonequilibrium Keldysh formalism, deter-
mining the finite frequency emission and absorption noise to
all orders in the tunneling amplitude through a biased junc-
tion between a normal metal and TS [38]. Peculiarities of
the Majorana noise have been also inspected for the spinless
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(Kitaev) counterpart of the setup studied here, demonstrating
its universal features manifested by resonances and antires-
onances appearing at characteristic frequencies [39]. Such
studies provided information about less conventional signa-
tures of Majorana quasiparticles, which are complementary
to their zero-energy static features reported in the tunneling
measurements [40–42] and quench dynamics [43–45]. A vast
majority of these studies, however, focused on spinless the-
ories, neglecting the Coulomb repulsion responsible for the
correlation phenomena.

In this paper, we investigate dynamical hallmarks of
the Majorana mode coupled to the strongly correlated QD
that would be observable in charging-discharging processes
driven by the external ac field. For microscopic considera-
tions, we choose the single-dot hybrid structure, displayed
in Fig. 1. Here, proposed methodology can be naturally ex-
tended to other, more complex structures. As an example,
we point out some alternative realization of our model (see
Appendix A), where specific contributions of the dynam-
ical conductance could be examined without spin-resolved
measurements.

Hybridization of the QD with a topological superconduct-
ing wire gives rise to a leakage of the Majorana boundary
mode onto the side-attached QD [46]. When confronted with
the Coulomb interactions, it develops the unique Kondo-
Majorana (KM) strong coupling low-energy fixed point
[47–49] characterized by universal spin-asymmetric spectral
density [50], resembling the one in noninteracting systems,
yet revealing a fully screened impurity magnetic moment [51].
The latter seems difficult to be measured directly, whereas
the static dc-transport features of such a KM fixed point are
hardly distinguishable from those of noninteracting Majorana-
QD hybrid systems [52–55]. Here we show that ac transport
properties would be a suitable tool to discriminate them.
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FIG. 1. Schematic of the hybrid setup with a correlated quantum
dot placed between the external (left and right) electrodes and side-
coupled to the topological superconducting (TS) nanowire, hosting
the Majorana end modes (described by γ̂1 and γ̂2). The quantum dot
is characterized by the energy level εd and the Coulomb potential U .
The dynamical charge transport is driven by time-dependent voltage
Vjσ (t ) applied between the contacts.

In what follows, we analyze the universal ac conduc-
tance over an extended range of frequencies, bounded from
above by the energy scale corresponding to the Majo-
rana coupling, ωmax ∼ 2�M, and from below by the scale
related to the overlap of Majorana modes, εM , encoun-
tered in short-length topological superconducting systems,
ωmin ∼ εM(1 + �M/εM)−1. Here, �M ≈ 2V 2

M/�, where VM is
the matrix element between the QD and TS, while � denotes
the coupling strength to the left and right leads. In the case
of a long topological superconducting nanowire, εM → 0, the
universal feature corresponds to the zero-bias peak, and ωmax

is the maximal ac frequency allowing for its observation.
Taking the Coulomb interaction effects into account, we care-
fully investigate what dynamical response characterizes the
KM fixed point, which (to the best of our knowledge) is still
awaiting its experimental observation. With the present paper,
we aim to provide means of such detection.

The paper is organized as follows. In Sec. II, we introduce
the model and describe the numerical methods, based on the
numerical renormalization group (NRG) technique [56] and
Kubo formalism [57]. Section III discusses the relevant energy
scales, inferred from analysis of all contributions to the re-
sponse functions. Then, Sec. IV combines these contributions
into frequency-dependent conductance of the device for vari-
ous biasing scenarios. In Sec. V, we briefly discuss alternative
methods capable to deal with correlation phenomena under
ac nonequilibrium conditions. Finally, Sec. VI concludes our
paper. Additionally, Appendix A presents an alternative exper-
imental setup for verification of our findings and Appendix B
shows the results obtained when the topological superconduc-
tor is replaced by a conventional one.

II. THEORETICAL DESCRIPTION

The considered nanostructure (Fig. 1) consists of a corre-
lated QD placed between two external leads and additionally
coupled to a topological superconducting nanowire, hosting
the Majorana boundary modes described by the operators γ̂1

and γ̂2, respectively. External leads are subject to a time-
dependent bias voltage, inducing ac charge transport via the
QD. In what follows, we briefly specify the low-energy mi-
croscopic model of this system and present the theoretical

framework for treating the dynamical phenomena within the
linear-response theory.

A. Hamiltonian

The system’s Hamiltonian consists of the following terms:

Ĥ =
∑

j=L,R

(Ĥj + Ĥj−QD) + ĤQDM. (1)

The external electrodes are assumed to be reservoirs of the
itinerant electrons

Ĥj =
∑

σ

∫
[ε − μ jσ (t )] ĉ†

jεσ ĉ jεσ dε, (2)

where ĉ†
jεσ (ĉ jεσ ) denote the creation (annihilation) operators

of spin-σ electrons in jth lead, which satisfy anticommutation
relation {ĉ†

jεσ , ĉ j′ε′σ ′ } = δ j j′δσσ ′δ(ε − ε′), and μ jσ (t ) is the
corresponding time-dependent chemical potential. Electron
tunneling between the jth lead and the QD is described by

Ĥj−QD =
∑

σ

∫ √
ρ j (ε)(v j d̂

†
σ ĉ jεσ + H.c.)dε, (3)

where v j is the hopping matrix element and ρ j (ε) is the
density of states of the jth lead. Since our considerations
refer to a narrow energy region (of a width ∼ meV) inside the
topological gap of a superconducting nanowire, we assume
the density of states to be flat, ρ j (ε) = ρ ≡ 1/2D, where D
is the band energy cutoff, used as a convenient energy unit
throughout, D ≡ 1. The hybridization effects (3) can be taken
into account by introducing the couplings � j = π |v j |2ρ j .

