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Space charge and screening of a supercritical impurity cluster in monolayer graphene
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A Coulomb impurity of charge Ze is known to destabilize the ground state of undoped graphene with respect
to creation of screening space charge when Z exceeds the critical value Zc = 1/2α set by the material’s fine
structure constant α. Recent experimental advances have made it possible to explore this transition in a controlled
manner by tuning Z across the critical point. Combined with relatively large value of α this makes it possible to
study graphene’s screening response to a supercritical impurity Zα � 1 when the screening charge is large using
a Thomas-Fermi analysis. The character of screening in this regime is controlled by the dimensionless screening
parameter Zα2. Specifically, for a circular impurity cluster in the weak-screening regime Zα2 � 1 most of
the screening charge is found to reside outside the cluster. The strong-screening regime Zα2 � 1 provides a
realization of the Thomson atom: Most of the screening charge is inside the cluster, nearly perfectly neutralizing
the source charge with the exception of a transition layer near the cluster’s edge where the rest of the space
charge is localized.
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I. INTRODUCTION

Monolayer graphene is a two-dimensional semimetal
whose low-energy elementary excitations obey a pseudorel-
ativistic dispersion law

ε(p) = ±vF p, (1)

where p is the two-dimensional momentum vector, p = |p|,
the upper and lower signs correspond to the conduction and
valence bands, respectively, and vF ≈ c/300 is the Fermi
velocity [1].

This paper studies the screening response of undoped pris-
tine graphene to a large external impurity charge Ze (which
we may assume to be positive without the loss of generality).
Fundamental interest in this problem can be quickly appre-
ciated by trying to understand the binding properties of the
Coulomb field. Indeed, the ground-state energy of graphene’s
electron of typical momentum p localized within a spatial
scale r � h̄/p can be estimated by optimizing the energy
cost of localization according to Eq. (1) against the potential
energy gain in the electric field of charge Ze,

ε(p) � vF p − Ze2

κr
� vF p(1 − Zα), α = e2

κ h̄vF
≈ 2.5

κ
,

(2)
where κ is the dielectric constant due to graphene’s own elec-
trons and the surrounding environment, and α is the material’s
fine structure constant [1]. Minimizing with respect to the
parameter p one can then see that when the dimensionless
external charge Z (hereafter simply referred to as “charge”)
is sufficiently small, Zα � 1, the electron is delocalized, p ∝
1/r = 0, while sufficiently large charge, Zα � 1, leads to an
infinitely sharp localization p ∝ 1/r = ∞.

Essentially, the same conclusion applies to the charge
state of a point nucleus of charge Ze in vacuum, where
now the fine structure constant α = e2/h̄c = 1/137 is

significantly smaller: The electric field of a highly charged
nucleus (Z � 137) destabilizes the vacuum with respect to
creation of electron-positron pairs; the positrons escape to
infinity leaving behind a screening space charge of electrons
[2]. Creating a charge exceeding 137e is a serious obstacle
to experimental observation of the vacuum instability, but for
the suspended graphene the predicted threshold value Zc =
1/2α ≈ κ/5 [3] is experimentally accessible, since κ ≈ 5 and
thus, α ≈ 1/2 [4]), resulting in Zc ≈ 1.

Various aspects of atomic collapse in graphene have been
verified in experiments with clusters of charged Ca dimers
[5]. More recently a tunable version of the external charge
Z was realized [6]: A single-atom vacancy in graphene was
demonstrated to stably host a local charge and this charge
could be gradually built up by applying small voltage pulses
with the tip of a scanning tunneling microscope (STM). The
experiment has been performed using a variety of surfaces,
specifically, G/G/BN [graphene (G) on graphene on Boron
nitride (BN)], G/BN and G/G on SiO2, and each sample
was independently characterized regarding its value of the
parameter α (1). This allowed to systematically study a range
of charges both below and above Zc = 1/2α, up to Z ≈ 1.6/α

