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Bilayer moiré structures have attracted significant attention recently due to their spatially modulated layer
degrees of freedom. However, the layer-dependent transport mechanism in the moiré structures is still a problem
to be explored. Here we investigate the layer-dependent transport properties regulated by the strain, the interlayer
bias, and the number of moiré periods in a strained moiré homobilayer transition metal dichalcogenide’s
nanoribbon based on low-energy efficient models. The charge carriers can perfectly pass through the scattering
region with the moiré potential, while it is noted that the overall transmission coefficient is mainly contributed
from either intralayer or interlayer transmissions. The transition of the transport mechanism between intralayer
and interlayer transmissions can be achieved by adjusting the strain. The intralayer transmissions are suppressed
and one of the interlayer transmissions can be selected by a vertical external electric field, which can cause a
controllable layer polarization. Moreover, the staggered intralayer and interlayer minigaps are formed as the
number of moiré periods increases in the scattering region due to the overlap of the wave functions in two
adjacent moiré periods. Our finding points to an opportunity to realize layer functionalities by the strain and
electric field.
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I. INTRODUCTION

The inevitable lattice constant mismatch and/or interlayer
misorientation of adjacent two-dimensional crystals leads to
the formation of a long-period moiré pattern, which has
emerged as a highly viable platform to explore exciting phys-
ical phenomena that are absent in the monolayers [1–14].
Among various moiré patterns, graphene moiré superlattices,
where a plethora of novel electronic phenomena are observed
including the fractal quantum Hall effect [15–18] and the
emergent correlation phenomena in flat minibands at the
magic angle twisting [19–22], have attracted considerable in-
terest recently. The moiré pattern formed in homobilayers of
transition metal dichalcogenides (TMDs) [23–31] proves to
be another exciting venue for the exploration of the exciting
superlattice physics, especially towards their spatially modu-
lated valley and layer pseudospin internal degrees of freedom
[26–28].

Compared with their monolayer and heterobilayer coun-
terparts, an extra characteristic of homobilayer TMDs’ moiré
structures is the layer degrees of freedom which can be de-
scribed by a pseudospin. The spatial variation of local stacking
configurations in each moiré unit cell can drive the particles
to reside in either layer at different lateral positions, forming
a moiré defined layer pseudospin texture [26,27]. A moiré
pseudomagnetic field emerges in such layer texture from the
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real-space Berry phase in the adiabatic motion of the carrier
[26,29], which underlies the topological dispersion found in
the lowest-energy minibands [27]. Such nontrivial topology,
together with the intrinsic ferromagnetism arising from the
Coulomb exchange [32], make the bilayer TMDs’ moiré an
ideal platform for experimental investigations of the quantum
anomalous Hall effects [33–36].

The layer texture is analogous to the spatial texture of spins
or magnetic domains, which implies that the fundamental
concepts and theoretical ideas of spin electronics explored in
such context can be transferred to the study of layer-dependent
electronic properties in van der Waals materials, leading to the
development of the field known as layer pseudospintronics
or layertronics [37]. However, the layer-dependent transport
properties in the moiré homobilayer TMDs still remain an
open issue that is hard to solve since thousands of atoms are
contained in a moiré supercell.

Here we investigate the layer-dependent transport proper-
ties regulated by the strain and interlayer bias in a strained
moiré homobilayer TMD’s nanoribbon based on low-energy
efficient models. When the charge carriers transport through
the domain wall of the moiré potential, the transition be-
tween the interlayer and intralayer transports can be adjusted
by the strain and Fermi energy. The intensity and direction
of the layer pseudospin polarization can be controlled by
the vertical electric field which can polarize the carriers in a
certain layer. The periodic interlayer coupling creates layer-
dependent minigaps and minibands in the moiré superlattice.
It is important to clarify that these minigaps are responsible
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FIG. 1. The schematics and potentials of a strained moiré su-
perlattice. (a) Side-view sketches of a moiré pattern of strained
homobilayer TMDs. The metal and chalcogen atoms are represented
by blue and yellow colors, respectively. (b) Top view of the moiré su-
perlattice. The rectangles of different colors show the high-symmetry
stackings. (c) Zoom-in around the atomic structures of different
high-symmetry points. (d) The discrete lattice model for the effective
Hamiltonian. The top and bottom layers are represented by a set
of red and gray points, respectively. The hopping term between the
nearest points in the same layer is t0 and the coupling in the valence
bands with t/b labeling the top/bottom layer is characterized by
Hop. (e) The intralayer moiré potentials Vt and Vb. (f) The interlayer
hopping between the valence band edges of the two layers.

for elucidating the phenomenon of zero transmission, dis-
tinguishable from conventional band gaps. When the Fermi
energy is located in the interlayer minigaps, the carrier’s trans-
port is confined within each individual layer. On the other
hand, when the Fermi energy is in the intralayer energy mini-
gaps, the interlayer transmission occurs, namely, the carriers
incident through the bottom layer will exit from the top layer,
and vice versa. Our finding is an illuminating example of
the advantage of exploiting the layer pseudospin degree of
freedom in future electronics.

