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Effect of interatomic repulsion on Majorana zero modes in a coupled
quantum-dot–superconducting-nanowire hybrid system
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We study the low-energy eigenstates of a topological superconductor wire modeled by a Kitaev chain, which
is connected at one of its ends to a quantum dot through nearest-neighbor (NN) hopping and NN Coulomb
repulsion. Using an unrestricted Hartree-Fock approximation to decouple the Coulomb term, we obtain that the
quality of the Majorana end states is seriously affected by this term only when the dependence of the low-lying
energies with the energy of the quantum dot shows a “diamond” shape, characteristic of short wires. We discuss
limitations of the simplest effective models to describe the physics. We expect the same behavior in more realistic
models for topological superconducting wires.
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I. INTRODUCTION

In recent years, topological superconducting wires has
been a field of intense research in condensed matter physics,
because of both the interesting basic physics involved [1], and
also the possible applications in decoherence-free quantum
computing based on the Majorana zero modes (MZMs) at
their ends [2–7].

The simplest model that presents MZMs at the ends is
the Kitaev chain for p-wave superconductors [8]. Lutchyn
et al. [9] and Oreg et al. [10] proposed a model for topolog-
ical superconducting wires that includes spin-orbit coupling
(SOC), proximity-induced s-wave superconductivity, and an
applied magnetic field perpendicular to the direction of the
SOC. The phase diagram of the lattice version of this model
has been calculated recently [11]. For reasonable parameters,
the model has a topological phase with MZMs localized at its
ends as the Kitaev chain. MZMs of similar wires were found
experimentally [12–15].

A difficulty of these experiments is to identify unambigu-
ously that the zero modes are of topological origin, which
implies that they remain at zero energy and localized at the
end of the nanowire if small perturbations are applied to the
system. Several authors studied the system consisting of a
topological superconducting wire and a quantum dot (QD)
[15–22]. Using the model mentioned above for s-wave topo-
logical superconducting wires, Prada et al. proposed that a QD
at the end of the nanowire may be used as a powerful spec-
troscopic tool to quantify the degree of Majorana nonlocality
through a local transport measurement [16]. This proposal has
been confirmed experimentally [19]. A similar procedure has
been also proposed for the Kitaev spinless model [18], and
further theoretical studies have been made recently for the
spinfull model [21] and a minimal Kitaev chain [22].

In general, the energy of the dot level is varied changing
the gate potential, and the low-energy levels detected by the

conductance show either a crossing (“bowtie” shape like in
Fig. 5) or a diamond pattern (like in the top of Fig. 7)
[16,20,22].

Compared to the large amount of theoretical works study-
ing noninteracting superconducting wires, studies of the
effects of interactions are rare [23–27]. The effect of nearest-
neighbor repulsion on the Kitaev model has been studied by
density matrix renormalization group [28,29]. The authors
find that the quality of the MZMs is not affected by moderate
repulsion. Instead, using approximate methods, it has been
found that long-range repulsion spoils the MZMs [30].

Recently it has been pointed out that Coulomb repulsion
between the electrons of the dot and the nanowire might lead
to spoiling of the quality of the MZMs due to an effective
increase of the coupling between the MZMs localized at the
left and at the right of the nanowire [20]. In particular, Ricco
et al. considered a spinless model consisting of a Kitaev chain
with a QD at its left end. There is hopping between the QD
and the chain, and also the authors included an interaction,

HV = V nd nw, (1)

where nd is the number of electrons in the dot and nw is the to-
tal number of electrons in the superconducting wire. In terms
of creation and annihilation operators of spinless fermions
at each site, it can be written as nw = ∑

c†
j c j . The authors

replaced this operator by the parity operator at low energies

nw ∼ iγLγR + 1/2 (2)

(neglecting the excited states), where γν is the Majorana at the
end ν (left or right) of the wire at a given chemical potential.
We discuss this approximation in Sec. III A. Neglecting the
states at higher energy, the authors estimate the value of V ,
solve exactly the effective low-energy model, and show that
HV contributes to the displacement of the MZMs from zero
energy, spoiling the Majorana quality and the topological
properties.
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FIG. 1. Scheme of the studied model Eq. (3) representing the
interaction V and the hopping terms. There is, in addition, a p-wave
superconducting term in the wire [proportional to � in Eq. (3)].