(G/G/BN surface). When Z exceeds Zc but is still close to it,
there are very few screening electrons present, and one faces
a difficult few-body problem of the binding of graphene’s
electrons to a Coulomb center. A simplification arises in the
many-electron case (Z � 1) when the Thomas-Fermi (TF)
method applies [7]. Its main advantages are physical trans-
parency and rigor: Correlation effects vanish to leading order
as Z → ∞ so that a mean-field treatment of electron-electron
interactions suffices [8]. Here we revisit the TF theory for
a supercritical Zα � 1 impurity cluster in graphene. This
regime also appears to be within experimental reach of the
approach of Ref. [6]; it seems plausible that a large charge
corresponding to Zα � 1 can be built up by applying voltage
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pulses with the STM tip to individual vacancies of a vacancy
cluster.

The TF theory in question has been analyzed by several
authors [9–11] with conflicting predictions which were at-
tributed to physically different regimes of parameter values
[11]. A comprehensive physical picture of the effect, includ-
ing analysis of the geometry relevant to the most promising
experimental setup [6] is, in our judgment, still lacking. Our
contribution below brings completeness and definiteness to
the problem of screening of a Zα � 1 impurity in graphene.
Our analysis builds on a study due to Migdal et al. [12] of
the QED version of the related problem that was adopted
[13] to the case of narrow band-gap semiconductors [14] and
Weyl semimetals [15]. The latter systems may be viewed as
three-dimensional counterparts of graphene, and below we
indeed find that the physics of supercritical impurity screening
in graphene resembles that of a Weyl semimetal [13]. The
difference between the problems is largely technical and trace-
able to two-dimensionality of graphene’s electrons interacting
according to the three-dimensional Coulomb law.

We hasten to mention that the approach of Refs. [12,13]
has been also employed to solve the problem of the collapse
of the electrons to a donor cluster in SrTiO3 [16].

II. CLASSICAL ELECTROSTATICS

The total electrostatic potential ϕ(r) felt by an electron
confined to a plane embedded into three-dimensional space is
due to an external potential ϕext (r) and to the potential caused
by the rest of the screening electron cloud of number density
n(r):

ϕ(r) = ϕext (r) − e

κ

∫
n(r′)d2r′

|r − r′|

= 1

κ

∫
σ (r′)d2r′

|r − r′| = e

κ

∫
[next (r′) − n(r′)]d2r′

|r − r′| , (3)

where r is the two-dimensional position vector, σ (r) =
e[next (r) − n(r)] is the surface charge density, and an external
number density next (r) is related to ϕext (r) as

ϕext (r) = e

κ

∫
next (r′)d2r′

|r − r′| . (4)

The integrals are over the plane where the charge resides, but
the Coulomb interaction has a three-dimensional form since
the fields extend into space. We note that external charges
positioned off the plane also create in-plane ϕext; in such cases
Eq. (4) defines an equivalent in-plane next. Given ϕext, Eq. (4)
can be inverted to provide an explicit expression for next. In
a compact form this can be given in terms of the Fourier
transforms of the potential, ϕext (q), and the density

next (q) = κ

2πe
qϕext (q), (5)

where q = |q|. For the external potential of charge Z one
has ϕext (q → 0) = 2πZe/κq, thus implying that next (q →
0) = Z which is a restatement that we are dealing with net
charge Z . For example, for a point charge Z that is a distance

a away from the plane, the external in-plane potential is

ϕext (r) = Ze

κ (r2 + a2)1/2
. (6)

Then ϕext (q) = (2πZe/κq)e−qa and, following Eq. (5)z one
finds next (q) = Ze−qa. Inverting the Fourier transform gives
the real-space density

next (r) = Za

2π (r2 + a2)3/2
. (7)

As another example, let us consider in-plane charge distribu-
tion that is Gaussian in the Fourier representation, next (q) =
Ze−q2a2