II. MODEL AND METHODS

In this work, we delve into the moiré patterns formed
from parallel-stacked homobilayer TMDs, where the armchair
and zigzag edges have been assigned as the x̂ and ŷ axes,
respectively. The transport direction is along the x̂ axis and the
structure is confined along the ŷ axis. Considering parallel-
aligned stacking of homobilayer TMDs, a uniform strain is
applied to the top layer along the x̂ direction with the only
nonzero component of the strain tensor being εxx = η, while
no strain is applied to the bottom layer, as shown in Fig. 1(a).
In this case, due to lattice constant mismatch, moiré patterns
are formed, as illustrated in Fig. 1(b). Given the narrow width
of the ribbon, the effect of lattice mismatch along the ŷ di-
rection on the observed results can be safely disregarded. The
expected strain can be achieved experimentally by employing
the method of elongating the substrate [38]. The moiré pat-
tern arises from local high-symmetry stacking configurations,

namely, RM
X , RM

M , and RX
M , as depicted in Fig. 1(b). Here,

RM
X (RX

M ) refers to Bernal stacking, where metal (chalcogen)
atoms from the top layer sit atop chalcogen (metal) atoms
from the bottom layer, and RM

M corresponds to aligned parallel
stacking, as illustrated in Fig. 1(c).

As the energy gap between the conduction and valence
bands of TMDs is considerable, the interband coupling
between the two layers can be disregarded and we will con-
centrate on the interlayer coupling between the valence band
edges from the two layers. The significant spin splitting in-
duced by spin-orbit coupling (SOC) in the valence bands leads
to spin-valley locking in the low-energy regime, with spin
up/down being tied to valley −K/K . In the case of moiré
formed from R-stacking, interlayer coupling occurs between
band edges having the same spin and valley indices from the
two layers. The effective Hamiltonian governing the valence
band of the K valley can be expressed as

Hv = − p2

2m
+ Uv = − p2

2m
+

(
Vt Hop

H∗
op Vb

)
, (1)

where − p2

2m describes the quadratic dispersion near the valence
band edge, Uv characterizes the moiré potential of the valence
band coupling, Vt/b represents the intralayer moiré potential,
elucidating the band edge shifts in each individual layer due
to the charge transfer between layers, and t/b denotes the
top/bottom layer [29]. The 2 × 2 matrix form arises from the
internal degrees of freedom of the layer pseudospin, reflecting
that electrons can reside in either layer of the homobilayer. A
simple discrete lattice model can be used to depict this Hamil-
tonian, as shown in Fig. 1(d). For reference, Appendix B
provides detailed information on the finite-difference method
and the discrete-lattice model.

The intralayer hopping energy can be modified by strain
in moiré superlattices due to the atomic distance variations
within the strained layer. The effect of this phenomenon can

be expressed as Aε = τ
√

3h̄β

2a (εyy − εxx,−2εyx ), where τ = ±
exhibits opposite signs in the two valleys, β = 2.4, and ε

represents the strain tensor. As Aε causes an effective displace-
ment of the K point, the interlayer hopping Hop also acquires

a strain-dependent phase, i.e., Hop → Hope−i Aε ·r
h̄ . The moiré

potential Vl=t/b and Hop can be modeled as (see Appendix A
for details from the two-dimensional moiré potential to the
one-dimensional moiré potential)

Vl = V0

[
2 cos

(
2π

x

L
+ αl

)
+ cos

(
− 4π

x

L
+ αl

)]
, (2)

Hop =
{

h0

[
1 + 2 cos

(
2π

x

L

)]

+ h1

[
1 + 2 cos

(
4π

x

L

)]}
e−i Aε ·r

h̄ , (3)

where L ≈
√

3a
η

represents the moiré period with a monolayer
lattice constant a, and η is the unique nonzero component
of the strain tensor, i.e., εxx = η [29]. The values of the
other parameters are contingent upon the material and, in this
work, we have employed the parameters specific to MoSe2:
V0 ≈ 8.586 meV, α ≈ ∓0.49π (corresponding to l = t and
b, respectively), h0 ≈ 7.1 meV, and h1 ≈ −1.2 meV [29].
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FIG. 2. Layer-dependent transmission through the region between the two different high-symmetry points. (a) Schematic of a central
scattering region with strong interlayer coupling connected to bilayer TMDs source and drain with the RM

X and RX
M configuration, respectively.

