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Topological edge states in a Rydberg composite
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We examine topological phases and symmetry-protected electronic edge states in the context of a Rydberg
composite: a Rydberg atom interfaced with a structured arrangement of ground-state atoms. We show that the
spectrum of the electronic Hamiltonian of such a composite possesses a mapping to that of a tight-binding
Hamiltonian, which can exhibit nontrivial topology depending on the arrangement of the ground-state atoms
and the principal quantum number of the Rydberg state. The Rydberg electron moves in a combined potential
including the long-ranged Coulomb interaction with the Rydberg core and short-ranged interactions with each
neutral atom; the effective hopping amplitudes between sites are determined by this combination. We first
confirm the existence of topologically-protected edge states in a Rydberg composite by mapping it to the
paradigmatic Su-Schrieffer-Heeger dimer model. Following that, we show that more complicated systems with
trimer unit cells can be studied in a Rydberg composite.

DOI: 10.1103/PhysRevB.109.075422

I. INTRODUCTION

Topological insulators [1–3] describe a special class of
solids exhibiting an insulating bulk but conducting surface
states. These display a surprising immunity to a wide range
of local deformations, inherently avoiding backscattering over
broad energy ranges and circumventing localization in the
presence of disorder. Questions about the existence, behav-
ior, and characterization of topological insulators and the
symmetry-protected edge states that they can host have moti-
vated rapid growth in this field in recent years [4–22]. A major
effort in this direction is the exploration of well-controlled
systems that exhibit novel topological properties and can be
used to clarify questions about the behavior of topological
invariants. Ultracold Rydberg atoms are promising quantum
simulators in this respect due to their high controllability
and exaggerated properties. Two recent examples using very
different approaches illustrate this in the context of the Su-
Schrieffer-Heeger (SSH) model [23]. In the first, several
Rydberg atoms were arranged in an optical tweezer array. The
long-range dipolar interactions between two Rydberg states
of different angular momentum enabled the desired staggered
hopping amplitudes [24]. In the second example, multiple
Rydberg levels of a single atom were employed to form a
synthetic one-dimensional lattice, with microwave coupling
between these levels setting the hopping amplitudes [25]. The
design of simulators of topologically richer systems than the
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SSH model remains an area of active research, with most pro-
posals utilizing the long-range interactions between Rydberg
atoms prepared in complicated geometries [26–32]. As exper-
imental progress towards fully programmable optical tweezer
arrays accelerates, these proposals become approachable.

Alongside the simulation of topological systems, it is also
of fundamental interest to study how the topological concepts
established in solid-state theory can emerge in other types of
systems. Motivated by this, in the present article we consider
a topologically nontrivial Rydberg system that is conceptually
different from the ones mentioned above, namely a single
Rydberg atom and an ensemble of ground-state atoms (scatter-
ers) located within the Rydberg electron’s orbit. Confinement
of these scatterers in a particular arrangement could be pro-
vided by an optical lattice or an array of optical tweezers. Such
a Rydberg composite allows for the design of Hamiltonians
which exhibit features associated with symmetry-protected
topological insulators. The topological properties exhibited
by the Rydberg electron can be tuned by the choice of the
scatterer positions and by the principal quantum number ν,
and are manifest in the spatial structure of the electronic
wavefunction and in the spectral density of the Rydberg atom.
To demonstrate this, we consider three different topologically
interesting models of increasing complexity.