The last term of the Hamiltonian (1) describes the QD
combined with the Majorana modes of the TS [58,59],

ĤQDM = εd

∑
σ

n̂σ + Un̂↑n̂↓

+VM(d̂†
↓ − d̂↓)γ̂1 + iεMγ̂1γ̂2, (4)

where d̂†
σ (d̂σ ) is the creation (annihilation) operator for spin-σ

electrons on the QD of energy εd and Coulomb correlations
U , n̂σ = d̂†

σ d̂σ is the corresponding electron number opera-
tor, and γ̂1,2 are the operators of the boundary zero-energy
modes. Hybridization of the QD spin-↓ electrons with the
left hand-side Majorana quasiparticle is denoted by VM, while
εM stands for an overlap between the Majorana modes. It is
useful to represent the Majorana operators γ̂i in terms of the
conventional fermion operators f̂ (†)

M ,

γ̂1 = ( f̂M + f̂ †
M)/

√
2, (5a)

γ̂2 = −i( f̂M − f̂ †
M)/

√
2, (5b)

which obey the standard anticommutation relations.

B. ac conductance

The charge current flowing from the jth lead to the
QD in spin channel σ can be expressed by the oper-
ator Î jσ (t ) = e ∂t N̂ jσ (t ), where N̂jσ = ∫

ĉ†
jεσ ĉ jεσ dε counts

total number of spin-σ electrons in the aforementioned
lead, the time argument indicates the Heisenberg picture,
and e = |e| stands for the elementary charge. Assuming
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the TS to be grounded, the applied time-dependent volt-
age affects the chemical potentials of external leads as
Vjσ (t ) ≡ −μ jσ (t )/e. Within the linear-response Kubo for-
malism [57], it is useful to define the Fourier transform
Vjσ (t ) = (2π )−1

∫
e−iωtVjσ (ω)dω. The expectation value of

the charge current, I jσ (t ) ≡ 〈Î jσ (t )〉, can be then expressed in
terms of the Fourier transforms by [8,60]

I jσ (ω) =
∑
j′σ ′

Gσσ ′
j j′ (ω)Vj′σ ′ (ω), (6)

with the system’s admittance

Gσσ ′
j j′ (ω) = i

ω

(〈〈Î jσ |Î j′σ ′ 〉〉ret
ω − 〈〈Î jσ |Î j′σ ′ 〉〉ret

ω=0

)
, (7)

where 〈〈Î jσ |Î j′σ ′ 〉〉ret
ω is the Fourier-transform of the

retarded Green’s function of the current operator,
〈〈Î jσ |Î j′σ ′ 〉〉ret

t = −i�(t )〈[Î jσ (t ), Î j′σ ′ (0)]〉 (we set the time
units such that h̄ ≡ 1 throughout the paper). In what follows,
we shall focus on the properties of the frequency-dependent
conductance of the system:

Gσσ ′
j j′ (ω) = Re

{
Gσσ ′

j j′ (ω)
} = − 1

ω
Im

{〈〈Î jσ |Î j′σ ′ 〉〉ret
ω

}
. (8)

The current operator for our setup is given by

Î jσ = ie(v jψ̂
†
jσ d̂σ − H.c.), (9)

with

ψ̂
†
jσ =

∫ √
ρ j ĉ†

jεσ dε (10)

being the corresponding field operator for the creation of a
spin-σ electron in the jth lead. We introduce an effective

tunnel-matrix element, v =
√

v2
L + v2

R, and perform a trans-
formation from the left-right to the even-odd basis:

ψ̂e
σ = vL

v
ψ̂Lσ + vR

v
ψ̂Rσ , (11)

ψ̂o
σ = −vR

v
ψ̂Lσ + vL

v
ψ̂Rσ . (12)

Then, for the even (odd) current operator, one finds

Îe(o)
σ = ive Îe(o)

σ , (13)

with

Îe(o)
σ = ψ̂e(o)†

σ d̂σ − d̂†
σ ψ̂e(o)

σ , (14)

such that Î jσ can be expressed as

Î jσ = ie

[
v2

j

v
Îe

σ + (−1)δ j,L
vLvR

v
Îo

σ

]
. (15)

Thanks to 〈〈Îe
σ |Îo

σ ′ 〉〉 = 〈〈Îo
σ |Îo

−σ 〉〉 = 0, one obtains

Gσσ ′
j j′ (ω)

G0
= −δσσ ′η j j′

2�L�R

�

1

ω
Im

[〈〈
Îo

σ

∣∣Îo†
σ

〉〉ret

ω

]

− 2� j� j′

�

1

ω
Im

[〈〈
Îe

σ

∣∣Îe†
σ ′

〉〉ret

ω

]
, (16)

where � = �L + �R, G0 = 2e2/h, and η j j′ = 1 if j = j′ and
η j j′ = −1 otherwise.

