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Intrinsic in-plane magnetononlinear Hall effect in tilted Weyl semimetals
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Armed with the extended semiclassical theory, we propose a Hall effect at EB order, particularly in Weyl
semimetals (WSMs). We dub this effect the in-plane magnetononlinear Hall effect (IMHE) since the Hall current
and the driving electric and magnetic fields are confined in the same plane. Similar to the intrinsic anomalous Hall
effect, the IMHE features an intrinsic nature because it arises from the field-induced anomalous velocity E × �B,
where �B is the Berry curvature induced by the magnetic field through both minimal and Zeeman couplings.
Employing the low-energy effective Hamiltonian of WSMs, we reveal that the tilt of the Weyl cone is the key
to triggering this effect. Notably, we find that the IMHE can survive even when the chiral anomaly disappears
because �B (as the correction of the conventional Berry curvature) does not contribute to the monopole charge.
Furthermore, we elucidate the interplay between minimal and Zeeman couplings for this effect. Finally, the
experimental strategy to detect the IMHE is discussed.
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I. INTRODUCTION

Capturing the intrinsic response of quantum matter is one
of the most important themes in modern condensed matter
physics [1]. For example, the quantum Hall effect [2–4],
characterizing an intrinsic (linear) edge current response in
systems with broken time-reversal-symmetry, initialized the
concept of topology in condensed matter physics. Recently,
it was recognized that the intrinsic electric nonlinear Hall
effect (ENHE) [5] with the response equation ja = σabcEbEc

plays a pivotal role in detecting the reversal of the Néel
vector in antiferromagnetic spintronics [6,7] as well as in
probing the quantum metric of antiferromagnetic topological
insulators [8,9]. However, ruled by the T -odd and P-odd char-
acteristic of σabc, the intrinsic ENHE cannot be expected in
quantum materials [10,11] with time-reversal (T ) or inversion
(P) symmetries, such as T -symmetric or P-symmetric Weyl
semimetals (WSMs) [12–16].

Along with the intrinsic ENHE arising from E × �E , the
intrinsic magnetononlinear Hall effect (MHE) due to E × �B

was also first proposed in Ref. [5] but received less attention,
especially for quantum materials, where �E and �B stand
for the Berry curvature corrections induced by the electric
field and the magnetic field, respectively. Remarkably, the
MHE conductivity σab,c defined by ja = σab,cEbBc [17] is a
P-even and T -even (pseudo)tensor and therefore can be used
to probe quantum materials, such as WSMs, regardless of their
P and T symmetries. Despite the extensive study of magne-
totransport phenomena in WSMs, especially under coplanar
electromagnetic fields, such as negative magnetoresistance
[18–22] and the planar Hall effect [23–33], which are inti-
mately related to the chiral anomaly [18,34,35], the intrinsic
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MHE in WSMs under coplanar electromagnetic fields has not
been discussed.

In addition, when it comes to the (in-plane) magnetic field,
the orbital contribution through the minimal coupling is fo-
cused on, while the spin contribution through the Zeeman
coupling is usually ignored in the semiclassical treatment
[35,36], although the in-plane Zeeman field is essential for
tailoring the topological properties of quantum materials, in-
cluding WSMs [32,37,38]. Furthermore, besides the minimal
coupling, the (in-plane) magnetic field through the Zeeman
coupling can also induce a Berry curvature �B [39]. However,
how the interplay between both couplings is manifested in the
magnetotransport of WSMs remains elusive.

In this work, we investigate the intrinsic in-plane MHE
(IMHE) [40] for magnetic and nonmagnetic WSMs with a
type-I tilt scenario based on the extended semiclassical theory
[5,39]. We reveal that the field-induced anomalous velocity
E × �B is the physical origin of this effect. Particularly, em-
ploying the low-energy effective Hamiltonian of WSMs, we
analytically show that the tilt of WSMs plays a decisive role
in triggering this effect, where an out-of-plane tilt tz together
with a further in-plane tilt tx or ty is necessary to observe
this response. In addition, we find that the IMHE can appear
in WSMs even when the chiral anomaly is switched off by
setting E · B = 0, which is due to the fact that �B (as the
correction of the conventional Berry curvature � [41]) does
not contribute to the monopole charge. Furthermore, for the
minimal and Zeeman couplings, we find that the IMHE con-
ductivity shows a μ−1 and μ0 dependence on the chemical
potential μ, respectively, and we illustrate that the interplay
between them is determined by the Fermi velocity vF , the tilt,
and the g factor. Finally, the experimental strategy to detect
the IMHE in WSMs is discussed, where the antisymmetric
property of the IMHE conductivity can serve as a smoking gun
to distinguish the possible competing effects. Our work offers
an intrinsic nonlinear Hall effect for diagnosing the WSMs.