. Then it is also Gaussian in real space:

next (r) = Z

4πa2
e−r2/4a2

. (8)

Following Eq. (5), the external potential is ϕext (q) =
(2πZe/κq)e−q2a2

whose inversion [17] supplies its real-space
version

ϕext (r) =
√

π

2

Ze

κa
e−r2/8a2

I0

(
r2

8a2

)
, (9)

where I0(y) is a modified Bessel function of the first kind.
Equation (3) makes it clear that the regime of infinitesi-

mally weak screening is

ϕ(r) = ϕext (r), n(r) = 0, (10)

while the regime of infinitely strong screening is

ϕ(r) = 0, n(r) = next (r). (11)

For example, for point charge Z positioned a distance a away
from the ideally conducting (i.e., screening) plane, n = next

given by Eq. (7) is the textbook result for the density of
induced charge derived by the method of images.

When the source has circular symmetry, angular integra-
tion can be carried out in Eq. (3) with the result

ϕ(r) = 4

κr

∫ r

0
σ (r′)r′dr′K

(
r′

r

)
+ 4

κ

∫ ∞

r
σ (r′)dr′K

(
r

r′

)
,

(12)

where K(y) is the complete elliptic integral of the first kind
and we employed Landen’s transformation [17]. On the other
hand, electrostatic potential of a three-dimensional spherically
symmetric charge density distribution ρ(r) can be written as

ϕ(r) = 4π

κr

∫ r

0
ρ(r′)r′2dr′ + 4π

κ

∫ ∞

r
ρ(r′)r′dr′. (13)

Comparing Eq. (12) with its three-dimensional counter-
part (13) highlights the mathematical difference between
screening problems in two and three dimensions. Indeed, mul-
tiplying both sides of (13) by r and twice differentiating the
outcome, one recovers the Poisson’s equation ∂2(rϕ)/r∂r2 =
−4πρ/κ . Similar exact reduction to a differential form is
impossible with Eq. (12), thus leaving us with a singular inte-
gral equation. Nevertheless, a useful simplification of Eq. (12)
capturing the physics of the problem is possible, and based
on the observation that K(y) is nearly constant and slightly
exceeds π/2 over most of its range with the exception of the
narrow vicinity of y = 1 where it has integrable (logarithmic)
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FIG. 1. In-plane electrostatic potential (in units of Ze/κa) versus
distance (in units of a) due to a point charge outside the conductive
plane: Exact result (6) (bold curve) versus its approximation (15)
(dashed curve).

singularity. Then, approximating K(y) → K(0) = π/2 in the
integrands in Eq. (12) reduces the latter to the form

ϕ(r) ≈ 2π

κr

∫ r

0
σ (r′)r′dr′ + 2π

κ

∫ ∞

r
σ (r′)dr′, (14)

which matches the exact result (12) both for r → 0 and
r → ∞. To illustrate its accuracy for general r, we computed
the approximate potential (14) corresponding to the density
(7) with the result

ϕ
(appr)
ext (r) = Ze

κa

r + a − √
r2 + a2

r
. (15)

Its comparison with the exact potential (6) displayed in Fig. 1
shows that Eq. (14) is a good approximation to Eq. (12) for
all r.

Multiplying both sides of Eq. (14) by r and twice differenti-
ating the outcome, one obtains equivalent differential equation

∂2(rϕ)

∂r2
≈ −2πσ

κ
= −2πe

κ
(next − n). (16)

Its consequence is that the total charge within a circle of radius
r is approximately given by

Z (r) ≈ −κ

e
r2 ∂ϕ

∂r
. (17)

Introducing a screening function ζ (r) according to

ϕ = ζ (r)e

κr
, (18)

the charge (17) can be written as

Z (r = Rel ) = ζ (l ) − ζ ′(l ), (19)

where R is an arbitrary length scale. We see that for l � 1
(r large) when the first derivative term ζ ′(l ) is negligible com-
pared to ζ (l ), the distinction between the screening function
and the charge disappears, i.e., Z ≈ ζ .