Note that ψ̂o
σ is not present in the tunneling Hamiltonian,

Eq. (3), i.e., it is just a free fermionic field whose Green’s
functions are known exactly. Thus, one can relate the odd
contribution to the QD spectral function through the Wick the-
orem without introducing any approximations. On the other
hand, the current correlation function associated with the even
channel needs to be determined explicitly. Then, the formula
for the frequency-dependent conductance can be written in a
more compact form as [8,60,61]

Gσσ ′
j j′ (ω)

G0
= δσσ ′η j j′

2�L�R

�2
go

σ (ω) + 2� j� j′

�2
ge

σσ ′ (ω), (17)

with the functions

go
σ (ω) = �

2ω

∫
Im 〈〈d̂σ |d̂†

σ 〉〉ret
ω′ [ f (ω′ + ω) − f (ω′ − ω)]dω′

(18)

and

ge
σσ ′ (ω) = −�

ω
Im

〈〈
Îe

σ

∣∣Îe†
σ ′

〉〉ret

ω
, (19)

where f (ω) = [1 + exp (ω/T )]−1 is the Fermi-Dirac distribu-
tion function (kB ≡ 1).

C. Treatment of the correlations

To deal with the correlation effects in the low-temperature
regime where the Kondo effect emerges, we make use of
the NRG approach [56,62,63] in its full-density-matrix im-
plementation [64], which allows for sum-rule conserving
determination of the spectral functions [65] relevant for
our paper. This method reliably yields the set of low- and
high-energy eigenstates, and the Green’s functions can be
calculated from the Lehmann representation, imposing a
broadening with the log-Gaussian kernel [65]. We also use
the z-averaging trick [66] with eight different values of z,
which allows us to avoid overbroadening of spectral functions.
This is particularly important for correct calculation of the
even contribution, where 〈〈Ie

σ |Ie
σ ′ 〉〉ret

ω /ω needs to be obtained
at small ω, cf. Eq. (19). For specific computations, we have
chosen the following model parameters: the discretization pa-
rameter � = 2, the number of states kept per iteration NK =
2048, and the broadening width in the range 0.2 < b < 0.35.
For values of the physical parameters, we take U = 0.1D and
� = U/10, which allow for clear presentation of numerical
results. These remain qualitatively valid as long as the strong
coupling regime is successfully reached, and the relevant en-
ergy scales are outlined in the following section. We focus on
the zero-temperature case (T = 0).

III. RESPONSE FUNCTIONS
AND RELEVANT ENERGY SCALES

As can be seen from the above discussion, the behavior
of the ac conductance is essentially determined by two di-
mensionless conductances go

σ (ω) and ge
σσ ′ (ω). Therefore, it

is of great importance to analyze those functions separately.
This will be crucial in understanding different contributions
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WÓJCIK, DOMAŃSKI, AND WEYMANN PHYSICAL REVIEW B 109, 075432 (2024)

FIG. 2. The odd contribution to the ac conductance go
σ (ω) plotted

as a function of frequency for different values of VM, as indicated.
(a) The spin-↑ component, with the VM-dependent Kondo scale TK

indicated with arrows. (b) The spin-↓ component, with arrows in-
dicating the relevant �M scale (see the main text for details). Inset
shows �M as a function of VM, with dashed line corresponding to
Eq. (23). The parameters are: U = 0.1D, εd = −U/2, � = U/10,
and εM = 0.

to Gσσ ′
j j′ (ω) as well as

Gj j′ (ω) =
∑
σσ ′

Gσσ ′
j j′ (ω), (20)

depending on how the system is biased.

A. Odd response function

We start the discussion from the odd dimensionless con-
ductance, cf. Eq. (18), presented in Fig. 2. It describes the
contribution from the processes that change signs upon the
left-right lead exchange, thus corresponding to the transport
through the nanostructure from L to R leads. These processes
are governed mainly by the local spectral density of QDs,
symmetrized through the convolution with the corresponding
Fermi functions, cf. Eq. (18). Note that the spin symmetry
is broken only by the coupling to spin-polarized TS quan-
tified by VM, which determines the spin quantization axis.
Therefore, go

↑(ω) exhibits a hump at ω ∼ U , a minimum cor-
responding to Coulomb blockade for ω � U and a peak for
frequencies below the Kondo temperature TK, here defined
through the half-width:

go
↑(ω = TK ) = 0.5. (21)

As long as TK > VM, it is practically independent of VM, and
therefore the well-known estimation [67] remains valid:

T 0
K =

√
U�

2
exp

[
π

2

εd (εd + U )

U�

]
. (22)

For larger VM, however, the results indicate an increase of the
Kondo scale. A similar tendency has already been reported in
earlier numerical studies based on the spectral densities and
temperature dependence of the dc conductance [51,68,69],
but this goes against intuition concerning a competition be-
tween Kondo and Majorana couplings as well as expectations
of lack of such dependence from approximate RG schemes
[47,48,70]. The issue has therefore remained controversial
and is fully resolved in favor of TK increase only through the
analysis of the even contribution to the ac conductance; see
the discussion of Eq. (24) in the sequel.