2469-9950/2024/109(7)/075419(9) 075419-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4939-5640
https://orcid.org/0000-0002-4519-5003
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.075419&domain=pdf&date_stamp=2024-02-15
https://doi.org/10.1103/PhysRevB.109.075419


LONGJUN XIANG AND JIAN WANG PHYSICAL REVIEW B 109, 075419 (2024)

FIG. 1. (a) A pair of P-related WPs in magnetic WSMs. (b) Two pairs of T -related WPs in nonmagnetic WSMs. For brevity, we suppress
the momentum dependence of the chirality index s. The blue and green shading between a pair of WPs with opposite chirality illustrates the
concept of chiral anomaly: the number of particles with a given chirality is no longer conserved when the electric and magnetic fields are
applied in parallel: E ‖ B. (c) The schematic device to detect the intrinsic IMHE experimentally. Here [lmn] is the Miller index, which can be
along the principal axis of the crystal so that t can have a nonzero ta component with a = x, y, z. In addition, the in-plane configuration for the
Hall current J, the electric field E, and the magnetic field B is shown.

II. EFFECTIVE HAMILTONIAN FOR WSMS

The low-energy effective Hamiltonian for WSMs around a
Weyl point (WP) can be written as [15,36,42]

Hs = t · k + sk · σ + μs, (1)

where s = ±1 is the chirality index; k ≡ q − qi, with q and
qi being the crystal momenta; σ is the vector composed of
the Pauli matrices; t = (tx, ty, tz ) is the local tilt vector, with
|t| < 1 corresponding to type-I WSMs [15]; and μs denotes
the energy shift relative to the charge neutral point of the
WP with chirality s. Note that we take h̄vF = 1 in Eq. (1),
which can be easily restored in the final result by dimension
analysis.

Usually, different WPs are related by symmetry [36], such
as P symmetry or T symmetry. For the former, because
Pεn(q) = εn(−q), with εn being the global band dispersion
for the nth band, we find that Pk → −k ⇒ t → −t and
Ps(qi ) = −s(−qi ) (note that Pσ = +σ), which means that
the P-related WPs have opposite tilt and chirality, as illus-
trated in Fig. 1(a). Note that Ps(qi ) = −s(−qi ) also implies
that the minimal number of WPs for magnetic WSMs (which,
in particular, preserves P but breaks T ) is two [43], as dic-
tated by the Nielsen-Ninomiya fermion doubling theorem
[44], namely,

∑
i s(qi ) = 0. Similarly, for the latter, because

T εn(qi ) = εn(−qi ) (ignore the spin quantum number for sim-
plicity), we find that T k → −k ⇒ T t → −t and T s(qi ) =
s(−qi ) (note that T σ = −σ), which means that the T -related
WPs also have opposite tilt but the same chirality. As a result,
the minimum number of WPs for nonmagnetic WSMs (which,
in particular, preserve T but break P) is four [45] to satisfy∑

i s(qi ) = 0, as illustrated in Fig. 1(b). Finally, we note that
the two P-related (T -related) WPs have the same energy shift
μs(qi ) = μ−s(−qi ) (μs(qi ) = μs(−qi )), as indicated by the gray
horizontal dashed lines in Figs. 1(a) and 1(b).

Considering that WPs always come in pairs and can be
tilted due to the reduced symmetries, the resultant current
contributed by different WPs is often determined by both the

chirality and the tilt [36]. However, sharply different from the
magnetotransport behaviors previously discussed for WSMs,
the intrinsic IMHE proposed here is not dependent on the
chirality index s. As a consequence, we find that the two P-
related and T -related WPs in fact enjoy the same expression
for the intrinsic IMHE conductivity, as demonstrated below,
which fundamentally originates from the T -even and P-even
characteristic of the intrinsic IMHE conductivity.