Typically, the low-energy effective Hamiltonian serves as
an excellent approximation to the full Hamiltonian. An illus-
tration of this is the quantitative agreement observed in both
descriptions for the Josephson current between two topolog-
ical superconducting wires [31]. Another successful example
is the use of a low-energy many-body parity basis in a recent
calculation of a minimal Kitaev-transmon qbit based on dou-
ble QDs [32]. However, a simple argument suggests that this
might not be the case for the interaction given by Eq. (1). If
one replaces V nd by a real number, the resulting term is equiv-
alent to a shift in the chemical potential. It is well-established
that, as long as the system remains in the topological phase,
this term does not compromise the integrity of the Majorana
modes. However, the operator in Eq. (2) splits them, revealing
a limitation of the effective low-energy model. In the complete
Hamiltonian, the states described by γν change their form and
accommodate to the new chemical potential, as expected from
the robust nature of topological end states. This change is not
captured by the low-energy effective Hamiltonian. Therefore,
a study including also the higher-energy states is desirable.

In addition, Eq. (1) assumes the same repulsion to all sites
of the chain. However, since the wire has induced supercon-
ductivity, there is no electric field inside it, and therefore,
one expects that the Coulomb repulsion between the QD and
the end of the wire opposite to it is negligible. In Ref. [30]
the intermediate scenario of a decaying long-range repulsion
was taken. We contend that it is more realistic to assume a
repulsion only between the QD and the first site of the chain.

In this work we calculate the low-energy spectrum of a
Kitaev chain in which the leftmost side has a hopping and
also a repulsion to a QD state. A scheme of the model is
presented in Fig. 1. The repulsion is treated in the unrestricted
Hartree-Fock approximation. In Sec. II we describe the model
and the approximation. In Sec. III we show the numerical
results. Section IV contains a summary and discussion.

II. MODEL AND APPROXIMATION

The Hamiltonian of the Kitaev chain interacting with a QD
is

H =
N−1∑
j=1

(−tc†
j+1c j + �c†

j+1c†
j + H.c.) − μ

N∑
j=1

c†
j c j

+ εd d†d − t ′(d†c1 + H.c.)

+V

(
nd − 1

2

)(
n1 − 1

2

)
, (3)

where nd = d†d and n1 = c†
1c1. The first two terms of

Eq. (3) describe the Kitaev chain with hopping t , p-wave

superconducting order parameter �, and chemi-
cal potential μ. The third term describes the QD.
The fourth term is the hopping between the QD
and the Kitaev chain and the last term is the
Coulomb repulsion between the electrons in the QD
and the ones at the leftmost site of the chain. We treat
this term in the unrestricted Hartree-Fock approximation:

nd n1 � 〈nd〉n1 + nd〈n1〉 − 〈nd〉〈n1〉
− 〈d†c1〉c†

1d − d†c1〈c†
1d〉 + 〈d†c1〉〈c†

1d〉
+ 〈d†c†

1〉c1d + d†c†
1〈c1d〉 − 〈d†c†

1〉〈c1d〉. (4)

We note that our model is different from that of Ricco et al.,
who considered repulsion with all the sites of the wire with
the same intensity [20]. Another difference is the treatment of
repulsion. Ricco et al. treated the repulsion exactly in an ef-
fective model within a low-energy subspace [20]. We include
all states but treat the repulsion using the approximation of
Eq. (4).

III. RESULTS

We take t = 1 as the unit of energy and choose � = 0.2.

A. Isolated Kitaev chain

For later comparison, we discuss first the isolated Kitaev
chain (without the quantum dot) for two different lengths
of the chain. The resulting energies are shown in Fig. 2 as
a function of the chemical potential μ. The curve is sym-
metric under the change of sign of μ, and therefore only
positive values of μ are displayed in the figure. As it is
known, the system is topological for |μ| < 2t . In this region,
there are two low-energy states at energies near zero. For the
infinite chain, these states correspond to the left and right
MZMs γL and γR localized at the ends of the chain. In a
finite chain, these modes are mixed with an effective term
λiγLγR and the energies are split in ±λ. As expected, λ decays
exponentially with increasing system size. From Fig. 2, one
can see that λ decreases almost four orders of magnitude when
the length of the chain is increased from 20 to 50 sites.