III. THOMAS-FERMI THEORY

In order to understand what determines the strength of
screening in graphene and to go beyond the limiting cases (10)
and (11), classical electrostatics accumulated in Eqs. (3)–(5)
has to be supplemented by relevant information about the
physics of pristine graphene. In the TF theory this is contained
in the statement that eϕ causes a local change in the chemical
potential, such as in thermodynamic equilibrium, the electro-
chemical potential remains zero across the system (the effect
of finite doping has been considered in Ref. [10]),

μ = μ0(n) − eϕ(r) = h̄vF
√

πn − eϕ(r) = 0. (20)

Here μ0(n) = h̄vF
√

πn is the chemical potential of
graphene’s electrons in the absence of a perturbing potential
ϕ(r) [1], and the density n is assumed to be small enough so
that the dispersion law (1) applies. Equation (20) implies a
relationship between the density n and total potential ϕ

n = 1

π

(
eϕ

h̄vF

)2

. (21)

For the external potential of charge Z one expects either partial
or complete screening, i.e., ϕ(r → ∞) = Z (∞)e/κr, where
0 � Z (∞) < Z is observable charge at large distance from
the source. Taking the r → ∞ limit in the first representation
in Eq. (3), one naturally finds Z (∞) = Z − ∫

n(r)d2r which
is consistent with Eq. (21) only if Z (∞) = 0. Otherwise,
the density, according to Eq. (21), falls off as 1/r2 which
is not normalizable. Therefore, the screening is complete,∫

n(r)d2r = Z , with the potential and density falling off at
r large faster than 1/r and 1/r2, respectively.

Combing Eq. (21) with the first representation for ϕ in
Eq. (3) leads to the nonlinear integral TF equation [10,11]:

ϕ(r) = ϕext (r) − e

πκ

(
e

h̄vF

)2 ∫
ϕ2(r′)d2r′

|r − r′| . (22)

An equivalent equation can be given in terms of the density by
substituting (21) into the second representation in Eq. (3) and
employing the relationship (4),

√
n(r) = α√

π

∫
[next (r′) − n(r′)]d2r′

|r − r′| . (23)

The same equation can be obtained by minimization of the TF
energy functional

E [n] = 2
√

π

3
h̄vF

∫
n3/2(r)d2r − e

∫
ϕext (r)n(r)d2r

+ e2

2κ

∫
n(r)n(r′)d2rd2r′

|r − r′| , (24)

where the first term represents quantum-mechanical ef-
fect of the zero-point motion—it is the kinetic energy of
the screening cloud—while the rest encompasses classical
electrostatics.

Below we assume that the external potential is circularly
symmetric and due to charge Z localized within a region of
typical size a:

ϕext (r) = Ze

κa
fext

( r

a

)
, fext (x → ∞) = 1

x
, (25)
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where fext (x = 0) is finite. Measuring the length in units
of a, potential in units of Ze/κa, and density in units of
Z/a2 prompts introduction of dimensionless counterparts of
the potential (ϕ → f ), density (n → ν), and external density
(next → νext); the latter two are now normalized at unity. In
terms of these new functions and scales, Eqs. (21)–(23) ac-
quire the form

ν = γ f 2, γ = Zα2

π
, (26)

f (x) = fext (x) − γ

∫
f 2(x′)d2x′

|x − x′| , (27)

√
ν(x) = √

γ

∫
[νext (x′) − ν(x′)]d2x′

|x − x′| . (28)

The solution of the problem is thus determined by the shape
of the external charge distribution and single dimensionless
parameter γ � Zα2 which controls the strength of screening
[11]. Indeed, taking the infinitesimally weak screening limit
γ → 0 in Eqs. (26) and (27) recovers Eq. (10), while taking
the infinitely strong screening limit γ → ∞ in Eqs. (26) and
(28) derives Eq. (11).