III. EXTENDED SEMICLASSICAL THEORY

The extended semiclassical equation of motion under elec-
tromagnetic fields is given by [5] (h̄ = e = 1)

ṙ = v̄ − k̇ × �̄, k̇ = −E − ṙ × B, (2)

where v̄ = ∇kε̄(k) is the group velocity, with ε̄(k) being
the band energy accurate up to second order of the elec-
tromagnetic fields [5], and �̄ = � + �(1), with � being the
conventional Berry curvature [41] and �(1) being the first-
order field-induced one [5]. To be specific, �(1) ≡ �B +
�E , with �B ≡ ∇k × AB (�E ≡ ∇k × AE ) being the Berry
curvature induced by B (E), where AB (AE ) is the U (1)
gauge-invariant positional shift [5].

In this work, we are interested in the intrinsic IMHE in
WSMs, and hence, we will focus on �B for two-band sys-
tems. Note that �B and AB include both the orbital and
spin contributions through the minimal and Zeeman couplings
[5,39], respectively. Particularly, by writing AB

b ≡ BaFab ≡
Ba(FO

ab + FS
ab) [46], with FO

ab and FS
ab being the anomalous

orbital polarizability (AOP) and the anomalous spin polariz-
ability (ASP) [5,39], respectively, for two-band systems we
find

FO
ab = −εacd

(
vn

c + vm
c

)
gnm

db

εn − εm
− εacd∂cgnm

db

2
(m �= n), (3)

FS
ab = −2Re

MS,nm
a Amn

b

εn − εm
(m �= n), (4)
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where m and n belong to {+,−}, with + (−) being the
conduction (valence) band; ∂c = ∂/∂kc; εn stands for the
band energy of the nth band; Amn

b is the interband Berry
connection; and εabc is the Levi-Civita symbol. In addition,
gnm

db = 2Re[Anm
d Amn

b ] is the quantum metric, which measures
the distance between the neighboring Bloch states [8,9], and
MS,mn

b = −gμBsmn
b is the interband spin magnetic moments,

where g is the g factor for spin, μB is the Bohr magneton, and
smn

b is the interband matrix elements of spin operator.
Next, by solving Eq. (2), we obtain ṙ = D−1[v̄ + E × �̄ +

B(v̄ · �̄)], where D = 1 + B · �̄ is the phase space factor.
Furthermore, by substituting this semiclassical velocity ṙ into
the definition of charge current density [41], j ≡ ∫

k D f̄k ṙ,
we arrive at j = ∫

k f̄k[v̄ + E × �̄ + B(v̄ · �̄)], where
∫

k ≡∑
s

∫
dk/(2π )d , with d being the spatial dimension, and f̄k =

fk (ε̄k ) is the nonequilibrium Fermi distribution function that
considers the energy correction under magnetic field. Im-
portantly, from the anomalous velocity E × �B, the intrinsic
IMHE conductivity is derived as [5,39]

σab,c =
∫

k
f ′(vaFcb − vbFca), (5)

where integration by parts is used and Fcb can either be FO
cb

or FS
cb. Due to the presence of f ′ = ∂ f /∂ε, where f is the

equilibrium Fermi distribution without energy correction, we
conclude that σab,c features the Fermi surface property [41],
just like the intrinsic ENHE [6,7]. Note that in Eq. (5) we
have dropped a term contributed by the conventional anoma-
lous velocity E × � in concert with the wave packet energy
correction B · m (m is the orbital and spin magnetic momenta)
[5,39] since it does not contribute to the intrinsic IMHE for
type-I WSMs (see Appendix C).

We emphasize that σab,c is driven by the momentum space
Lorentz force E × �B, which dictates that σab,c is an intrinsic
and antisymmetric tensor, namely, σab,c = −σba,c, while Bc

remains unchanged. This is different from the planar Hall
effect [23] in WSMs caused by the chiral anomaly, which
corresponds to an extrinsic and symmetric tensor. In addi-
tion, we note that the intrinsic IMHE is also different from
the ordinary Hall effect, where the applied magnetic field is
perpendicular to the plane formed by the Hall current and
the applied electric field. Finally, we wish to mention that
the chiral velocity B(v̄ · �̄) in the current expression does not
contribute an intrinsic current at EB order (see Appendix D).
However, the dispersive velocity due to the energy correc-
tion at EB order [47] can make a similar contribution to the
IMHE from E × �B, as discussed in Appendix E. To close
this section, we summarize that Eqs. (3)–(5) are the main
equations employed to explore the intrinsic IMHE in WSMs.

