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Berry curvature dipole in bilayer graphene with interlayer sliding
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Lowering lattice symmetry plays a pivotal role in generating a nonzero Berry curvature dipole. In this work,
we demonstrate that introducing an interlayer sliding in bilayer graphene effectively breaks the inherent threefold
rotational symmetry, thus giving rise to a nonzero Berry curvature dipole. Our numerical simulations also reveal
the magnitude of the Berry curvature dipole can be further tuned by various parameters, including interlayer
sliding distances and directions, as well as interlayer potential differences. We show even a tiny sliding distance
of 0.02 nm can lead to a substantial Berry curvature dipole of about 10 nm in bilayer graphene, which is
comparable to the values measured in transition metal dichalcogenides (TMDCs). Our work represents a new
way to manipulate the topological properties of bilayer graphene, and this methodology can be extended into
other two-dimensional systems, such as TMDCs with threefold rotational symmetry.

DOI: 10.1103/PhysRevB.109.075415

I. INTRODUCTION

Physical properties of two-dimensional (2D) materials can
be significantly influenced by interlayer stacking, which is
determined by two critical parameters: the twisting angle
and sliding vector. In recent years, manipulating twisting an-
gles has proven to be an effective method for modulating
electronic [1,2], magnetic [3–5], and optical [6–8] proper-
ties of 2D materials. A striking example is magic-angle
bilayer graphene, which is characterized by a specific twisting
angle (approximately 1.1◦) between its two carbon layers.
This system has been shown to exhibit a wide range of
novel physical phenomena, including Mott transition [1], un-
conventional superconductivity [2,9], ferromagnetism [10],
topological physics [11,12], and so on. On the other hand,
exploration of the effects of interlayer sliding, i.e., introducing
sliding between adjacent carbon layers, is still in its early
stages. Previous research on bilayer graphene with interlayer
sliding has primarily focused on the theoretical calculation
of its band structure [13–16], with limited attention given to
the exploration of symmetry-related topological properties. In
this work, we demonstrate that interlayer sliding effectively
breaks the threefold rotational symmetry of bilayer graphene’s
carbon lattices, leading to significant modifications in its topo-
logical properties. Specifically, it results in the emergence of
a nonzero and tunable Berry curvature dipole.

The Berry curvature dipole, defined as the first moment
of the Berry curvature in momentum (k) space, has recently
gained prominence as an intrinsic mechanism underlying the
nonlinear Hall effect, as demonstrated in the work by Sode-
mann and Fu [17]. The nonlinear Hall effect can manifest
itself in systems possessing time-reversal symmetry [18,19],
which distinguishes it from the conventional linear Hall effect.
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It is pertinent to systems with lower spatial symmetries. In 2D
systems, the observation of nonlinear Hall effect is contingent
upon the existence of mirror symmetry as the sole spatial sym-
metry [17,20]. Since the theoretical prediction of nonlinear
Hall effect, this phenomenon has been subsequently verified
in various 2D systems, such as intrinsically low-symmetry
materials including bilayer and few-layer WTe2 [18,19,21].
Besides these, in symmetric 2D transition metal dichalco-
genides (TMDCs), such as MoS2 and WSe2, a nonzero Berry
curvature can be induced by reducing spatial symmetry, often
by breaking threefold rotational symmetry through methods
like strain engineering in monolayer MoS2 [22] and twisted
WSe2 [23,24]. For naturally high symmetric graphene sys-
tems, several theoretical approaches have been proposed to
lower the lattice symmetry and generate a nonzero Berry
curvature dipole, such as inducing a uniaxial strain in both
monolayer and bilayer graphene [20], as well as exploring
strained twisted bilayer graphene systems [25,26]. Recent
experimental work has further confirmed the existence of a
nonzero Berry curvature dipole in systems of twisted [27]
and strained bilayer graphene [28], and twisted double bilayer
graphene [29], as verified by the observation of nonlinear Hall
effect. Instead of strain engineering and twisting angles, we
present an innovative approach, namely interlayer sliding, in
this study to lower the lattice symmetry of bilayer graphene
and achieve nonzero Berry curvature dipole.