(b) The overall transmission coefficient as a function of the Fermi energy Ef and the component η of strain tensor. [(c)–(f)] The intralayer and
interlayer transmission coefficients. (g) Schematics of the intralayer and interlayer transmission in regions I–IV marked in (d) and (e).

Figure 1(e) shows the intralayer moiré potentials for both the
top and bottom layers over a moiré period, with the extreme
values identified at L

3 and 2L
3 . Furthermore, Fig. 1(f) demon-

strates the moiré potential relating to the interlayer hopping
between the valence band edges of the two layers.

In the following, we will focus on layer-dependent
transmission through the region between the two different
high-symmetry points. Our analysis will specifically examine
the effect of the strain tensor component η and the Fermi
energy E f on layer-dependent transport. Consider a central
scattering region, which has a strong interlayer coupling and is
connected to bilayer TMDs source and drain with the RM

X and
RX

M configuration, correspondingly, as shown in Fig. 2(a). The
energy band diagrams of the source and drain are depicted on
both sides of the panel in Fig. 2(a), where the red curves (gray
curves) correspond to the energy band of the top (bottom)
layer, and the black dashed lines represent the zero-energy
reference point. The valence band maximums (VBMs) of the
top and bottom layers in the source are V1 = 21.9 meV and
V2 = −22.7 meV, respectively, whereas the opposite holds
true in the drain. The layer-dependent transmission coefficient
is calculated with the Hamiltonian in Eq. (1), using a recursive
Green’s function technique [39]. For further details, refer to
Appendix C.

III. RESULTS AND DISCUSSION

Figure 2(b) shows the overall transmission coefficient
Tsum(Tsum = Ttt + Tbb + Tbt + Ttb) as a function of the Fermi

energy E f and the strain tensor component η, where Tll ′ is
the layer-dependent transmission coefficient for the incident
layer l ′ and outgoing layer l . Figures 2(c)–2(f) plot the layer-
dependent transmission coefficients as functions of E f and η.
When the Fermi energy is located between the VBM of the top
layer and bottom layer (V2 < E f < V1), the overall transmis-
sion is only contributed by the transmission Tbt from the top to
the bottom layer, as shown in Figs. 2(b) and 2(c)–2(f), because
only electronic states of the top (bottom) layer in the source
(drain) are involved in transport. As can be seen in Figs. 2(b)
and 2(e), there are two sets of dips induced by the quantum
interference effect in the transmission spectrum in this energy
range. The moiré period is very large when the strain is weak.
There are localized states in the top layer near the drain and in
the bottom layer near the source. The interference between
these localized states and the continuous states [shown in
region I in Fig. 2(e)] will form Fano antiresonance peaks
[40]. As the strain becomes stronger, the size of the scattering
region (∼ a

η
) will become smaller, and these localized states

will disappear; thus the Fano effect will gradually weaken.
Meanwhile, as the scattering region becomes shorter, the in-
terlayer coupling effect becomes weaker and the transmission
becomes smaller.

When the Fermi energy is around V2, the activation of
the new transport mode causes the destructive interference in
interlayer transmission [41]. The intralayer moiré potentials
are steep in the case of strong strain. The difference of the
two layers is that the holes in the top layer feel the scattering
region as a barrier, while the holes in the bottom layer feel a
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FIG. 3. Layer-polarized performance under interlayer bias. [(a)–(d)] The intralayer and interlayer transmission coefficients as functions
of the Fermi energy Ef and the interlayer bias VE , at η = 1%. (e) The overall transmission coefficient and (f) the layer polarization Pl as
functions of the Fermi energy Ef and the interlayer bias VE at η = 1%. (g) The overall transmission coefficient and (h) the layer polarization
Pl as functions of the Fermi energy Ef and the interlayer bias VE at η = 3%. (i) Schematics of the layer-dependent transmission in regions I
and II marked in (f) and (h). (j),(k) The intralayer and interlayer transmission coefficients as functions of the interlayer bias VE at η = 1% and
η = 3%, respectively. The Fermi energy is set as Ef = −26 meV.

well. Therefore, in this case, the carriers can only propagate
from the bottom layer of the source to the bottom layer of
the drain [shown in Figs. 2(d) and 2(g) II]. Conversely, when
the direction of propagation is reversed, carriers can solely
propagate from the top layer of the drain to the top layer of
the source.