IV. INTRINSIC IMHE FROM THE MINIMAL COUPLING

We first consider the orbital contribution from the minimal
coupling. Particularly, for Eq. (1), it is easy to show that ε± =
t · k ± k + μs, where k2 = k2

x + k2
y + k2

z , and hence, we have

v± = (tx ± k̂x, ty ± k̂y, tz ± k̂z ), (6)

where k̂a ≡ ka/k. In addition, the AOPs are given by

FO
x = ∓α11 cos � ∓ α12 sin �

4k3
, (7)

FO
y = ±α21 sin � ± α22 cos �

4k3
, (8)

where FO
a ≡ BbFO

ba/B and we assume that B =
B(cos �, sin �, 0), as shown in Fig. 1(c). Here α11 = (tzk̂y −
tyk̂z )k̂x, α12 = txk̂xk̂z + tz(k̂2

y + k̂2
z ), α21 = (tzk̂x − txk̂z )k̂y, and

α22 = tyk̂yk̂z + tz(k̂2
x + k̂2

z ). Note that we dropped the second
term of Eq. (3) because it does not contribute to the intrinsic
IMHE for type-I WSMs (see Appendix B). In addition, at
zero temperature we find [42,48]

f ′
± = δ(ε± − μ) = δ(k − 	μs/β

±)/|β±|, (9)

where μ denotes the chemical potential, 	μs = μ − μs, and
β± ≡ tx sin θ cos φ + ty sin θ sin φ + tz cos θ ± 1 in spherical
k space, namely, k = k(sin θ cos φ, sin θ sin φ, cos θ ). Note
that Eq. (9) requires k = 	μs/β

± > 0, which, in fact, is
satisfied automatically for type-I WSMs because β+ > 0 and
β− < 0 for μ > 0 and μ < 0, respectively, where μ can pen-
etrate only either the conduction band or the valence band.
Consequently, by substituting Eqs. (6)–(9) into Eq. (5), we
find (see Appendix A)

σ s
yx = 1

12π2	μs

(
e3vF

h̄

)
tz(tx cos � + ty sin �), (10)

where σ s
yx = σ s

yx,x + σ s
yx,y by defining js

y ≡ σ s
yxExB and e, h̄,

and vF are restored by dimension analysis. Equation (10)
is free of the chirality index s but quadratically depends
on the tilt direction, and hence, the contribution from an
opposite tilt (regardless of its chirality) can be simply du-
plicated. For a pair of P-related WPs, by adding them
we find

σyx = 1

6π2μ

(
e3vF

h̄

)
tz(tx cos � + ty sin �), (11)

where we set μs = μ−s = 0; for two pairs of T -related WPs,
by adding them we find

σyx = 1

6π2

1

	μ

(
e3vF

h̄

)
tz(tx cos � + ty sin �), (12)

where 1/	μ ≡ 1/	μ+ + 1/	μ−, 	μ± = μ − μ±.
From Eqs. (11) and (12), it is easily found that the tilt

vector t must have a nonzero projection on the tx-tz/ty-tz plane
to capture the intrinsic IMHE [49]. Particularly, for the tilt-
allowed IMHE responses, the angular dependence of Bσyx for
P-related and T -related WPs is displayed in Figs. 2(a) and
2(b), respectively. Interestingly, for t = (0, ty, tz ), we find that
the IMHE response in both situations is nonzero even when
� = π/2, namely, when the chiral anomaly is switched off.
In addition, in Figs. 2(c) and 2(d), we present the chemi-
cal potential dependence of Bσyx for tzty tilt with � = π/2,
from which we find that this response becomes significant
when μ is close to the charge neutral point μs, which is
a small-gap effect [39]. Furthermore, to highlight the band
geometric origin of the intrinsic IMHE, in Figs. 2(e) and
2(f) we show the k-resolved AOPs that contribute to the
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FIG. 2. The angular dependence of Bσyx for (a) a pair of P-related WPs and (b) two pairs of T -related WPs allowed by the tilt. Parameters
are ta = 0.7, vF = 105 m/s, B = 10 T, μ = 0.0145 eV, and μs = s25 meV (only for T -related WPs). The chemical potential dependence of
Bσyx for (c) a pair of P-related WPs and (d) two pairs of T -related WPs allowed by tilt; the vertical dashed lines indicate the position of μs.
The k-resolved AOPs (for the conduction band) that contribute to the intrinsic IMHE for (e) t = (tx, 0, tz ) with � = 0 and kx = 0.01 Å and (f)
t = (0, ty, tz ) with � = π/2 and ky = 0.01 Å.

intrinsic IMHE for t = (tx, 0, tz ) and t = (0, ty, tz ), respec-
tively. Interestingly, although the AOPs display a monopole
landscape, they do not, in fact, modify the monopole charge
arising from the conventional Berry curvature � of WSMs
(see Appendix F). Finally, we note that σyx shows a pe-
riod of 2π due to the linear dependence on the magnetic
field [50].