It is also useful to rewrite the energy functional (24) in
terms of the dimensionless density ν(x) and the external
potential fext (x),

E [ν] = Z2e2

κa

{
2

3
√

γ

∫
ν3/2(x)d2x −

∫
fext (x)ν(x)d2x

+ 1

2

∫
ν(x)ν(x′)d2xd2x′

|x − x′|

}
, (29)

which additionally demonstrates that the limit of infinitely
strong screening γ → ∞ is classical while quantum effects
dominate interactions in the regime of infinitesimally weak
screening γ → 0. This equation shows natural scaling of the
energy with Z , e, κ, and a, and explains why the problem
is ill defined in the point charge limit a = 0. The fact that
the external charge must be spread over finite-sized region
imposes practical limitation on how large Z can be for given a.
We assume that appropriate conditions discussed in Ref. [11]
are met.

In the circularly symmetric case of interest (25), the inte-
gral Eq. (22) transforms into

ϕ(r) = ϕext (r) − 4e

πκr

(
e

h̄vF

)2 ∫ r

0
ϕ2(r′)r′dr′K

(
r′

r

)

− 4e

πκ

(
e

h̄vF

)2 ∫ ∞

r
ϕ2(r′)dr′K

( r

r′
)

(30)

and corresponding versions of Eqs. (23), (24), and (27)–(29)
can be similarly given.

In assessing the range of applicability of the TF theory
we first observe that it overlooks the atomic collapse effect
discussed in the introduction. Indeed, according to Eq. (21),
arbitrarily small potential induces space charge (because the
energy gap is zero) while from the single-particle standpoint
there is a screening threshold at Zc = 1/2α. The resolution
[3,11], like in the problem of impurity screening in Weyl
semimetal [13], is that the prediction of complete screening

Z (∞) = 0, the exact property of the TF theory, is an artifact;
the observable charge for Z � Zc = 1/2α is the critical charge
Z (∞) = 1/2α. This means that our analysis holds provided
Z (r) � 1/α which, for α � 1, is more constraining than the
usual semiclassical requirement of slow variation of the de
Broglie wave length with position |dn−1/2/dr| � 1 [7].

A. Potential and density profiles in large distance limit

Even though Eqs. (27) and (28) appear to be good start-
ing points of analysis in the weak, Zα2 � 1, and strong,
Zα2 � 1, screening limits, respectively, below we are go-
ing to find out that such treatments inevitably break down
at sufficiently large distance from the source center. So we
begin with analysis of this large-distance regime by employ-
ing the differential equation (16) approximating full integral
equations such as (22) or (23). Combining Eq. (16) (with
next neglected) and Eq. (21), and employing the screening
function ζ (r) introduced in Eq. (18) we arrive at the nonlinear
differential equation

ζ ′′(l ) − ζ ′(l ) = 2α2ζ 2 (31)

whose immediate consequence is that ζ ∝ Z ∝ 1/α2. For l =
ln(r/R) � 1 [R is now a scale beyond which next in Eq. (16)
can be omitted compared to n], we can neglect here the first-
order derivative term ζ ′(l ) compared to ζ ′′(l ). The solution to
(31) in this limit as well as the expression for the net charge
within a circle of radius r = Rel , Z (l ) = −ζ ′(l ) [see Eq. (19)]
are given by

ζ (l ) = 3

α2(l + B)2
, Z (l ) = 6

α2(l + B)3
, 0 � l � 1.

(32)
Even though Eq. (31) does not mention the source charge
distribution, its imprints may be present in the length scale R
and value of the numerical constant B determined by matching
(32) to its r � R counterpart (see below).