One can also see from the figures that λ oscillates as the
chemical potential is varied. The period of oscillation is more
than two times smaller for 50 sites in comparison with 20
sites, and it is also smaller for larger |μ|, near the topological
transition to the trivial phase.

1. Limitations of simple low-energy effective models

We have also investigated the low-energy part of nw =∑
c†

j c j and n1 = c†
1c1 in the topological phase. Clearly after

changing the basis to the eigenstates of the chain, and taking
the lowest-energy part of the operator, one has nw ∼ A f † f +
B f f †, where A and B are positive real numbers and f † is
the eigenstate of lowest positive energy ([H, f †] = |λ| f †).
Except for an irrelevant phase, it corresponds to f † = [γL −
sign(λ)iγR]/2.

The electron-hole symmetry of the isolated Kitaev chain
c†

j → (−1) jc j transforms H (μ) into H (−μ) and f † f into
1 − f † f . Therefore, using the form nw ∼ C f † f + B, with
C = A − B, C should be an odd function of μ and for μ = 0,
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FIG. 2. Eigenvalues of the Kitaev chain for 20 sites (top) and 50
sites (middle and bottom) as a function of the chemical potential.
Other parameters are t = 1, � = 0.2.

A = B = 1/2, and C = 0, as we confirm numerically. This
result can be analytically derived in a straightforward manner
within the exactly solvable limit (|�| − |t | = μ = 0) of the
Kitaev chain. For other values of μ inside the topological
phase, we find that B ∼ 1/2 and C is of the order of 0.01
(0.001 or less) for N = 20 (N = 50). This factor C is lacking
in the approximation of Eq. (2) taken by Ricco et al. [20]
and therefore the effect of Coulomb repulsion on splitting the
MZMs is exaggerated in their work.

Similarly, the low-energy part of n1 containing two f oper-
ators has the form n1 ∼ C1 f † f + B1, with C1 = 0 for μ = 0.
For other values of μ, the order of magnitude of C = 1 is 0.01
(10−5) for N = 20 (N = 50).

FIG. 3. Expectation values entering Eq. (4) as a function of dot
energy. Other parameters are N = 50, t = V = 1, � = t ′ = 0.2, and
μ = 0.

The findings presented in the subsequent section, espe-
cially for short chains and when μ ∼ 0 showing a significant
splitting of the low-energy modes (see Fig. 7), indicate that
the interaction of the mode f with higher energy modes is
important. As above, the coefficient of f † f should vanish
by symmetry for εd = V = μ = 0 but a splitting is present
in Fig. 7. In such cases, particularly when the low-energy
modes are not well confined to the ends, the adequacy of
the simplest effective model becomes questionable in accu-
rately characterizing the quality of the Majorana zero modes
(MZMs). The inclusion of higher energy states has been ad-
dressed perturbatively in the examination of boundary states
in two-dimensional topological superconductors [33].

In addition, the adjustment of the MZMs to a new con-
figuration, remaining near zero energy, particularly when μ

is varied within the topological phase, implies a necessary
mixing of low-energy modes (described by f ) with higher
energy counterparts. Otherwise, the splitting would increase
linearly with the change in μ, contrary to what is shown in
Fig. 2. Another example in which mixing of MZMs with
high-energy “bulk” states affects the accuracy of a low-energy
effective model has been discussed recently [32].

B. Effect of the quantum dot

Including the QD and to facilitate the discussion of
the effects of the nearest-neighbor repulsion V , we rep-
resent in Fig. 3 the expectation values that enter in the
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unrestricted Hartree-Fock approximation, Eq. (4), determined
self-consistently. We have chosen t ′ = 0.2, V = 1, μ = 0, and
a chain of 50 sites excluding the quantum dot. The results are
rather insensitive to system size.

As expected, the occupancy of the dot is near 1 when its
energy is negative and large in magnitude compared to t ′
(−εd � t ′), it is equal to 1/2 for εd = 0 and it is near 0 for
εd � t ′.