V. INTRINSIC IMHE FROM THE ZEEMAN COUPLING

Next, we consider the spin contribution through the Zee-
man coupling. Particularly, for Eq. (1), we find that the ASPs
due to Zeeman coupling are given by

FS
x = ∓gμB

kz

2k3
sin �, FS

y = ±gμB
kz

2k3
cos �, (13)

which differ by a factor of 1/k compared to FO
x/y. Perform-

ing a similar calculation, the intrinsic IMHE conductivity for
two P-related or T -related WPs can be evaluated as (see
Appendix A)

σyx = gμB

8π3

(
e2

h̄2vF

)
(C1 cos � + C2 sin �), (14)

where Ci ≡ ± ∫ π

0

∫ 2π

0 λ±
i (t; θ, φ)dθdφ is a dimensionless

constant [see Eqs. (A4) and (A5) for λi]. Interestingly, we find
that the IMHE conductivity due to ASP is independent of μ,
and hence, the IMHE from Zeeman coupling is no longer a
small-gap effect. Additionally, to have a nonzero C1/C2, we
also require at least that t = (0, ty, tz )/t = (tx, 0, tz ), as shown
in Fig. 3(a). Similar to the orbital contribution, we find that
the spin contribution can also survive when the chiral anomaly
vanishes.

Importantly, we note that the spin contribution is of the
same order as the orbital contribution near μ = 0.015 eV with
vF = 105 m/s, ta = 0.7, and g = 11 [38], as can be seen by
comparing Fig. 2(a) with Fig. 3(a). In fact, the ratio α between
the orbital and spin contributions is

α ≡ orbital

spin
= 4πv2

F eh̄txtz
3gμμBC2

, (15)

which depends on the Fermi velocity vF , the tilt, and the g
factor for a fixed chemical potential μ, as shown in Fig. 3(b),
from which we conclude that the spin contribution is com-
parable to the orbital contribution when vF � 105 m/s with
g ∼ 10. However, for a Fermi velocity larger than 105 m/s
and a small g factor, the orbital contribution for IMHE will be
dominant. Finally, we note that the ASP in momentum space
shows a dipole landscape around the band crossing point, as
shown in Fig. 3(c), which is different from the AOP.

VI. THE IMHE AND THE CHIRAL ANOMALY IN WSMs

Although our results suggest the intrinsic IMHE can ap-
pear even when the chiral anomaly vanishes, a fundamental
explanation is still missing. In the semiclassical limit [35], the
chiral anomaly of WSM can be attributed to the monopole
charge of the conventional Berry curvature �. Particu-
larly, using the Boltzmann equation with the relaxation time
approximation [51],

∂t f̄k + ṙ · ∇ f̄k + k̇ · ∇k f̄k = ( f̄k − fk )/τ,

075419-4



INTRINSIC IN-PLANE MAGNETONONLINEAR HALL … PHYSICAL REVIEW B 109, 075419 (2024)

FIG. 3. (a) The angular dependence of Bσyx due to the Zeeman coupling for a pair of P-related or T -related WPs. Parameters are vF =
105 m/s, g = 11.6 [38], and ta = 0.7. (b) The orbital versus spin contribution for a fixed chemical potential μ = 0.015 eV; see Eq. (15) for the
definition of α. Here the gray vertical dashed line highlights the critical Fermi velocity, below which the spin contribution can be comparable
to the orbital contribution. (c) The k-resolved ASP (for the conduction band) that contributes to the intrinsic IMHE.

along with charge density ρs = ∫
k D f̄k and charge current

density js = ∫
k D f̄k ṙ, it is easy to find

∂tρs + ∇ · js +
∫

k
Dk̇ · ∇k f̄k = δρs/τ. (16)