For l = ln(r/R) � 1, we can neglect in Eq. (31) the
second-order derivative term ζ ′′(l ) compared to ζ ′(l ). In this
limit we do not distinguish between the charge Z and screen-
ing function ζ and can write down Eq. (31) as the equation for
the charge

Z ′(l ) = −2α2Z2(l ). (33)

Its solution

Z = ζ = 1

2α2l
= 1

2α2 ln(r/R)
, 1 � ln

r

R
� 1

α
(34)

(with R identified with a lattice length scale) was given pre-
viously [10], while the range of applicability (the charge
Z should significantly exceed 1/α) imposes the constraint
α � 1 [11]. Suspended graphene, α ≈ 1/2 [4], is at best at
the verge of applicability of the asymptotic result; the range
in (34) can be made wider by choosing smaller α which can
be accomplished by selecting large κ substrates [11]. The
potential ϕ(r) = ζ (r)e/κr and density (21) in this regime are
given by

ϕ(r) = e

2α2κr ln(r/R)
, (35)

n(r) = 1

4πα2r2 ln2(r/R)
. (36)
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The remarkable property of Eqs. (34)–(36) is their near uni-
versality: the dependence on external charge distribution is
logarithmically weak and hidden in the length scale R yet to
be identified.

B. Weak screening: Zα2 � 1

The condition of weak screening is consistent with
the source charge being supercritical Zα � 1 provided
1/α � Z � 1/α2, which almost certainly leaves suspended
graphene, α ≈ 1/2 [4], outside of this regime [11]. For
graphene on a high-κ substrate (α � 1), the weak-screening
regime can be realized and the starting point of the analysis
is the zero-screening limit result (10). Then substitution of
ϕ = ϕext into Eq. (21) determines the electron density as the
effect of the order Zα2 [see Eq.(26)]:

n(r) = 1

π

(
eϕext (r)

h̄vF

)2

→ Z2α2

πr2
, (37)

where in the second step we specified to the r � a limit.
Inside the source charge distribution, the density can be es-
timated as n(r � a) � Z2α2/a2, and the number of screening
electrons is of the order (Z2α2/a2)a2 = Z · (Zα2) � Z . We
thus conclude that most of the screening charge is outside the
source charge distribution. For the total charge within a circle
of radius r � a we find with logarithmic accuracy

Z (r) = Z − 2π

∫ r

0
n(r′)r′dr′ = Z

(
1 − 2Zα2 ln

r

a

)
, (38)

which applies provided Zα2 ln(r/a) � 1, i.e., it inevitably
fails at sufficiently large distance from the source [the density
(37) is not normalizable].

Equations (38) and (34) (with R → a) can be combined
into a compact interpolation formula that captures both per-
turbative short-distance and nearly universal large-distance
limits, respectively,

Z (r) � Z

1 + 2Zα2 ln(r/a)
, 1 � ln

r

a
� 1

α
, Zα2 � 1

(39)
[and ignores the intermediate asymptotic regime (32)]. The
same accuracy interpolation formula can be given for the
electron density

n(r) � Z2α2

πr2[1 + 2Zα2 ln(r/a)]2
(40)

that combines Eqs. (36) and (37). It is straightforward to verify
that (with accuracy controlled by the Zα2 � 1 condition) the
density distribution (40) is normalized at Z , and that the net
charge within a circle of radius r � a computed with the help
of Eq. (40) reproduces Eq. (39).

Finally, the interpolation formula for the potential

ϕ(r) � Ze

κr[1 + 2Zα2 ln(r/a)]
(41)

follows from the relationship (21). While Eqs. (39)–(41) were
given previously [10], their status as interpolation formulas
was not clarified; their range of applicability as given in
Eq. (39) was pointed out in Ref. [11].