II. SYSTEM HAMILTONIAN

The Hamiltonian of a Rydberg composite, with scatterers
placed at positions �Rq, is

He = −∇2

2
− 1

r
+

M∑
q=1

2πasδ
3(�r − �Rq) (1)

in atomic units [33–36]. The first two terms govern the elec-
tron’s motion in the Coulomb field of the Rydberg core, while
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FIG. 1. Schematics of the three models: (a) dimer SSH chain, (b) trimer SSH chain, and (c) triangle chain. In each panel, (i) depicts the
desired tight-binding lattice and defines the couplings between sites, and (ii) sketches the Rydberg composite corresponding to this lattice.
The arc lengths shown in this panel determine the effective couplings, as illustrated in each panel by (iii), which shows the relevant interaction
curves. The interaction curve V in (a iii) shows the hopping amplitude between site 5 and neighboring sites as a function of D5, the distance
around the circle away from site 5. As the position of site 6 moves, so does the energy V56 (blue circle marked 6), modifying the ratio v2/v1.
Two different interaction curves are shown in (b iii). The black (pink) curve shows the interaction V as a function of the distance D6 (D5) away
from site 6 (5). The blue markers denote the onsite potential E6 and hopping amplitudes V65, V67, and V68; the pink markers show E5, V54, V56,
and V57. The next-nearest-neighbor amplitudes V68 and V57 are negligible. By varying t1, the distance between sites 6 and 7 is changed, which
modifies V67 while keeping constant the other interactions. Panel (c iii) shows these same interaction curves, but now in the more complicated
geometry relevant to the triangle lattice. Careful inspection of the different points on these two curves shows how the hopping amplitudes u, a,
b, and c in the triangle lattice are realized; the amplitude u is fixed for this geometry, while the other amplitudes vary as a function of t1.

the last term describes its interaction with the scatterers using
the Fermi pseudopotential, valid in the low-energy scattering
limit. The interaction strength is determined by the s-wave
scattering length as [37,38], and is is too weak to mix Rydberg
states with different principal quantum numbers ν [39,40].
Instead, it splits the degenerate Rydberg levels with different
angular momentum l but the same ν into two subspaces [41].
The first, of size ν2 − M, remains degenerate and unshifted,
while the second, of size M, splits away [34,38]. It is in this
shifted manifold that topologically protected edge states can
be realized.

It is convenient to transform the Hamiltonian Eq. (1) to
have the structure of a tight-binding Hamiltonian so that it is
clear how to tune the parameters of the Rydberg system—the
scatterer positions and principal quantum number—to real-
ize desired hopping terms or onsite potentials for a given
topologically interesting system. We recently derived such a
transformation in Ref. [34], and do not present the full details
here. In short, the transformation utilizes the fact that the
matrix representation of He within a degenerate Rydberg man-
ifold can be written He = WW†. W is a rectangular matrix
of dimension ν2 × M with matrix elements

√
2πasφ

∗
nlm( �Rq),

where φνlm(�r) = uνl (r)
r Ylm(r̂) is a hydrogenic wave function.

Reminiscent of the construction of pair Hamiltonians in the
formulation of supersymmetric quantum mechanics [42], the
spectrum of this Hamiltonian, except for its zero-energy
states, is identical to that of the Hamiltonian H = W†W . H is
an M × M matrix with the form

H =
M∑
q

Eq|q〉〈q| +
M∑
q

M∑
q′ 	=q

Vqq′ |q〉〈q′|. (2)

The state |q〉 describes a wavefunction which is localized
on the scatterer at position �Rq. Since the spectrum of this

Hamiltonian coincides exactly, within the stated approxima-
tions, with that of the Hamiltonian He it is possible to realize
a given H by tuning the parameters of He to achieve the
desired matrix elements Eq and Vqq′ . In the high ν limit where
the effect of quantum-defect-shifted states is negligible, these
matrix elements are given in closed form [38]:

Vqq′ = 2πas
u′

ν0(x−)uν0(x+) − uν0(t−)u′
ν0(x+)

2(x+ − x−)
. (3)

Here, x± = 1
2 (Rq + Rq′ ± | �Rq − �Rq′ |), Rq = | �Rq|, and uν0(r)

is the s-wave reduced-hydrogen radial function. The prime
denotes the spatial derivative.