The other energy scale known from the analysis of conven-
tional spectral functions of Majorana devices is the effective
coupling strength to TS [50]:

�M ≈ 2V 2
M/�. (23)

It determines the energy scale below which the typical Ma-
jorana spectral signatures are visible, namely, at ω � �M

the conductance in spin channel coupled to TS [σ =↓, cf.
Fig. 2(b)] is pinned to e2/2h. When �M < TK, the value of
�M can be recognized from the condition go

↓(ω = �M) = 0.75
[71]. Then, the numerical calculations give results in agree-
ment with Eq. (23), cf. the inset in Fig. 2(a).

B. Even response function

While go
σ (ω) provides comparable insight into the system’s

properties as the local QD spectral density, the even contribu-
tion, ge

σσ ′ (ω), probes a different Green’s function, cf. Eq. (19),
and complements the information available from the local
spectroscopy. This contribution is even in the left-right leads
exchange, so it corresponds to the processes of charging and
discharging the QD, and transport from normal leads to the
TS. The two spin indices of ge correspond to the response
and voltage bias, and the cross terms appear as a consequence
of effective spin-exchange interactions induced by Coulomb
correlations in the Hamiltonian, Eq. (4). Even though, in
practice, a sum over spins is usually measured, we find it
useful to discuss each component separately first. We note that
such components could be measured in a double QD setup
without the need to resort to spin-dependent measurements,
see Appendix A.

As can be seen in Fig. 3(a), ge
↑↑(ω) exhibits a signal char-

acteristic of the Kondo effect, i.e., a peak at ω ∼ TK, and a
second peak for ω ∼ U [8]. Note that these features do not
occur for a resonant model, therefore they are unique signa-
tures of Coulomb interactions and the resulting Kondo effect.
Similarly, as in Fig. 2(a), one now observes an increase of TK

with VM. This enhancement of TK persists even if the wire is
not long enough to make the Majorana overlap εM negligible,
see Fig. 4, and is most clearly shown in Fig. 5(a). For different
values of VM, from our numerical data we find approximately

TK ≈
√(

T 0
K

)2 + 0.1V 2
M, (24)
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FIG. 3. The even contribution to the ac conductance ge
σσ ′ (ω)

plotted as a function of frequency. (a) ge
↑↑(ω), (b) ge

↓↑(ω) = ge
↑↓(ω),

and (c) ge
↓↓(ω) calculated for different values of VM, as indicated.

The arrows indicate the relevant energy scales. Inset shows ωmax as
a function of VM, with dashed line corresponding to ωmax = 2�M =
4V 2

M/�. The parameters are the same as in Fig. 2.

which remains valid when the TS wire is short, εM = 0, cf.
Figs. 4(a) and 5(a).

In Fig. 3(b), the opposite-spin-response is shown [note
that ge

↑↓(ω) = ge
↓↑(ω) follows from the definition of relevant

Green’s functions, cf. Eq. (19), and the bosonic character of
current operators]. Already for VM = 0, it possesses a set of
unique features [9]. It exhibits a positive peak for ω ∼ U and
a negative one at ω ∼ TK. This negative sign means that for the
corresponding frequencies, the voltage in spin channel σ in-
duces a negative current in the other spin channel, which could
be seen as a consequence of the Kondo singlet oscillations.
When a spin-↑ electron leaves the QD, its singlet companion
secures single occupancy of the dot. This is further confirmed
by the fact that for VM = 0, the negative peak of ge

↓↑(ω) is a
mirror image of the corresponding positive peak in ge

σσ (ω),
visible in Figs. 3(a) and 3(c); see also the discussion of Fig. 7.

FIG. 4. (a) Odd and (b) even contributions to the spin-↓ response
function due to a spin-↓ voltage calculated for VM = 10−2U and a
few chosen values of εM, as indicated. The other parameters are the
same as in Fig. 2. The arrows indicate relevant energy scales, with
unlabeled arrows in (a) corresponding to relevant ωmin shown in (b).

This means that the charge current in one spin channel is
compensated by the opposite current of the other spin channel,
which is the essence of an antiferromagnetic spin exchange.
When ω ∼ TK, the spin exchange is almost in resonance
with the driving frequency, leading to fractional value of the
components of the even conductance, ησσ ′ge

σσ ′ = 1/4 and the
unitary value of the spin conductance.1 When ω significantly
exceeds TK, the process becomes inefficient, as spin exchange
no longer keeps up to rapidly oscillating driving bias.

For 0 < VM � 10−2U , the picture changes mainly quanti-
tatively: the negative peak position shifts toward higher ω as
a consequence of increase of TK. However, it should be noted
that for VM � TK, while the peak in ge

↑↑(ω) becomes higher
in the presence of TS, the negative peak in ge

↓↑(ω) is reduced
and supplemented with a small positive one at lower ω; cf.
the curves for VM = 10−2 in Figs. 3(a) and 3(b). This could be
understood as the competition between the Kondo exchange
and Andreev processes, the latter ones relevant here only for
the spin-down electrons. It becomes even more apparent for

1To see that this is indeed the value relevant in the unitary
regime, let us assume that the corresponding ω-dependent spin
bias Vj↑(ω) = −Vj↓(ω) = V e(ω)/2 is applied to both normal leads.
Then, the charge currents fulfill Ijσ (ω) = (G0/2)V e(ω)[ge