C. Strong screening: Zα2 � 1

The starting point of the analysis is the classical result (11).
Then substitution of n = next into Eq. (21) determines the
potential as the effect of the order (Zα2)−1/2 [see Eq. (26)].
This is an improvement on Eq. (11) to the case of large finite
screening parameter Zα2:

n(r) = next (r), ϕ(r) = h̄vF
√

πnext (r)

e
, r � R. (42)

The length scale R limiting the range of applicability can be
determined by recalling that in the strong screening limit,
the kinetic energy of the confined electrons having quantum-
mechanical origin is negligible compared to the classical
potential energy of the Coulomb repulsion. Comparing the
first and third term of the energy functional (24), it is straight-
forward to realize that they have the same order of magnitude
at the scale R to be self-consistently determined from the
condition,

R � 1

α
√

next (R)
. (43)

We note the right-hand side has the same order of magnitude
as the screening length [18] of the two-dimensional electron
gas (κ/2πe2)∂μ0/∂n of density next, which in graphene’s case
is 1/4α

√
πnext. It is a consequence of dimensional analy-

sis applied to Eq. (43) that the electron charge outside the
r � R circle can be estimated as n(R)R2 � 1/α2 which is
also an estimate for the net charge inside the r � R circle,
i.e., Z (R) � 1/α2 (total electric charge of the source plus
that of the electron cloud is zero in the TF theory). Earlier
(Sec. III A), R was defined as a length scale beyond which next

can be neglected compared to n. However, in that regime the
charge was also found to be proportional to 1/α2. Specifically,
l = 0 in the equation for the charge (32) means r = R, thus
implying that Z (R) � 1/α2B3. It then seems plausible that
at r � R, determined by Eq. (43), the density and potential
given by Eq. (42) cross over to their r � R counterparts as
described in Sec. III A, and that the coefficient B in Eq. (32)
is a Z-independent constant.

As evidenced by Eq. (28), relative correction to n = next

has the order of (Zα2)−1/2 and thus is small for r � R. Ex-
plicit calculation for the charge off the plane geometry [11]
illustrates this assessment.

For suspended graphene, α ≈ 1/2 [4], Z � 1, and suf-
ficiently smooth next properties of the bulk of the electron
screening cloud, r � R, are described by Eqs. (42) and (43).
For the special case of the external point charge positioned off
the graphene plane, this conclusion was reached in Ref. [11].
Properties of the cloud fringe, r � R, may be captured semi-
quantitatively by the theory of Sec. III A.

1. External point charge off graphene plane

For the special case of point, external charge Z positioned
a distance a away, the graphene plane the results (42) and
(43) were derived earlier [11]. The length scale (43) in this
case can be estimated as R � a · (Zα2) � a and direct inte-
gration of the density (7) verifies our dimensional argument
that the net charge within a circle of radius R, Z (R) = Z −
2π

∫ R
0 next (r)rdr, is indeed of the order 1/α2. It was stated
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[11] that the conclusions

n(r) = Za

2πr3
, ϕ(r) = h̄vF

e

√
Za

2r3
, a � r � a · (Zα2)

(44)

originally derived for the charge off the plane geometry,
specifically the power-law falloffs n(r) ∝ 1/r3 and ϕ(r) ∝
1/r3/2 within specified range of distances (44), are univer-
sally applicable for generic external charge distribution of net
charge Z spread over a length scale a. We disagree and give
two experimentally relevant examples of external in-plane
charge distributions.

2. Gaussian external charge distribution

If the external charge distribution is Gaussian, Eqs. (8),
(42), and (43) now predict that

n(r) = Z

4πa2
e−r2/4a2

,

ϕ(r) = h̄vF

√
Z

2ea
e−r2/8a2

, r � R � 2a ln1/2(Zα2). (45)

We see that for Gaussian distribution of external charge the
potential is also Gaussian and drastically different from the
external potential (9). The expression for the length scale
R has logarithmic accuracy and exhibits weak dependence
on the screening parameter Zα2. In practical terms the lat-
ter means that the potential is present where the external
charge is.