When the Fermi energy is less than the VBM of the
two layers, E f < V2, we find an almost perfect overall
transmission coefficient, shown in Fig. 2(b). An interesting
phenomenon that can be observed is that the transition of
the transport mechanism from intralayer transmission to in-
terlayer transmission appears with increasing the strain. The
overall transmission coefficient is mainly contributed from
either intralayer or interlayer transmissions although the va-
lence bands of both layers are involved in transport. In this
scenario, the intralayer transmission is primarily observed
when a weak strain is applied to the strain layer [see re-
gion III in Fig. 2(e)]. With increasing the strain, interlayer
transmission becomes increasingly dominant [see region IV in
Fig. 2(e)]. The length of the scattering region becomes shorter
and the quantum confinement effect in the scattering region
is strengthened with the increase of the strain. The carrier
distribution in the top and bottom layers accumulates towards
the center of the scattering region. Since the scattering center
is where the interlayer coupling is strongest, the strong strain

greatly strengthens the interlayer wave-function overlap; then
the interlayer transmission plays a dominant role in transport.

Next, we will investigate the influence of the interlayer
bias on the layer-dependent transport properties. The two lay-
ers are placed at an additional potential of ±VE through the
application of an interlayer bias with VE = 1

2 eEd , where E
represents the perpendicular electric field and d represents the
space between the two layers [26]. Figures 3(a)–3(d) illustrate
the interlayer and intralayer transmission coefficients as func-
tions of the interlayer bias and Fermi energy when the strain
tensor component η = 1%. When the Fermi energy is located
at E f < V2, the intralayer transmissions are suppressed by an
external electric field. Similar to the strain, an applied electric
field can also realize the transition of the transport mechanism
from intralayer transmission to interlayer transmission. How-
ever, compared with the strain, the electric field has a more
complicated effect on the interlayer transmissions. An electric
field in a downward direction enhances the top-to-bottom
transmission Tbt and suppresses the bottom-to-top transmis-
sion Ttb, while the opposite effect is observed for an electric
field in an upward direction, as shown in Fig. 3(i). These
effects of the external electric field on the transport properties
mainly come from the enhancement of the intralayer poten-
tials and the Coulomb force on the hole induced by the electric
field.
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FIG. 4. Layer-dependent transmission through strained moiré superlattice. (a),(b) The intralayer and interlayer transmission coefficients
as functions of the Fermi energy Ef at η = 1% and η = 3%, respectively. (c) The overall transmission coefficient. [(d)–(g)] The intralayer
and interlayer transmission coefficients as functions of Ef and η. All calculations here use the number of the moiré superlattice period
N = 10.

Figure 3(e) shows the corresponding overall transmission
coefficient Tsum, from which it can be seen that there are two
triangular regions, I and II, with low transmission coefficients
as E f < V2 and the external electric field is strong. At these
regions, there is only one of the interlayer transmissions Tbt

or Ttb, which can give rise to a significant layer polarization.
Figure 3(f) plots the layer polarization Pl as a function of
the interlayer bias and the Fermi energy, where Pl = (Tbt +
Tbb − Ttt − Ttb)/(Ttt + Tbb + Tbt + Ttb). Figure 3(i) illustrates
the transmission schematics of regions I and II in Fig. 3(f). It is
evident that the negative layer polarization in region I results
from an upward electric field and the transmission solely from
Ttb. Likewise, the positive layer polarization in region II is
caused by a downward electric field and the transmission
solely from Tbt .

We also calculate the overall transmission coefficient and
layer polarization as functions of the interlayer bias VE and
the Fermi energy E f for the strain tensor component η = 3%,
which show similar results to those obtained for η = 1%, as
shown in Figs. 3(g) and 3(h). Whether it is a strong strain or
a weak strain, the intralayer transmissions are suppressed by
the interlayer bias [shown in Figs. 3(j) and 3(k)]. Compared
with the results of the weak strain case, the layer polarization
regions I and II become smaller in the strong strain case
because the interlayer transmission is dominant in the absence
of the interlayer bias.