In contrast, the occupancy of the first site of the dot 〈n1〉
follows qualitatively the opposite behavior: when 〈nd〉 > 1/2,
the first site feels the repulsion with the electrons in the dot
and its occupancy decreases, but its hopping with the rest of
the chain moderates this effect and the occupancy deviates
from 0.5 in less than 0.2.

The expectation value of the hopping 〈d†c1〉 follows qual-
itatively the behavior expected for a diatomic heteronuclear
molecule, with a single orbital per atom, in which the two
atomic states are hybridized. The expectation value is maxi-
mum when both atomic levels coincide (εd = 0) and decreas
symmetrically with the difference between atomic levels. The
half width of the curve is expected to be of the order of the
effective hopping, which in this case is t ′

eff = t ′ + V 〈d†c1〉.
For εd = 0, this value is near 0.5, consistent with the resulting
half width and more that two times larger than the bare value
t ′ = 0.2.

The pairing expectation value 〈d†c†
1〉 follows qualitatively

a similar dependence with the dot energy as the hopping
contribution discussed above, but with smaller values. Its
dependence with εd is also narrower. Its physical origin is a
proximity induced p-wave superconductivity, which is larger
when the energy of the dot is nearer to the chemical potential
of the wire.

The resulting eigenvalues of the system as a function of the
dot energy for V = 0 and V = 1 are compared in Fig. 4 for a
chain of 20 sites. For 50 sites the discussion below is practi-
cally the same, but the results are displayed more clearly in
the smaller system. For the sake of brevity we omit displaying
the results for 50 sites except near zero energy (Fig. 5). We
discuss first the case V = 0. For large |εd |, the eigenvalues at
small energies (of absolute value less than one) are practically
the same as those of the isolated Kitaev chain shown in Fig. 2.
For μ = 0, the results are symmetric under interchange of
the sign of εd . In addition to the states of the isolated chain,
there are, roughly speaking, two other symmetric states at
energies ±Em, which at a first approximation corresponds to
that of higher absolute value of a heteronuclear molecule (as
that mentioned above) that mixes two states with energies εd

and zero. For large |εd |, Em ∼ εd and for εd = 0, Em ∼ t ′.
These states actually hybridize with the states of the isolated
Kitaev chain showing several anticrossings that are evident in
Fig. 4.

When V is included, the eigenergies (except the two nearer
to zero) are modified, particularly those related with the mix-
ing of the dot state near εd = 0. Since, as explained above,
the effective hopping between the dot and the first state of the
chain increases from t ′ = 0.2 to t ′ ∼ 0.5, when V is increased
from zero to one, a similar change takes place for the energies
that are near ±t ′ in Fig. 4. However, the two energies with
lowest absolute value, related with the splitting of the MZMs,
are very little modified by V .

FIG. 4. Energies of the system as a function of the energy of the
dot for two values of V . Other parameters are N = 20, t = 1, � =
t ′ = 0.2, and μ = 0.

In Fig. 5 we display the energies related to the MZMs for
two values of μ and a chain of 50 sites. One can see that for
μ = 0, the inclusion of nearest-neighbor repulsion V , at least
within our unrestricted Hartree-Fock approximation, slightly
decreases the splitting of the two low-energy states, indicating
that the quality of the MZMs actually is improved when the
repulsion is added. For μ 	= 0, the symmetry under change
of sign of the dot energy εd is lost, and the asymmetry is
increased with V . In any case, the effect of V on the quality
of the MZMs remains very small. The shape of the curve is
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FIG. 5. Comparison of the two energies nearer to zero in the
system as a function of the energy of the dot between V = 0 and
V = 1 for μ = 0 (top) and μ = 0.5 (bottom). Other parameters are
N = 50, t = 1, and � = t ′ = 0.2.

similar to that found in previous experiments [19] and theory
[16,20].

In Fig. 6, we show the coefficients of the lowest eigenstate
with positive energy for the parameters indicated inside the

FIG. 6. Coefficients of the lowest eigenstate of the system.
Parameters are N = 50, t = V = 1, � = t ′ = 0.2, εd = −1, and
μ = 0.