3. Uniformly charged disk: Realization
of two-dimensional Thomson atom

Vacancy clusters in graphene, if created by the technique
of Ref. [6], would have atomically sharp boundaries. The
relevant external charge distribution is then that of an in-plane
uniformly charged disk of radius a. Then, within the cluster,
the electron density and potential are constant and given by
Eq. (42) (the state of local neutrality), and zero otherwise.
This solution predicts singularity of the in-plane electric field
at the boundary which is removed for large but finite screen-
ing parameter Zα2. Indeed, quantum mechanics (finite Zα2)
promote delocalization and as a result some fraction of the
screening electrons move outside of the geometrical bound-
ary of the cluster while the majority remains inside. As in
analogous problem of impurity screening in Weyl semimetals
[13], the concept of the screening length (43) (with constant
next) continues to play an important role and gives an estimate
of the width of the charge depleted region within the cluster.
Only within this layer is the external charge not locally neu-
tralized; a small fraction of screening electrons resides outside
the cluster. This physical picture is internally consistent if the
size of the depleted region a/

√
Zα2 is significantly smaller

than the cluster size a, which indeed holds in the strong-
screening limit Zα2 � 1.

This argument allows us to estimate the net charge within
the cluster as the external charge within the electron depleted
boundary region,

Z (a) � a(Zα2)−1/2 · a · next � Z · (Zα2)−1/2 � Z, (46)

which is simultaneously the estimate for the number of screen-
ing electrons outside the cluster. We see that the majority of

the screening electrons are inside the cluster while only a
small fraction is outside where the description of Sec. III A
(with R � a) applies. Matching the charges given by Eqs. (46)
and (32) at the cluster boundary the coefficient B entering
Eq. (32) can be estimated as B � (Zα2)−1/2.

The uniformly charged cluster along with the screening
cloud of electrons is in itself an interesting object be-
cause it provides two-dimensional realization of the Thomson
atom, a now obsolete model of real atom. In our case, the
“nucleus”—the bulk of the cluster—is nearly perfectly neu-
tralized by the electrons with the exception of positively
charged boundary layer while the small fraction of the screen-
ing cloud is present outside the cluster. The boundary region
forms a two-dimensional electrostatic double layer where the
outward-pointing electric field is localized. The near neutral-
ity of the bulk of the cluster is the classical effect while the
double-layer structure of the boundary region has quantum-
mechanical origin.

IV. CONCLUSIONS

Piecing together the results of analysis of various limiting
cases, we arrive at the following physical picture of screening
of a highly charged, Zα � 1, impurity cluster in graphene:

(i) The outcome is largely dictated by the dimension-
less screening parameter Zα2 and, to a lesser extent, by
the smoothness of the external charge distribution. If α � 1
(graphene on high-κ substrate), there are two well-defined
regimes of parameter values.

(ii) In the weak-screening case, Zα2 � 1, most of the
screening charge resides outside the cluster; it is nearly certain
that this regime cannot be realized in suspended graphene,
α ≈ 1/2.

(iii) In the strong-screening regime, Zα2 � 1, most of the
screening charge resides inside the cluster, and this regime
does apply to the case of suspended graphene. Experimentally,
the most relevant situation of a uniformly charged cluster
with sharp boundary provides two-dimensional realization of
the Thomson atom. As the screening parameter Zα2 is tuned
[6] from small to large values, the screening cloud gradually
moves inside the cluster interpolating between the regimes of
weak and strong screening.

(iv) If α � 1, the fringe of the screening cloud, regardless
of the value of Zα2, exhibits nearly universal properties. For
suspended graphene, α ≈ 1/2, this regime most likely does
not exist.

We hope that our results will motivate future experimental
efforts to extend the approach of Ref. [6] to vacancy clus-
ters in graphene. These clusters could be gradually charged
so that with appropriately chosen substrates the dimen-
sionless screening parameter Zα2 could be tuned from the
weak, Zα2 � 1, to the strong, Zα2 � 1, screening regimes.
Graphene’s screening response will be monitored, including
realization of a two-dimensional Thomson atom in the strong
screening regime.
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