Finally, we examine how the transport properties of the
strained moiré superlattice are influenced by the number of
periods, N , in the scattering region. Specifically, we focus on

N = 10 and investigate the layer-dependent transport proper-
ties. Figures 4(a) and 4(b) depict the intralayer and interlayer
transmission coefficients as functions of the Fermi energy
E f for η = 1% and η = 3%, respectively. It is evident that
both the intralayer and interlayer transmission coefficients
exhibit oscillatory behavior when both valence bands of the
two layers are involved in transport. For η = 1%, at the energy
corresponding to resonance peaks of the intralayer transmis-
sion, the interlayer transmission coefficients vanish and the
intralayer transmissions dominate, while for the strong strain
η = 3%, the intralayer and interlayer transmissions alternate
dominance. When the Fermi energy is located between the
two VBMs of the two layers, the only form of transmission
is interlayer transmission Tbt , displaying miniband transport
phenomena.

Figures 4(d)–4(g) plot the intralayer and interlayer trans-
mission coefficients as functions of the Fermi energy E f and
the strain tensor component η for N = 10 in the moiré super-
lattice. As the strain increases, the period of the superlattice L
becomes smaller and the wave functions of two adjacent moiré
period potentials overlap more and more. According to the
superlattice transport theory, the moiré superlattice will have
the properties of miniband transport, that is, the system will
have layer-dependent minibands and minigaps. The periodic
transitions of intralayer and interlayer transport mechanisms
are made possible by the staggered intralayer and interlayer
gaps, which can be obviously seen in Figs. 4(d)–4(g).

Based on the one-dimensional model, the Fermi energy
range employed in this study is �E f = 70 meV. Through the
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computation of the energy difference �E = 3π2 h̄2

2m∗Ly
2 between

the ground state and the first excited state, it is found that if
the ŷ direction length Ly is less than 5.18 nm, there is no intro-
duction of extra subbands that could impact the model. When
a strain of 1% to 5% is applied to the ribbon, the displacement
between the top and bottom layers in the ŷ direction ranges
from 0.05 to 0.26 nm. Therefore, the effect of lattice mismatch
along the ŷ direction on the observed results can be safely
disregarded. In this case, the obtained results are primarily
dependent on the x̂ coordinate, as demonstrated by Eqs. (2)
and (3). When the length Ly along the ŷ axis exceeds 5.18 nm,
the one-dimensional model is no longer applicable due to
the impact of additional subbands and the effect of lattice
mismatch along the ŷ direction. Thus, a detailed consideration
of the two-dimensional scenario is required, which will be
investigated in future work.

IV. CONCLUSIONS

In summary, we have investigated the layer-dependent
transport properties regulated by the strain, the interlayer bias,
and the number of moiré periods in a strained moiré ho-
mobilayer TMD’s nanoribbon based on low-energy efficient
models. An almost perfect overall transmission coefficient can
be found when the valence bands of both layers are involved
in transport. However, the overall transmission coefficient
is mainly contributed from either intralayer or interlayer
transmissions. The transition of the transport mechanism
from intralayer transmission to interlayer transmission can be
achieved by adjusting the strain. The intralayer transmissions
can be suppressed by an external electric field. By regulating
the direction of the external electric field, one of the interlayer
transmissions is selected, which can give rise to a significant
layer polarization. Therefore, the direction of layer polariza-
tion can be controlled by the electric field. As the number of
moiré periods increases in the scattering region, the staggered
intralayer and interlayer minigaps are formed at the strong
strain due to the overlap of the wave functions in two adja-
cent moiré periods. These results point to an unexpected but
exciting opportunity to build layer functionality by the strain
and electric field in moiré structures.
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APPENDIX A: HAMILTONIAN FROM TWO
DIMENSIONAL TO ONE DIMENSIONAL

We first discuss the effective Hamiltonian governing the
valence band of the K valley, which can be expressed as

Hv = − p2

2m
+ Uv = − p2

2m
+

(
Vt Hop

H∗
op Vb

)
, (A1)

FIG. 5. The schematics and potentials of the strained moiré su-
perlattice. (a) The 2D and (b) the 1D strained moiré superlattice. The
top layer moiré potential Vt corresponding to (c) 2D and (d) 1D.

where − p2

2m describes the quadratic dispersion near the valence
band edge, Uv characterizes the moiré potential of the valence
band coupling, Vt/b represents the intralayer moiré potential,
elucidating the band edge shifts in each individual layer due
to the charge transfer between layers, and t/b denotes the
top/bottom layer [29].