σ↑(ω) −
ge

σ↓(ω)], and the total spin current from normal electrodes
is IS (ω) = ∑

jσ σ Ijσ (ω) = G0V e(ω)[ge
↑↑(ω) − ge

↑↓(ω) − ge
↓↑(ω) +

ge
↓↓(ω)]. Consequently, IS (ω) becomes G0V e at resonance, i.e., for

ω ≈ TK, which is indeed the unitary value.
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FIG. 5. (a) The Kondo scale TK, defined in Eq. (21), an estima-
tion of the Kondo scale determined as the position of the maximum
in ge

↑↑(ω), and the position of the minimum in ge
↓↑(ω), as functions

of VM. (b) ωmax and ωmin as functions of VM. In both panels, lines
correspond to εM = 0, while different point styles correspond to
different values of εM, as indicated. Inset in (a) shows ωmin for all
considered εM, appropriately scaled, such that they all collapse to a
single curve estimated by Eq. (25) and indicated with a dashed line.
The parameters are the same as in Fig. 2.

larger VM, VM � TK, when the positions of the peaks become
different: in ge

↑↑(ω) the peak remains at TK(VM), while in
ge

↓↑(ω) it follows simply VM [cf. the curve for VM = 10−1U
in Fig. 3(a)], which is the energy scale of the QD-TS hopping.
This leads to ge

↑↑(ω ≈ VM) < −ge
↑↓(ω ≈ VM), and thus one

obtains a negative total response in the spin-down channel,
cf. Fig. 7.

The most prominent result for the even response function
is presented in Fig. 3(c), which shows the spin-↓ response
to the spin-↓ bias, i.e., ge

↓↓(ω). Besides the Kondo-related
peak identical to the one visible in ge

↑↑(ω), ge
↓↓(ω) acquires

a nonzero value in the static limit (ω → 0). This means the
steady current flows into QD at a constant bias, and can be
understood as the current flowing into TS. This result extends
to higher ω, in fact, to ω ∼ ωmax = 2�M ≈ 4V 2

M/�, as indi-
cated in Fig. 3(c) with upward arrows. The magnitude of ωmax

is further analyzed in Fig. 5(b).

C. Role of Majorana overlap

The topological superconducting nanowires should be suf-
ficiently long to prevent any overlap between the Majorana
zero-energy modes. In practice, however, this may be difficult
to achieve and a non-negligible εM may exist, as assumed in
Eq. (4). This quite drastically changes the situation, because

the KM fixed point is not stable against such perturbation, i.e.,
εM is a relevant perturbation in the RG sense. Still, the latter
determines the physics at the intermediate temperatures T ,
namely, when |εM| < T < TK [49]. This looks similar for the
ac response, where ω plays the role of T , as shown in Fig. 4.
In both go

↓(ω) and ge
↓↓(ω) there appears a scale, denoted here

as ωmin, whose magnitude can be estimated from

ωmin = εM(1 + �M/εM)−1. (25)

This is simply the energy scale related to crossing to a stable
fixed point, which for εM = 0 is not the KM but rather the
conventional Kondo fixed point.

As a summary of this section, all the relevant energy scales
are plotted in Fig. 5. In Fig. 5(a), it is shown that εM does
not really influence TK and only for εM ∼ VM might it affect
the position of the ge

↓↑(ω) minimum. On the other hand,
Fig. 5(b) presents how the range of the Majorana regime in
the ac response, in particular, ωmin(VM, εM), changes with
VM for different εM. The universality of the formula (25) is
demonstrated in the inset of Fig. 5(a).

IV. AC CONDUCTANCE IN DIFFERENT
BIAS CONFIGURATIONS

Having discussed the odd and even response functions,
let us now examine the characteristics of the frequency-
dependent conductance for three different bias configurations.
In the first one, referred to as antisymmetric bias configura-
tion, the voltage is applied as −VLσ (ω) = VRσ (ω) ≡ V o(ω)/2.
Then, assuming symmetrical coupling of the QD to the leads,
�L = �R, we have

−ILσ (ω) = IRσ (ω) = Go
σ (ω)V o(ω), (26)

with the ac conductance given only by the odd response
function:

Go
σ (ω) = G0

2
go

σ (ω). (27)

This is in contrast to the symmetric bias configuration,
VLσ (ω) = VRσ (ω) ≡ V e(ω), in which one can probe the even
contribution to the frequency-dependent conductance. In this
case, the total ac current entering the QD from the normal
leads can be written as

ILσ (ω) + IRσ (ω) = Ge
σ (ω)V e(ω), (28)

with the conductance in the spin-σ channel:

Ge
σ (ω) =

∑
j j′σ ′

Gσσ ′
j j′ = 2G0

[
ge

σ↑(ω) + ge
σ↓(ω)

]
. (29)

In general, for �L = �R, any spin-independent voltage bias
Vj↑(ω) = Vj↓(ω) = Vj (ω) can be decomposed into the even
and odd parts. Still, we also find it useful to discuss the case
when the time-dependent voltage is applied to one lead, i.e.,
VR = 0. One then has

I jσ (ω) = GjL
σ (ω)VL(ω), (30)

with

GLL
σ (ω) = G0

2

[
ge

σ↑(ω) + ge
σ↓(ω) + go

σ (ω)
]
, (31)
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GRL
σ (ω) = −G0

2

[
ge

σ↑(ω) + ge
σ↓(ω) − go

σ (ω)
]
, (32)

and the minus sign in Eq. (32) follows from taking the current
from the QD to the right lead as positive.