Performing an integration by parts on the third term of
Eq. (16) and using k̇ = D−1[−E − v × B − �(E · B)] from
Eq. (2) (ignoring the field-induced corrections) as well as ∇k ·
� = sδ(k)/2π , we arrive at the modified continuity equa-
tion [52–54]:

∂tρs + ∇ · js − s

8π3
E · B = δρs/τ. (17)

Clearly, when E · B �= 0 in Eq. (17), the monopole charge
due to ∇k · � = sδ(k)/2π gives rise to a chirality-dependent
chemical potential, which will make the current of Weyl
fermions for each chirality nonconserving and hence was
dubbed the chiral anomaly, as illustrated in Figs. 1(a) and
1(b). However, for these field-induced Berry curvatures, we
find that ∇k · �B = ∇k · �E = 0 (see Appendix F); namely,
�B/E does not contribute to the monopole charge. As a conse-
quence, the intrinsic IMHE due to E × �B can be expected
even when the chiral anomaly is switched off by setting
E · B = 0.

VII. DISCUSSION AND SUMMARY

Recently, an in-plane Hall effect at EB order was reported
experimentally in the Dirac semimetal ZrTe5 [55]. The ex-
perimental results were interpreted using the conventional
anomalous velocity E × � and E × �B, and the tilt of the
Weyl cones seemed to have no effect. Following our analytical
calculations, we found that the out-of-plane tilt of WSMs is
the key to capturing the intrinsic IMHE, which in turn may
explain why IMHE has been overlooked since all of the tilt
configurations explored both theoretically and experimentally
were mainly confined to the E -B plane. The relation between
the tilt vector and the device is illustrated in Fig. 1(c), in
which the tilt vector is usually along the principal axis of the
crystal [56]. Importantly, although our calculations focus on
P-related or T -related WPs, our conclusion can be applied

to all the type-I nonmagnetic and magnetic WSMs effectively
described by Eq. (1), such as the nonmagnetic WSMs TaAs
family with point group 4mm [13] and the magnetic WSM
CoSn2S2 with point group −3m [58], where the mirror sym-
metry must be broken [59]. In addition, Dirac semimetals,
such as Cd3As2 [61,62] and Na3Bi [63,64], are also poten-
tial material candidates since a Dirac cone under in-plane
magnetic field can be split into two Weyl cones. Notably, we
note that although featuring the nonlinear characteristic, the
intrinsic IMHE can, in fact, be the same order as the intrinsic
anomalous Hall effect (IAHE) [65].

So far we have discussed only the IMHE conductivity, but
actual experiments usually measure the resistivity. However,
the resistivity tensor can be derived from the conductivity
tensor. Particularly, we have [66] ρaa = σbb/D and ρab =
−σab/D, with D ≡ σaaσbb − σabσba, where a, b ∈ {x, y} and
a �= b. In addition, ρab (ρaa) and σab (σaa) represent the total
transverse (longitudinal) resistivity and conductivity, respec-
tively. Moreover, ρab can be generally decomposed into four
terms: ρab = ρIMHE

ab + ρEPHE
ab + ρIAHE

ab + ρDHE
ab , where ρIMHE

ab ,
ρEPHE

ab , ρIAHE
ab , and ρDHE

ab stand for the IMHE, extrinsic planar
Hall effect (EPHE), IAHE, and disorder-induced Hall effect
(DHE) resistivities, respectively. Similarly, the longitudinal
resistivity ρaa can be generally decomposed as two terms:
ρaa = ρD

aa + ρEPHE
aa , where ρD

aa is the Drude resistivity and
ρEPHE

aa is the longitudinal negative magnetoresistivity due to
the conventional Berry curvature [23]. Based on these, we
discuss how to isolate the IMHE resistivity ρIMHE

ab from the
experimental result.