We consider the two-dimensional (2D) moiré superlattice
formed in a homobilayer by applying strain to the top layer,
as shown in Fig. 5(a), where a blue parallelogram encloses
one moiré unit cell, with Li being the moiré primitive lattice
vectors. The moiré potential in the 2D case can be modeled as

Vt/b = V0

3∑
i=1

cos(Gi · r + αl ), (A2)

Hop =
(

3∑
i=1

h0eiKi·δ + h1e−i2Ki ·δ
)

e−i Aε ·r
h̄ , (A3)

where Gi denote the three moiré primitive reciprocal lattice
vectors, Ki represent the three equivalent monolayer K points,
and δ is the local interlayer registry due to strain [29].

In the following, a simpler case of one-dimensional (1D)
moiré is considered. The moiré potential in the 1D case can
be represented by the moiré potential on the diagonal of the
2D moiré unit cell (as indicated by the red line in Fig. 5),
i.e., r = c(L1 + L2), where c ∈ [0, 1], which can also be ex-
pressed as c = x

L . By cutting the 2D structure and extracting
the diagonal region of the 2D moiré unit cell, as indicated by
the black dashed line in Fig. 5(a), we effectively obtained a
1D structure, as shown in Fig. 5(b). Figure 5(c) depicts the top
layer moiré potential Vt in the case of a 2D superlattice, where
the moiré potential corresponding to the 1D case represented
by the black dashed line is extracted, as shown in Fig. 5(d).
It is observed that the moiré potential depicted in Fig. 5(d)
exhibits only minor differences compared to the 1D moiré
potential represented by our formulated equation, stemming
from the neglected lattice mismatch along the ŷ direction.

Monolayer primitive vectors are chosen as a1 = (a, 0) and
a2 = ( a

2 ,
√

3a
2 ). The corresponding monolayer reciprocal lat-

tice vectors are b1 = ( 2π
a ,− 2π√

3a
), b2 = (0, 4π√

3a
), and b3 =

−b1 − b2 = (− 2π
a ,− 2π√

3a
). The displacement vector, moiré

primitive vectors, and reciprocal lattice vectors are then given
by δ = (I − S−1)r, Li = (I − S−1)−1ai, Gi = (I − S−1)bi, re-
spectively [42], where I is the identity matrix and S =
(1 + ε 0

0 1 − ε) is the strain matrix with strain tensor ε. The three
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equivalent monolayer K points are chosen as K1 = 2b1+b2
3 =

( 4π
3a , 0), K2 = (− 2π

3a , 2π√
3a

), and K3 = (− 2π
3a ,− 2π√

3a
) [29]. By

substituting the above-mentioned data into Eqs. (A1)–(A3),
we obtain the 1D moiré potential:

Vt/b =V0

3∑
i=1

cos(Gi · r + αl )

=V0[cos(G1 · r + αl ) + cos(G2 · r + αl )

+ cos(G3 · r + αl )]

=V0

[
cos

(
2πx

L
+ αl

)
+ cos

(
2πx

L
+ αl

)

+ cos

(−4πx

L
+ αl

)]

=V0

[
2 cos

(
2πx

L
+ αl

)
+ cos

(
− 4πx

L
+ αl

)]
,

(A4)

Hop =
(

3∑
i=1

h0eiKi·δ + h1e−i2Ki ·δ
)

e−i Aε ·r
h̄

= (
h0eiK1·δ + h1e−i2K1·δ + h0eiK2·δ + h1e−i2K2·δ

+ h0eiK3·δ + h1e−i2K3·δ)e−i Aε ·r
h̄

= [
h0ei 2πx

L + h1e−i2 2πx
L + h0 + h1

+ h0ei(− 2πx
L ) + h1e−i2(− 2πx

L )
]
e−i Aε ·r

h̄

= [
h0

(
1 + ei 2πx

L + e−i 2πx
L

)
+ h1

(
1 + e−i 4πx

L + ei 4πx
L

)]
e−i Aε ·r

h̄

=
{

h0

[
1 + cos

(
2πx

L

)
+ i sin

(
2πx

L

)
+ cos

(
2πx

L

)

− i sin

(
2πx

L

)]
+ h1

[
1 + cos

(
4πx

L

)
−i sin

(
4πx

L

)

+ cos

(
4πx

L

)
+ i sin

(
4πx

L

)]}
e−i Aε ·r

h̄

=
{

h0

[
1 + 2 cos

(
2πx

L

)]

+ h1

[
1 + 2 cos

(
4πx

L

)]}
e−i Aε ·r

h̄ . (A5)

APPENDIX B: DISCRETE LATTICE MODEL

In this paper, we employ the finite-difference method to
solve for the Hamiltonian of the homobilayer TMDs. The
basic idea of the finite-difference method is to replace contin-
uous variable differential equations with discrete-difference
equations involving a finite number of unknowns. This con-
version can be done in many ways, but the simplest one is

FIG. 6. A continuous function can be represented by its values at
a set of points on a discrete lattice.

to choose a discrete lattice. To see how this is done, let us,
for simplicity, consider just one dimension and discretize the
position variable x into a lattice, as shown in Fig. 6: xn = na.