III. REALIZATION OF TOPOLOGICAL MODELS

The three composites illustrated in Fig. 1 exemplify the
ability of different scatterer arrangements, in combination
with the choice of Rydberg state ν, to realize different effec-
tive lattice Hamiltonians. We will use these three composites
to demonstrate topological physics in a Rydberg composite.
In each case, we consider atoms arranged in a (broken) ring
around the Rydberg atom, which fixes a common Eq for all
scatterers. We select the number of scatterers M, the principal
quantum number ν, and radius R = Rq such that the desired
hopping terms Vqq′ are realized. To confirm that this leads
to a topologically nontrivial configuration, we theoretically
analyze each setup by applying periodic boundary conditions
to the effective Hamiltonian, giving insight into its topological
bulk properties. The bulk-boundary correspondence allows us
to subsequently ascertain its topological aspects in the finite
system.
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FIG. 2. The energy spectrum of the dimer SSH Rydberg com-
posite, where ν = 60 and R = 2ν2. The energies are centered around
the onsite potential Eq, and are plotted as a function of t1 for fixed
t2 = 2πR/45. The exemplary wavefunction images shown below the
spectrum illustrate the bulk eigenstate corresponding to the dashed-
blue level in the upper band (left, t1 = 3t2/4) and an edge state
(right, t1 = 5t2/4).

A. SSH model (dimer lattice)

The first model that we consider is the dimer SSH model
depicted in Fig. 1(ai): a one-dimensional lattice with stag-
gered nearest-neighbor hopping amplitudes v1 and v2 [23].
This paradigmatic model introduces many concepts useful in
the analysis of more complicated systems. Fig. 1(aii) shows
how to design a Rydberg composite which realizes this model.
We set R = R1 = 2ν2 and place the scatterers on this ring so
that they are separated by arclengths t1 and t2. By choosing
M < ν we guarantee that the scatterers are spaced sufficiently
far apart so that Vqq′ is negligible when |q′ − q| > 1 [34].
Then, the monotonic dependence of Vqq′ on t1 allows us to
stagger the hopping elements simply by staggering the dis-
tances t1 and t2, as is illustrated in Fig. 1(aiii). For illustrative
purposes we choose ν = 60, M = 36, and fix t2 = 2πR/45.
These choices yield a reasonably large number of lattice sites
without making the resulting band spectrum and wavefunc-
tions overly complicated to visualize. The spacing between
atoms in this configuration, around 50 nm, is at the leading
edge of current experimental capabilities for trapping nearby
atoms [43,44]. Figure 2 shows the resulting eigenspectrum as
a function of t1. It consists of two distinct bands separated
by an empty band gap when t2 > t1, i.e., when v1 > v2 [see
Fig. 1(ai)]. This band gap closes when t1 = t2. When t1 > t2,
the hopping amplitudes satisfy v2 > v1 and the two levels
closest to the band gap, highlighted in blue, split from the
bulk and become degenerate at the center of the spectrum.
Investigation of the eigenstates of these levels shows that they
evolve from bulk states spread over the entire composite when
t2 < t1 to edge states appearing at the boundary of the chain
of scatterers when t1 > t2. In the two eigenstates depicted in
Fig. 2, the black spheres represent the wavefunction in the site
basis used to describe H in Eq. (2), while the blue wavefunc-
tion shows the full electronic wavefunction in position space
[45].

The existence of this transition from bulk states living
in the energy bands to edge states situated at the center of

the band gap can be understood after considering the bulk
momentum Hamiltonian

HSSH(k) =
(

0 v1 + v2e−ik

v1 + v2eik 0

)
, (4)

which is obtained by applying periodic boundary conditions
to the lattice in Fig. 1(ai). For the one-dimensional systems
studied here, the Zak phase

Z = i
∫ π

−π

〈ψk|∂kψk〉dk, (5)

where |ψk〉 is an eigenstate of H (k), is a quantized topological
invariant which can only take the values zero or π (modulo
2π ) as long as a symmetry is present [46]. The chiral symme-
try of the SSH model ensures that such a topological invariant
exists. Computation of the Zak phase using the eigenstates of
Eq. (4) gives Z = π when t2 > t1 and Z = 0 when t2 < t1
[47–49].