First of all, we note that the B-independent resistivity
ρB=0

ab ≡ ρIAHE
ab + ρDHE

ab can easily be removed by two-step
measurements with and without B [23], namely, ρab(B) =
ρ

B �=0
ab − ρB=0

ab = ρIMHE
ab + ρEPHE

ab , where ρ
B �=0
ab (ρB=0

ab ) stands for
the measured Hall resistivity with (without) B and ρab(B) is
the B-dependent resistivity, which includes the intrinsic IMHE
and extrinsic EPHE contributions. Fortunately, since the
IMHE (EPHE) resistivity tensor is antisymmetric (symmetric)
[66], the IMHE resistivity can be further isolated by ρIMHE

ab =
[ρab(B) − ρba(B)]/2. After removing all other transverse re-
sistivities, we find that ρIMHE

ab = σ IMHE
ba /[(σ D

aa + σ EPHE
aa )(σ D

bb +
σ EPHE

bb ) + (σ IMHE
ba )2], where σ IMHE

ba = σbaB, generally feature
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the 2π period on �. Furthermore, when σ D
aa � σ EPHE

aa and
σ D

aa � σ IMHE
ba , we have ρIMHE

ab = σ IMHE
ba /(σ D

aaσ
D
bb); namely, the

IMHE resistivity and its conductivity have the same tilt
and angular dependence. In addition, the IMHE resistivity
is also nonvanishing when the chiral anomaly is absent, as
expected.

In summary, we predicted the intrinsic IMHE in type-I
WSMs with the extended semiclassical theory. We found that
this effect is contributed by �B (the Berry curvature induced
by magnetic field) mainly through the minimal coupling. We
revealed that an out-of-plane tilt combined with a further
in-plane tilt is the key to capturing this effect. Different from
previously reported in-plane Hall effects, the intrinsic IMHE
can survive when the chiral anomaly is turned off because �B

does not contribute to the monopole charge. The experimental
strategy to detect the IMHE was also discussed. In addition
to the IAHE, our work offers another intrinsic Hall transport
signature for diagnosing WSMs, and our results can be used to
discuss the in-plane magnetotransport behavior contributed by
the generic three-dimensional band crossing in (topological)
quantum materials. Finally, we wish to remark that the MHE
featuring P-even and T -even properties can also be expected
in centrosymmetric nonmagnetic quantum materials (such as
Dirac semimetals) even though we focused on WSMs in this
work. As a consequence, the MHE offers a desirable tool to
probe the quantum geometry in centrosymmetric nonmagnetic
quantum materials, which may be explored in the future.
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APPENDIX A: ANALYTICAL COMPUTATION
OF EQUATIONS (10) AND (14)

Substituting Eqs. (6)–(9) into Eq. (5), we find that

σ s
yx =

∫ +∞

0

∫ 2π

0

∫ π

0

k2 sin θdkdθdφ

(2π )3

δ(k − μ/β±)

|β±|
× (

v±
x FO

y − v±
y FO

x

)
= ± 1

4μ

∫ 2π

0

∫ π

0

sin θdθdφ

(2π )3

β±

|β±|
× tz

[
tx
(
k̂2

x + k̂2
z

)
cos � + ty

(
k̂2

y + k̂2
z

)
sin �

]
= 1

12π2μ
tz(tx cos � + ty sin �), (A1)

as given by Eq. (10) in the main text, where β±/|β±| = ±1
and the identity∫ 2π

0

∫ π

0
k̂a sin θdθdφ

=
∫ 2π

0

∫ π

0
k̂ak̂bδ̄ab sin θdθdφ

=
∫ 2π

0

∫ π

0
k̂ak̂bk̂c sin θdθdφ = 0 (A2)

was used, where δ̄ab = 1 − δab. Similarly, by substituting
Eq. (13) into Eq. (5), we arrive at

σ s
yx = ± gμB

∫ +∞

0

∫ π

0

∫ 2π

0

k2 sin θdkdθdφ

(2π )3

× δ(k − μ/β±)

|β±|
k̂z

2k2
(v±

x cos � + v±
y sin �)

= gμB

16π3
(C1 cos � + C2 sin �), (A3)

where Ci ≡ ± ∫ π

0

∫ 2π

0 λ±
i (t ; θ, φ)dθdφ is a dimensionless

constant with

λ±
1 = (tx ± sin θ cos φ) cos θ sin θ/|β±|, (A4)

λ±
2 = (ty ± sin θ sin φ) cos θ sin θ/|β±|. (A5)

By duplicating Eq. (A3), we obtain Eq. (14) in the main text.

APPENDIX B: THE CONTRIBUTION FROM THE SECOND
TERM OF EQUATION (3)

From the second term of Eq. (3), the AOPs contributed by
the quantum metric dipole for Eq. (1) are given by

FO
x = − k̂z sin �

8k3
, FO

y = − k̂z cos �

8k3
. (B1)

Substituting these two expressions into Eq. (5) and using
Eq. (A2), we immediately obtain σ s

yx = 0.