In the static limit, ω → 0, the net current flowing from the
normal leads to the dot must drain into the superconducting
nanowire. In contrast, for ω = 0, the processes of charging
and discharging can yield a nonzero signal. Note that we
assume here the superconductor to always be grounded, i.e.,
no bias is ever applied to it.

In the following, we discuss the total conductances
Gx(ω) = Gx

↑(ω) + Gx
↓(ω) and the corresponding spin polar-

ization, given by

Px(ω) = |Gx
↑(ω)| − |Gx

↓(ω)|
|Gx

↑(ω)| + |Gx
↓(ω)| , (33)

where x is one of the labels {e, o, LL, LR} instead of ad-
dressing each spin component separately. It should be noted
that in our model, we do not include any magnetic field
acting on the QD, so only the hopping to TS determines
the spin quantization axis. This might be relevant for TS
nanowires achieved through deposition of magnetic adatoms
on the ferromagnetic substrate. It may also be relevant for
more conventional semiconductor-based wires, assuming the
correspondingly different g factor for the QD.

A. The case of antisymmetric biasing

Let us start with the situation when an antisymmetric bias
is applied to the system, i.e., −VLσ (ω) = VRσ (ω) = V o(ω)/2.
In such a case, according to Eq. (27), each spin component
of the conductance is basically given by go

σ (ω), such that
G(ω) ≡ Go(ω) = ∑

σ Go
σ (ω). While the behavior of go

σ (ω)
has been discussed in the context of Fig. 2, here we focus on
the total ac conductance and its spin polarization, which are
presented in Fig. 6. First, one can see that the zero-frequency
total conductance Go(ω = 0) = 3e2/2h = (3/4)G0 for VM =
0, cf. Fig. 6(a). The order of magnitude of ωmax can be roughly
estimated as the energy scale where this value is reached.

Any nonzero VM leads to spin imbalance, also at ω = 0,
where go

↑(0) = 2go
↓(0). This leads to Po(ω � ωmax) = 1/3,

as is visible in Fig. 6(b). On the other hand, whenever VM �
TK, at ω ∼ VM, the spin-↓ conductance is enhanced in com-
parison to the spin-↑ one, due to additional TS-QD processes
possible in this spin channel. Consequently, P becomes nega-
tive in this range of frequencies.

B. The case of symmetric biasing

In turn, we focus on the case of symmetric biasing, that
is, we assume VLσ (ω) = VRσ (ω) = V e(ω) and define the con-
ductance through the total current entering the QD from both
normal leads. Note that in this biasing situation, the total con-
ductance is given by the even contribution only, i.e., G(ω) ≡
Ge(ω) = ∑

σ Ge
σ (ω). The corresponding conductance is dis-

played in Fig. 7(a). First, it exhibits a large peak at frequencies
of the order of Coulomb interaction strength U , irrespective of
VM. This signal is a signature of charging-discharging dynam-
ics, and remains the only feature relevant for the VM = 0 case,

FIG. 6. (a) The total conductance between the normal leads and
(b) its spin polarization calculated as a function of ω, assuming small
spin-independent bias applied antisymmetricaly to the left and right
leads. The parameters are the same as in Fig. 2.

i.e., when QD is decoupled from TS. For VM > 0, however, the
most prominent feature is a low-frequency (ω � ωmax) plateau
of perfectly spin-polarized conductance 2e2/h, cf. the latter
plotted in Fig. 7(b). This is a signature of resonant Andreev
transport through QD into the TS [40,72,73], persisting at
finite frequencies. Ultimately, for VM � TK (see the curve for
VM = 10−1U in the figure) an additional peak at ω ∼ TK is
present. This is a consequence of separation between positions
of positive peak in ge

↑↑(ω), present always at ω ∼ TK, and
negative peak in ge

↑↓(ω), shifting from ω ∼ TK for VM � TK

toward ω ∼ VM for VM � TK; see also the discussion of Fig. 3.
This additional peak increases the total dynamical conduc-
tance over G0 threshold and partially lifts the spin polarization
around ω ∼ TK.

As has been pointed out in the context of Fig. 3, already
for 0 < VM � TK , the compensation between ω ∼ TK peaks
of ge

↑↑(ω) and ge
↑↓(ω) becomes imperfect. While this is barely

visible in the conductance curves, which show almost com-
pletely suppressed transport, the plot of spin polarization,
Fig. 7(b), reveals vast domination of the spin-↑ channel trans-
port. At two frequencies, the spin-↓ contribution vanishes, and
Pe(ω) = 1. Between these frequencies, Ge

↓(ω) even becomes
genuinely negative, i.e., the spin-↓ current flows in an oppo-
site direction than the spin-↑ one. This means a conversion
of a conventional bias to the spin current, which might be
interesting from the point of view of applications.
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FIG. 7. (a) Total conductance between the leads and quantum dot
and (b) the corresponding spin polarization calculated as a function
of ω. The dashed lines in (b) were used to indicate the range of ω

where Ge
↓(ω) < 0. The inset shows Ge

↓(ω) in this regime. The param-
eters are the same as in Fig. 2, with identical small spin-independent
bias applied to both left and right leads, VLσ (ω) = VRσ (ω) = V e(ω).