The Zak phase is intimately related to the existence of
edge states through the bulk-boundary correspondence: the
change in the Zak phase at t1 = t2 reveals a topological phase
transition and the appearance of edge states in the finite-sized
system [23,46]. The implications of these edge states are
manifold. If the scatterers are not perfectly positioned at their
angles on the ring, the hopping amplitudes Vqq′ become dis-
ordered but the chiral symmetry of the lattice is preserved. In
such a case, although states in the bands will become localized
due to this disorder, these edge states will remain unperturbed
due to the symmetry protection afforded by the topology of the
system. In contrast, disorder of the atom positions in the radial
direction leads to diagonal disorder and a breakdown of the
chiral symmetry. Consequently, the edge states are no longer
symmetry protected and become indistinguishable from the
band. Moving beyond the SSH model or random disorder, one
could modify the onsite potentials in a controlled fashion by
shifting the scatterers to slightly different ring radii, therefore
simulating the Rice-Mele model [50].

B. SSH model (trimer lattice)

The second model we consider is a variation on the SSH
model where the dimer unit cells are replaced with trimers.
This model, shown in Fig. 1(bi), was very recently explored
theoretically [51,52] as well as experimentally [53–55]. The
sites within each trimer unit cell are coupled by v2 and v3,
and the trimers are coupled via v1. We realize this model
in our composite setup by keeping the Rydberg parameters
as before, which guarantees nearest-neighbor hopping, but
now placing the scatterers in a different geometry, as seen
in Fig. 1(bii). Applying periodic boundary conditions to the
resulting Hamiltonian yields the bulk momentum Hamiltonian

Htrimer(k) =
⎛
⎝ 0 v2 v1e−ik

v2 0 v3

v1eik v3 0

⎞
⎠. (6)

The topological nature of this model stems from an inver-
sion symmetry when v2 = v3. When v1 = v2 = v3, i.e., in
the absence of trimerization, a phase transition occurs. In the
Rydberg composite setting, we ensure the inversion symmetry
by setting t2 = t3. By varying t1 to change v1 we sweep the
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FIG. 3. The energy spectrum of the trimer SSH Rydberg com-
posite, where ν = 60 and R = 2ν2. The energies are centered around
the onsite potential Eq, and are plotted as a function of t1 for fixed
t2 = t3 = 2πR/45. One of the edge states is shown in the inset.

system through the topological phase transition, as can be seen
in the energy spectrum shown in Fig. 3. The lower band is
characterized by a Zak phase Z = π when v1 > v2, v3 which
implies the existence of a pair of topologically protected edge
states in the lower band gap. In the Rydberg composite, this
energy relationship is satisfied when the distance t1 is smaller
than t2 and t3, and we see in Fig. 3 that edge states appear as
expected. The Zak phase of the middle band is zero for all v1,
and since the existence of edge modes in the upper band gap is
connected to the sum of the Zak phases of all bands below it,
localized boundary modes must also exist in the upper band
gap. One of the edge states is shown in the inset of Fig. 3.
The more complicated case of a noninversion symmetric lat-
tice, where v2 	= v3, can no longer be characterized using an
integer Zak phase. It has been shown that it supports both
topologically protected and localized, but not protected, edge
states [51]. Such features can also be simulated and observed
in the Rydberg composite by setting t2 	= t3.