APPENDIX C: THE BERRY CURVATURE CONTRIBUTION

Combining the conventional Berry curvature with the first-
order wave packet energy correction under magnetic field, we
find [5,39]

σ s
yx ≡ −

∫
k

f ′(ε± − μ)ε (B,±)�±
z , (C1)

where ε (B,±) ≡ B · m/B, with m being the orbital mag-
netic moment [41]. At zero temperature, using Eq. (A2),
we find

σ s
yx = −

∫ +∞

0

∫ 2π

0

∫ π

0

k2 sin θdkdθdφ

(2π )3

δ(k − μ/β±)

|β±|

×
[
∓ k̂z(k̂x cos � + k̂y sin �)

4k3

]
= 0. (C2)

APPENDIX D: THE CHIRAL VELOCITY CONTRIBUTION

By the chiral velocity B(v̄ · �̄), a current at EB order for
Eq. (1) is found to be

js ≡ B
∫

k
f (v · �E ) = EB

∫
k

f

(
∓ty

kz

2k5
± tz

ky

2k5

)

= EB
∫

k
f

[
∓ty∂z

(
− 1

6k3

)
± tz∂y

(
− 1

6k3

)]

= EB
6

∫ +∞

0

∫ 2π

0

∫ π

0

k2 sin θdkdθdφ

(2π )3
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× δ(k − μ/β±)

|β±|
(∓tyv±

z ± tzv±
y )

k3

= EB
6μ

∫ 2π

0

∫ π

0

β±

|β±| (∓tyv
±
z ± tzv

±
y )

sin θdθdφ

(2π )3
= 0.

APPENDIX E: THE DISPERSIVE
VELOCITY CONTRIBUTION

The energy correction at EB order is given by [47]

ε±
EB ≡ BaεabcA(E ,±)

b v±
c = (η±

1 cos � + η±
2 sin �)EB

4k3
,

where η±
1 = ∓k̂x(tzk̂y − tyk̂z ) and η±

2 = ∓txk̂xk̂z ∓ tz(k̂2
y +

k̂2
z ) − k̂z for E = (E , 0, 0) and B = B(cos �, sin �, 0); for

E = (0, E , 0) and B = B(cos �, sin �, 0), we have η±
1 =

±tyk̂yk̂z ± tz(k̂2
x + k̂2

z ) + k̂z and η±
2 = ±k̂y(tzk̂x − txk̂z ). By in-

serting these expressions into js
a = ∫

k f ∂aε
±
EB ≡ σ̄ s

abEbB, we
find

σ̄ s
yx = 1

12π2μ
tytz sin �, σ̄ s

xy = − 1

12π2μ
txtz cos �.

Furthermore, by antisymmetrizing this result, we finally
arrive at

σ s
yx = σ̄ s

yx − σ̄ s
xy

2
= 1

24π2μ
tz(tx cos � + ty sin �), (E1)

which displays the same behavior as Eq. (10) in the main text.

APPENDIX F: �B/E AND MONOPOLE CHARGE

For B = (Bx, By, Bz ), it is easy to show that �B calculated
from Eq. (1) satisfies

∇ · �B = 0 (k �= 0). (F1)

Next we consider ∇ · �B at the singular point k = 0. Using
the divergence theorem, we have∫

V
∇ · �BdV =

∮
S
�B · n̂dS, (F2)

where n̂ is the normal vector for the surface S enclosing the
volume V . Using Eq. (F1), we can choose a tiny sphere V1 to
enclose the singularity point k = 0; then∫

V1

∇ · �BdV1 =
∮

S1

�B · n̂dS1, (F3)

where S1 is defined as k2
x + k2

y + k2
z = r2

ε , with rε → 0, and
the normal vector is explicitly given by n̂ = (kx, ky, kz )/k.
Performing the surface integral, we find∮

S1

�B · n̂dS1

=
∫ π

0
dθ

∫ 2π

0
dφr2

ε sin θ

× Bxrε sin θ cos φ + Byrε sin θ sin φ + Bzrε cos θ

4r5
ε

= 0,

which indicates ∇ · �B = 0 for k = 0. This is, in fact, the case
for �E . Therefore, we conclude that �B does not contribute to
the monopole charge due to the conventional Berry curvature
� of WSMs, namely, ∇ · �̄ = ∇ · � = 2πδ(k).
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