C. The case of one-lead pumping

Finally, as an example of a general situation, where both
odd and even channels are present, we consider ac bias applied
to only one (left) lead. The conductance between this lead and
the QD is given by Eq. (31) and presented in Fig. 8(a) for se-
lected values of VM. Clearly, it interpolates between Go(ω) and
Ge(ω), cf. Figs. 6 and 7. It exhibits a peak at ω ∼ U and grows
to approximately 2e2/h for ω � TK. Quite unfortunately, most
of the Majorana features get washed away, as a consequence
of the compensation between Ge(ω) increase and Go(ω) sup-
pression with increasing VM. The only remaining features are
small bumps appearing at frequencies ω ∼ ωmax, similar to the
fate of the spin polarization features, presented in Fig. 8(b),
where only a relatively low signal persists in this range.

Much more interesting features, giving somewhat more
insight into the system behavior, are revealed in the response
in the other lead, which is proportional to GRL(ω), cf. Eq. (32).
The corresponding conductance is presented in Fig. 8(c).
Now, one can see that at ω � ωmax the system works as an
excellent spin filter. The electrons with both spins are pumped
between the left lead and the dot. On the other hand, TS allows
only the spin-↓ channel to enter, meanwhile the unbiased
right lead constitutes a drain for spin-↑ channel. At higher ω,
GRL(ω) drops below 0. This behavior is easiest to understand
for ω ∼ U , when the processes of charging-discharging the

FIG. 8. (a) The dynamical conductance from the left lead to the
quantum dot and (b) the corresponding spin polarization, as well as
(c) the conductance from the right lead to the quantum dot together
with (d) its spin polarization. The parameters are the same as in
Fig. 2, with a time-dependent voltage applied to the left lead only.

QD are the most effective means of transport and, while most
of the charge is supplied by the biased lead, some part is
also drawn from the other normal lead. Additionally, when
the peaks in ge

↑↑(ω) and ge
↑↓(ω) are separated (see the curves

corresponding to VM = 10−1U in Fig. 8), a complex interplay
between all different contributions gives rise to an additional
dip of the conductance visible in Fig. 8(c) and violent changes
of PRL(ω) around the zeros of conductances in both spin
channels; see Fig. 8(d). Such sharp frequency-driven changes
of the sign of spin polarization might be very useful for
applications.

V. DISCUSSION

In this section, we point out possible extensions and lim-
itations of our considerations, discuss other treatments using
effective Hamiltonians, and comment on the influence of dis-
order on Majorana quasiparticle features.

Correlation effects driven by the Coulomb repulsion be-
tween opposite-spin electrons on an Anderson-type impurity
can be described under certain conditions within effective
spin models, determining the exchange coupling perturba-
tively by canonical transformation [74]. This approach proved
to be successful when applied to nanostructures with a
correlated QD placed between metallic lead and conven-
tional superconductor, clarifying the subtle relationship of the
proximity-induced electron pairing and the Kondo physics
[75]. Effective spin interactions of the Anderson impurity
side-attached to the topological superconducting nanowire
have been also investigated in this perturbative framework
[47,48,70]. Such studies revealed that the Majorana mode af-
fects the spin-exchange potential and additionally introduces
the Zeeman field, lifting the spin degeneracy of the QD energy
level. As a consequence, the spin-resolved Kondo effect of the
QD is profoundly altered [50]. However, perturbative elimi-
nation of charge fluctuations at QD can be applied only when
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all Hamiltonian terms changing QD occupation [i.e., � and
VM, cf. Eqs. (3) and (4)] are indeed irrelevant, while the ex-
change interactions scale toward strong coupling fixed point.
Therefore, without RG analysis including charge fluctuation
terms, validity of such an effective low-energy spin model is
limited. Here, we have avoided this difficulty simply by taking
charge fluctuations into account, which does not constitute
any significant complication within the proposed computation
scheme.

A possible route for treating the nonequilibrium effects in-
duced by a periodically varying voltage applied across the QD
would be the time-dependent Schrieffer-Wolff transformation.
Such an approach adopted to the correlated quantum impurity
placed between two normal leads displayed the two-channel
Kondo physics [76], where impurity is screened by separate
conduction bands, corresponding to parity-even and odd su-
perpositions of the external leads. Upon varying the amplitude
and frequency of a drive, the system can be tuned to the critical
point with symmetric coupling of the impurity to both chan-
nels. Approaching this critical point, the spin susceptibility
increases logarithmically with time. In the regime where en-
ergy absorption is low, the time-evolution of the impurity spin
indeed revealed dynamics typical for the two-channel model
[76]. This treatment is perturbative, so its validity beyond
weak coupling regime is not clear.

More generally, joint influence of the strong correlations
and periodic driving can be investigated from the
perspective of the Floquet theory, which can be regarded
as time-equivalent of the spatial Bloch treatment. Using such
an approach to the setup with the Kondo impurity embedded
between two metallic leads, a coherent dressing of the driving
field manifested by side replicas of the Kondo resonance of
the averaged conductance has been predicted [77]. The main
virtue of this method is its applicability from the weak to
strong driving and ability to deal with short voltage pulses.
The Floquet-Kondo engineering also enables a derivation
of the effective models with multichannel degenerate points
(even though the starting Hamiltonian is a single channel one)
[78]. The emergent channels of various physical situations
in the presence of ac external fields can be controlled by
changing, e.g., polarization, frequency, and/or amplitude. The
resulting multichannel Kondo models could host a plethora
of exotic phenomena, including non-Abelian anyons [78] and
unique types of nonequilibrium superconductivity [79]. The
Floquet-formalism picture of the KM interplay would be a
significant extension of the results discussed here, in principle,
lifting the characteristic Kubo formalism assumption of weak
driving. However, it would require equally significant
development of the methodology to address such a complex,
periodically driven, strongly correlated system without
introducing uncontrolled (e.g., perturbative) approximations.