FIG. 7. Energies of the system as a function of the energy of the
dot for V = 0 (top) and V = 1 (bottom). Other parameters are N = 5,
t = 1, � = t ′ = 0.2, and μ = 0.

figure. The fermion is written as
∑

i αi fi, where αi are the 102
coefficients and the order of the corresponding fermions fi is
f1 = d†, f2 = d , f3 = c†

1, f4 = c1,..., f102 = c50. As expected,
the state is a mixture of the MZMs at the ends with negligible
weight in the middle of the chain. However, in contrast to
the isolated Kitaev chain, there is a significant weight of the
state also at the dot, with a probability which is about 1/10
compared to that of the first site in the chain. This probability
increases with decreasing |εd |.

Finally, in Fig. 7 we display the energies for a short chain
of five sites, with a significant mixing of both MZMs at the
ends of the chain. In this case, the weight of the MZM at the
right end is significant at the left end, and therefore it also
feels the repulsion with the quantum dot. For V = 0 the shape
is characteristic of the “diamond” one observed in experiment
[19] and in calculations [16,20] when the hopping between
the quantum dot and the MZM at the right end γR is important
[16,20].

In contrast to the previous cases, now the effect of adding
the Coulomb repulsion is significant, leading to a strong fur-
ther splitting of the MZMs, of the order of a fraction of t ′.

IV. SUMMARY AND DISCUSSION

We have solved a model for a Kitaev chain involv-
ing a Kitaev chain on a lattice, linked to a quantum dot
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at one of its ends through a hopping term and subject
to Coulomb repulsion between the relevant state of the
quantum dot and the terminal site of the chain. In real-
istic semiconductor-superconductor heterostructures, crucial
for creating Majorana zero modes (MZMs), short-range re-
pulsions are anticipated to play a pivotal role. However,
theoretical investigations into the effects of these interactions
are scarce.

As the energy of the state of the quantum dot is varied, the
energies of the two eigenstates of the system closest to zero
exhibit one of the characteristic shapes observed in experi-
ments and prior theories, signaling the presence of Majorana
zero modes (MZMs) at the ends of the wire, coupled between
them. In one of them (“bowtie” shape), the energies of the
two states cross when the energy of the quantum dot is near
to the Fermi energy. In this case, the coupling between MZMs
is weak and analyzing the wave function of these eigenstates,
one sees that a MZM has a substantial weight at the quantum
dot. Employing the unrestricted Hartree-Fock approximation
to account for interatomic Coulomb repulsion, we determine
that this repulsion does not significantly impact the quality of
the MZMs.

In contrast, in the alternative scenario, in which the ener-
gies of the low-lying states as a function of the dot level have
a “diamond” shape, signaling a stronger coupling between the
MZMs (shorter chains), the effect of the interatomic Coulomb
repulsion is significant splitting further the MZMs. In this
case, the wave function of the MZM at the opposite end of the
dot extends to the site adjacent to the dot and therefore it fills a
significant repulsion with the dot. Consequently, this outcome

aligns with the observations in Ref. [30], highlighting that
interactions between particles situated at more distant sites
exert a more destructive influence than interactions between
nearest neighbors. In addition, the latter have only a minor
influence on the MZMs of the isolated Kitaev chain [28,29].

We believe that our conclusions are also valid for more
realistic models for the topological superconductors, such as
that of Refs. [9,10], even including additional sub-bands and
the orbital effect of the magnetic field [34], and also for
minimal Kitaev chains [22,32].

If the experimental observation of a “diamond” shape in
the low-energy spectrum as a function of dot energy, as doc-
umented in Ref. [19], occurs, it implies that MZMs have a
substantial extension across the entire wire. In such cases,
Coulomb repulsion at one end exacerbates the degradation of
Majorana quality. Conversely, Coulomb repulsion at one end
has no discernible impact on well-localized MZMs character-
istic of the “bowtie” shape.

To summarize the aforementioned results, in situations
where the mixing between MZMs in an isolated wire is weak,
as expected in systems with well-defined MZMs, the repulsion
between the quantum dot and the end of the wire does not
compromise the quality of the MZMs. This is a noteworthy
and positive outcome for the utilization of quantum dots as
indicators of Majorana quality.
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