The next step is to obtain the matrix representing the
Hamiltonian operator,

Hv = − p2

2m
+ Uv

=
(

Vt + h̄2

2m
∂2

∂x2 Hop

H∗
op Vb + h̄2

2m
∂2

∂x2

)

=
(

Ht Htb

Hbt Hb

)
, (B1)

where Ht and Hb represent the Hamiltonians of the top and
bottom layers, respectively. Htb and Hbt are the Hamiltonians
describing the coupling between the top and bottom lay-
ers. The conversion of differential equations into difference
equations necessitates the application of the finite-difference
method, (

∂2


∂x2

)
x=xn

→ 1

a2
(
n+1 − 2
n + 
n−1). (B2)

This allows us to write

[Htψ]x=xn =Vtnψn + h̄2

2ma2
[ψn+1 − 2ψn + ψn−1]

= (Vtn − 2t0)ψn + t0ψn+1 + t0ψn−1

= (Vtn − 2t0)δn,m + t0δn,m+1 + t0δn,m−1 (B3)

and

[Hbψ]x=xn =Vbnψn + h̄2

2ma2
[ψn+1 − 2ψn + ψn−1]

= (Vbn − 2t0)ψn + t0ψn+1 + t0ψn−1

= (Vbn − 2t0)δn,m + t0δn,m+1 + t0δn,m−1, (B4)

where t0 ≡ h̄2

2ma2 , Vtn ≡ Vt (xn), Vbn ≡ Vb(xn), and δn,m is the
Kronecker delta. This means that the matrix representing
Hl=t/b, Hbt , and Htb can be expressed as
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Ht =

⎛
⎜⎜⎜⎜⎝

Vt1 − 2t0 t0 . . . 0 0
t0 Vt2 − 2t0 . . . 0 0
...

...
. . .

...
...

0 0 . . . Vt (N−1) − 2t0 t0
0 0 . . . t0 VtN − 2t0

⎞
⎟⎟⎟⎟⎠,

Hb =

⎛
⎜⎜⎜⎜⎝

Vb1 − 2t0 t0 . . . 0 0
t0 Vb2 − 2t0 . . . 0 0
...

...
. . .

...
...

0 0 . . . Vb(N−1) − 2t0 t0
0 0 . . . t0 VbN − 2t0

⎞
⎟⎟⎟⎟⎠,

Htb =

⎛
⎜⎜⎜⎜⎝

Hop1 0 . . . 0 0
0 Hop2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Hop(N−1) 0
0 0 . . . 0 HopN

⎞
⎟⎟⎟⎟⎠,

Hbt =

⎛
⎜⎜⎜⎜⎜⎝

H∗
op1 0 . . . 0 0
0 H∗

op2 . . . 0 0
...

...
. . .

...
...

0 0 . . . H∗
op(N−1) 0

0 0 . . . 0 H∗
opN

⎞
⎟⎟⎟⎟⎟⎠.

APPENDIX C: RECURSIVE GREEN’S FUNCTION
TECHNIQUE

Based on the one-dimensional model studied in this paper,
we consider semi-infinite quantum wires as source and drain.
Labeling each sites with an index i, the equation of motion
can be written as [39]

−(EI − H i )ci + Hi,i−1ci−1 + Hi,i+1ci+1 = 0, (C1)

where ci is a vector of dimension 2 describing the top-layer
and bottom-layer wave-function coefficients on site i within
the discrete-lattice model, and the 2 × 2 matrix Hi,i−1 (Hi,i+1)
describes the interaction between lattice site i and lattice site
i − 1 (i + 1).

The equation of motion can be rewritten in a transfer matrix
form,(

ci+1

ci

)
=

(
H−1

i,i+1(EI − H i ) −H−1
i,i+1H i,i−1

I 0

)(
ci

ci−1

)
.

(C2)

We suppose the solutions of Eq. (C1) have Bloch sym-
metry, ci = λci−1 and ci+1 = λ2ci−1. Substituting this into
Eq. (C2) results in an eigenvalue problem,(

H−1
i,i+1(EI − H i ) −H−1

i,i+1H i,i−1

I 0

)(
ci

ci−1

)
= λ

(
ci

ci−1

)
.