The boundary modes harbored in topological phases
should be immune to disorder, although in particular setups
this situation can vary. For instance, disorder might play an
important role by inducing local features resembling the topo-
logical boundary states. For this reason, additional checks,
e.g., by inspecting the behavior of the ac conductance, could
resolve the true nature of the zero-energy quasiparticles. In
particular, robustness of the Majorana modes of the inho-
mogeneous Rashba nanowire deposited on superconducting

substrate has been discussed in Ref. [80] (also see other
papers cited therein). It seems, however, that magnetic field
(magnetic moments) would be useful because it induces a
splitting of the trivial bound states, while the Majorana mode
stays robust at zero energy. Thus, in a regime of the magnetic
field corresponding to the topologically nontrivial supercon-
ductivity, there is some possibility to discriminate between the
Majorana and disorder-induced quasiparticles.

VI. CONCLUSIONS AND OUTLOOK

We have investigated the dynamical charge transport
through the correlated QD side attached to the topological
superconducting nanowire, focusing on the strong coupling
regime. We have identified the frequency range where the
signatures of Majorana modes occupying the ends of the
wire can be observed. Our analysis of all the contributions to
conductance between the normal leads and the QD revealed
that in general total conductance is a combination of two
contributions: the odd and even in exchanging the left and
right leads, respectively. We have proposed several biasing
schemes allowing for addressing each of these contributions
separately, and we also discussed the case of driving only one
of the normal leads when both contributions are relevant.

We have shown that at low frequencies, the even con-
tribution remains nonzero, leading to generalization of the
zero-bias anomaly known from dc studies to the ac case.
At higher frequencies, clear signatures of the Coulomb
interactions and the Kondo effect are reported. When properly
tuned, the device can be used to generate the spin current
(with much smaller charge current still present) and fully
spin-polarized electric current. The full frequency dependence
uniquely characterizes the relevant low-temperature KM in-
terplay, which we hope will stimulate and foster further
endeavors to observe it experimentally.

For experimental verification of our predictions, we pro-
pose to use the QD–Majorana mode hybrid structures, either
based on semiconducting nanowires [81] or self-organized
magnetic chains (for instance Fe atoms) deposited on a su-
perconducting surface with side-attached quantum impurities
which can be crafted atom by atom [82]. In the first case,
the experimental spectroscopy would rely on measurement
of ac ballistic tunneling conductance, whereas in the second
situation the relevant measurements could be done with pe-
riodically modulated scanning tunneling spectroscopy. Using
microwave spectroscopy, one could also detect nonequilib-
rium signatures of the Andreev-Majorana bound states [83].
In all cases, the probed frequencies should be safely inside
the topological gap (fractions of meV).
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FIG. 9. Schematic for alternative realization of the system based
on a double quantum dot setup.

APPENDIX A: ALTERNATIVE
EXPERIMENTAL REALIZATION

As we have shown in the main text, application of the sym-
metric or antisymmetric voltage bias between the leads may
be used to address the chosen response function summed over
source spins. However, even if spin-sensitive measurements
are performed, the even contribution is always a sum of two
terms, cf. Eq. (29). Separately addressing one of them would
require application of the bias to only one spin species in
the normal leads, which can pose a considerable experimental
challenge. However, an alternative system might be proposed,
where ge

σ σ̄ (ω) would not require such a sophisticated biasing,
at the expense of adding one more QD to the system, as
depicted in Fig. 9. The device presented there has the same
low energy structure, when one assumes that QDs are very
small (thus the corresponding U is very large) and placed in a
strong magnetic field, rendering one of the spins (say spin-↑)
irrelevant for the low-energy processes. Proximity of QDs also

enforces interdot Coulomb repulsion U ′, and we assume that
the direct hopping between the dots is suppressed. In such
a scenario, the spin becomes irrelevant, while the QD index
plays the role of an isospin. Only the second dot is directly
coupled to the TS, and each QD has its own bath of free
electrons in leads 1 and 2, correspondingly. Together they
constitute a single effective electrode possessing the isospin
index, and U ′ leads to Coulomb blockade and the (isospin)
Kondo effect when the two QDs are (in total) singly occupied.
Crucially, now the bias applied to only one (iso)spin channel
is easily realizable, simply as a bias applied only to leads
connected to the relevant QD, and the response can also be
measured in each of these separately.

APPENDIX B: THE CASE
OF CONVENTIONAL SUPERCONDUCTOR

One of the most prominent results of our paper is that
the even contribution to the frequency-dependent conduc-
tance maintains the universal value of G0 over an extended
range of frequencies. Here we would like to stress that, while
the existence of nonzero conductance at low ω is a result
of superconductivity, its universal character is a clear hall-
mark of a topological protection, namely, we have verified
through direct calculations that when the TS is replaced by
a conventional superconductor, Ge(ω → 0) > 0, but is not
universal. Its magnitude becomes significant only for the
QD-superconductor coupling strength �S exceeding ∼U/4.
Therefore, any effect stemming from direct coupling of the dot
to the superconducting shell, covering the nanowire in typical
realizations of TS, can be safely ignored.
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