C. Triangular lattice

These previous two examples have demonstrated that the
Rydberg composite can realize topologically interesting mod-
els, exemplified by the dimer and trimer SSH chains already
studied. We now show how to realize a model with richer
topology and complexity. We consider again a system with
a unit cell of three lattice sites, but now connect each pair
of sites within the unit cell with an equal hopping amplitude
u. Each triangle is coupled to its neighbor by the hopping
amplitudes a (magenta), b (green), and c (cyan, dashed), as
shown in Fig. 1(ci); in general these amplitudes can all differ.
We realize this Hamiltonian in the Rydberg composite by
keeping the same trimer structure as before, but now utilizing
one of the most appealing features of the Rydberg composite:
the ease with which we can introduce long-range and oscil-
latory interactions to the system by changing the overall size
of the ring. In general, as the radius of the ring shrinks, the
interactions become longer ranged [34].

For this example, we select ν = 60 and R2 = 1.74ν2,
which leads to the interaction curves Vqq′ shown in Fig. 1(ciii).

These curves are approximately sinusoidal with a rapidly
decreasing amplitude as |q − q′| increases. To see how this
choice works to engineer the desired system, consider first the
pink curve, which shows the hopping amplitude from site 5
to its neighbors as a continuous function of the distance D5

away from this site. The pink markers on this curve show
the hopping amplitudes connecting site 5 to the labeled site
at the specified positions. The onsite energy E5 = V55 is not
visible on this scale. The inversion symmetry of the trimer
ensures that V56 = V54; more distant sites (i.e., 3 and 7) are
coupled weakly to this site for the chosen value of t1. Now,
to make the couplings V46 equal to these couplings, we take
advantage of the oscillatory interaction. Looking at the black
curve, which is the same as the pink curve but relative to site 6,
we can read off the values of V46 and V56, which are identical
as long as the atoms in each unit cell are an arclength 2πR2/45
apart. In general, larger unit cells with n participating atoms
having identical all-to-all coupling can be engineered by find-
ing parameters such that V (t2) = V (2t2) = . . .V (nt2), where
t2 is the arclength between atoms in a cell and the n + 1th
atom is placed further at a t1 + nt2. It is not clear that such an
arrangement can be found for arbitrary n, but we verified that
the n = 4 case can be designed, utilizing a smaller ring size
where the interaction envelope decays less quickly.

The band spectrum for this triangle lattice system and
M = 24 atoms, plotted with black curves as a function of t1, is
shown in Fig. 4(a). Three bands are clearly visible. The upper
two repeatedly cross one another. Outside of these crossing
regions, a pair of zero-energy modes is clearly present in the
band gap. Between the lower two bands there are no unam-
biguous edge states for this small lattice, although inspection
of the eigenstates for slightly larger lattice dimensions (not
shown here) suggests that the states in between the two bands
in the region from 0.1 < t1 < t2 are indeed edge states.

To analyze this spectrum, we turn again to the bulk Hamil-
tonian, which is now given by

Htriangle(k) =
⎛
⎝2c cos k u + be−ik u + ae−ik

u + beik 2c cos k u + be−ik

u + aeik u + beik 2c cos k

⎞
⎠. (7)

Note that the coupling c enters the bulk Hamiltonian only on
the diagonal and therefore has no impact on the gap-closing
conditions or the topological phase transitions. The Hamilto-
nian is inversion symmetric, and therefore we can characterize
its topological features using, again, the Zak phase as a
quantized topological invariant. In the bottom (top) panel of
Fig. 4(c), we show the phase diagram of Z as a function of
the hopping amplitudes a and b for the lower (upper) band
gap. The blue (shaded) color denotes the topological phase
(Z = π ) and white the trivial phase (Z = 0). The gray dashed
lines show the gap closing conditions, which are sufficient
but not necessary for the existence of a topological phase
transition. These occur when a = b or b = ±2u − a. We have
computed this phase diagram for all a and b values in the
plotted range, but as these depend parametrically on the ar-
clength t1, we cannot probe this full parameter space in the
Rydberg composite. The orange curve shows the path through
this parameter space that we can attain by varying t1 over the
range shown in Fig. 4(a), starting at t1 = 0.09 at the marker
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FIG. 4. (a) The energy spectrum of the triangle chain Rydberg composite. The black curves show the Rydberg energies as a function of
the arclength t1 [see Fig. 1(cii)] for ν = 60, R = 1.74ν2, and M = 24 scatterers. The energies are centered around the onsite potential Eq,
and are plotted as a function of t1 for fixed t2 = 2πR/45. The blue curves show the spectrum for the same lattice parameters but M = 300.
Topologically protected edge states are found in the middle of the upper band gap for all t1 values, although they disappear when the bands
cross as discussed in the text. One of these edge states, for t1 = 0.2, is shown in panel (c). The lower band gap has Z = π only within the gray
shaded regions, where degenerate states in the band gap can be seen in the spectrum of the larger lattice. (b) The Zak phase of the upper and
lower band gaps. Blue regions have Z = π , while white regions have Z = 0. The orange curve shows how this parameter space is traversed
as we parametrically change t1, as described in the text. Note that u ≈ −5.5 MHz for the composite studied here.