(C3)

This equation has 2 × 2 solutions, which are classi-
fied into two right-going modes and two left-going modes.

The right-going modes consist of evanescent waves that are
decaying to the right and traveling waves that are propagating
to the right. Similarly, left-going modes are decaying or prop-
agating to the left. One can distinguish right- from left-going
modes on the basis of the sign of the Bloch velocity. The
propagating modes have |λ| = 1 and the evanescent modes
have |λ| �= 1. The eigenvalue λ is related to the wave number k
through λ = exp(ika). The eigenvalues are denoted by λn(±)
where n = 1, 2, the corresponding eigenvectors by un(±),
where the right-going and left-going modes are labeled as (+)
and (−). Let u1(−), u2(−) be c0 of the left-going solutions
corresponding to λ1(−), λ2(−), and u1(+), u2(+) be c0 of
the right-going solutions corresponding to λ1(+), λ2(+). The
Bloch velocities are given by the expression

vn(±) = −2a

h̄
Im

[
λn(±)u†

n(±)H†
i,i+1un(±)

]
. (C4)

Define

U (±) = [u1(±)u2(±)] (C5)

and

�(±) =
(

λ1(±)
λ2(±)

)
. (C6)

Any left- and right-going waves are written, at i = 0, for
example, as

ci(±) = U (±)c(±), (C7)

where c(±) is an appropriate vector consisting of expansion
coefficients. For general i, we have

ci(±) = U (±)�i(±)c(±), (C8)

which leads to the relation

ci(±) = F i−i′ (±)ci′ (±), (C9)

with

F (±) = U (±)�(±)U −1(±). (C10)

Next, the scattering problem in the quantum wire with a
length of Nx is considered. We separate the amplitude c0 at
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site 0 into the right-going and left-going solutions,

c0 = c0(+) + c0(−). (C11)

Using the equation of motion at site 0,

−(EI − H0)c0 + H0,−1c−1 + H0,1c1 = 0, (C12)

and the amplitude at site −1,

c−1 = F−1(−)c0 + [F−1(+) − F−1(−)]c0(+), (C13)

we have

(EI − H̃0)c0 − H0,1c1 = H0,−1[F−1(+) − F−1(−)]c0(+),

(C14)

where H̃0 = H0 + H0,−1F−1(−).
On the other hand, there is no reflection (left-going waves)

at site Nx + 1, that is,

cNx+2 = F (+)cNx+1. (C15)

Therefore, we have

(EI − H̃Nx+1)cNx+1 − HNx+1,Nx cNx = 0, (C16)

where H̃Nx+1 = HNx+1 + HNx+1,Nx+2F (+).

Define the Green’s function as

G = 1

[EI − H̃]
, (C17)

where

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H̃0 H0,1 0 . . . 0 0
H1,0 H̃1 H1,2 . . . 0 0

0 H2,1 H̃2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . H̃Nx HNx,Nx+1

0 0 0 . . . HNx+1,Nx H̃Nx+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(C18)

with H̃ i = H i for i = 1, 2, . . . , Nx. We can derive

cNx+1(+) = cNx+1

= −GNx+1,0H0,−1[F−1(+) − F−1(−)]c0(+)
(C19)

and

c0(−) = c0 − c0(+)

= {−G0,0H0,−1[F−1(+) − F−1(−)] − I}c0(+).
(C20)

The transmission coefficient for the incident layer m (m =
1, 2) with velocity vm and out-going layer n (n = 1, 2) with
velocity vn can be obtained as

tmn =
√

vn

vm
{−U −1(+)GNx+1,0H0,−1

× [F−1(+) − F−1(−)]U (+)}mn, (C21)

and the reflection coefficient for the incident layer m and out-
going layer n as

rmn =
√

vn

vm
(U −1(−){−G0,0H0,−1

× [F−1(+) − F−1(−)] − I}U (+))mn. (C22)

The Green’s-function matrix block GNx+1,0 and G0,0 can be
found using a set of recursive formulas,

Gi+1,i+1 = (EI − H̃ i+1 − H i+1,iGi,iH i,i+1)−1, (C23)

Gi+1,0 = Gi+1,i+1H i+1,iGi,0, (C24)

with the initial conditions G0,0 = [EI − H̃0]−1 and
GNx+1,Nx+1 = [EI − H̃Nx+1]−1, respectively.
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