and ending at t1 = 0.33. Using this curve we can analyze the
states in panel (a) with respect to their topological properties.
For this choice of parameters, the orange curve in the upper
band gap does not enter the region with a Zak phase of 0; for
this reason there are always edge states visible when the bands
are not overlapping. When the bands overlap, these edge states
disappear even though the Zak phase remains equal to π .
This surprising observation, contrary to the common belief
that a nontrivial Zak phase implies the existence of localized
edge states, has been previously observed and discussed in
Refs. [56,57], but it does not seem to be widely known. In
contrast, the Zak phase in the bottom gap is zero except for
two intervals. These correspond to the regions highlighted in
Fig. 4(a) with gray boxes. Since the spectrum in panel (a) is
for only a relatively small number of scatterers, the distinction
between band edges and states within the band gap is not clear.
Therefore, we artificially extended the system to 300 sites and
plotted the resulting spectrum in blue. The edge states in the
lower band gap can now clearly be seen, at least in the larger
region with Z = π just below t1 = t2. We have confirmed
that these are edge states by adding disorder to the system
which preserves the inversion symmetry. Under this disorder,
the character of these edge states is preserved.

IV. CONCLUSION

The above examples demonstrate that with Rydberg com-
posites one can realize Hamiltonians that exhibit a variety of
interesting topological features. For the design and interpre-
tation of the Rydberg composite we utilized the useful link
between the Rydberg composite and a tight-binding Hamil-
tonian, which was previously elucidated in the context of
Anderson localization [34]. While we did not consider disor-
der in the present work, defects in the positions of the ground

state atoms would result in disorder in the hopping terms
and onsite energies of the different models studied here, and
—as long as disorder which breaks the chiral or inversion
symmetries of our models could be avoided —the topological
protection of the edge states predicted here could be studied.

The experimental realization of a Rydberg composite will
be a challenge. While it is a routine task to excite Rydberg
atoms surrounding many ground-state atoms in a random
gas [58,59], placing these atoms in a specific arrangement at
these length scales is difficult. Programmable optical tweez-
ers, which have become a very powerful and versatile tool
recently, would struggle to reach the ∼60 nm length scales
required for the ν values selected in our examples. How-
ever, there are no fundamental obstacles here and recently
even sub-50 nm spacing between traps was achieved [43].
Subwavelength [44,60,61] or dark-state [62,63] lattices can
also reach ∼100 nm scales, and imaging capabilities at the
sub-50 nm scale have also developed recently [64,65]. Finally,
these spatial constraints can be relaxed significantly by go-
ing to larger principal quantum numbers, although this is a
tradeoff as higher ν will demand better stray field control and
experimental resolution.
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[62] M. Łącki, M. A. Baranov, H. Pichler, and P Zoller, Nanoscale
“dark state” optical potentials for cold atoms, Phys. Rev. Lett.
117, 233001 (2016).

[63] Y. Wang, S. Subhankar, P. Bienias, M. Łącki, T.-C. Tsui, M. A.
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