It is noteworthy that the interlayer sliding is easily acces-
sible due to the weak van der Waals interactions governing
interlayer coupling in various 2D materials. Recent experi-
mental observations have shown that interlayer sliding can
induce changes in electric polarization in 2D ferroelectric
materials, such as manually parallel stacked BN [30,31]. In
the case of few-layer graphene systems, interlayer sliding has
been observed when graphene is placed on BN steps [32], and
the sliding distance was found to be around 0.3 nm (∼2a,
with a = 0.142 nm being carbon-carbon bond length). In
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FIG. 1. Cartoon image of bilayer graphene with interlayer slid-
ing. Here the blue (red) lattice represents the bottom (top) layer of
bilayer graphene and the solid (open) circles stand for carbon A(B)
sublattice; the dashed line connects four different types of carbon
atoms in a unitcell.

this work, we establish the effective tunability of topological
properties through the manipulation of interlayer sliding. It is
demonstrated that even a tiny interlayer sliding of 0.02 nm
(∼0.15a) between different carbon layers of bilayer graphene
can trigger the emergence of a significant Berry curvature
dipole of 10 nm (∼76a). This suggests that interlayer sliding
is a powerful tool for tailoring the topological properties in
graphene. Moreover, this approach can be extended to other
2D material systems with threefold rotational symmetry, such
as TMDCs.

In the subsequent sections, we begin by introducing the
interlayer sliding model and simulation methods in Sec. II. We
delve into the simulation results, focusing on the distributions
of Berry curvature and Berry curvature dipole density under
interlayer sliding in Sec. III. We investigate the integrated
Berry curvature dipole as a function of Fermi energy, explor-
ing various sliding vectors and interlayer potential differences.
A brief summary is included in Sec. IV.

II. SIMULATION METHODS

Among various stacking modes in bilayer graphene, AB
(Bernal) stacking is the most thermodynamically stable con-
figuration. Therefore, in this study, we commence with the
AB stacking mode as the reference structure. To model in-
terlayer sliding, we introduce a sliding vector δs = (δx, δy),
as illustrated in Fig. 1. We express sliding distances in terms
of the carbon-carbon bond length a (=0.142 nm). Berry cur-
vature and its dipole are expressed in the unit of a2 and a,

respectively. The adjacent carbon layer separation is given by
h (=0.335 nm).

We employ the tight-binding model to simulate the
electronic properties of bilayer graphene with interlayer
sliding. The Hamiltonian, expressed in the basis of
(Abottom, Bbottom, Atop, Btop), is as follows:

H =
(

Hintra (V ) Hinter (δs)

H†
inter (δs) Hintra (−V )

)
, (1)

where the intralayer hopping term is denoted by Hintra and
interlayer hopping term Hinter. The intralayer hopping is in-
dependent of sliding vector δs and is expressed as

Hintra (±V ) =
( ±V

∑
it (δi, 0)eik·δi∑

it (δi, 0)e−ik·δi ±V

)
, (2)

where ±V denotes the interlayer potential differences, and
the summation over δi in the off-diagonal terms covers
all the nearest neighbors, including δ1 = (

√
3/2,−1/2)a,

δ2 = (−√
3/2,−1/2)a, and δ3 = (0, 1)a; the hopping energy

t (δi, 0) is a function of in-plane carbon atom separation δi and
out-of-plane separation (which is zero in intralayer hopping
case). The interlayer hopping term, on the other hand, is
expressed as

Hinter =
(∑

i t (δs + δi, h)eik·(δs+δi )
∑

i t (δs − δi, h)eik·(δs−δi )

t (δs, h)eik·δs
∑

i t (δs + δi, h)eik·(δs+δi )

)
; (3)

both the hopping energy t and phase factors are δs dependent,
in contrast to the intralayer hopping term. It’s worth noting
that the magnitude of sliding distance δs is limited to a small
portion of a, therefore the interlayer sliding vector δs simply
changes hopping energy and phase, but the numbers of nearest
neighbor hoppings remain the same in this work.

To model the hopping energy variation under interlayer
sliding, we apply the widely used relation between hop-
ping energy magnitude and arbitrary carbon atom separations
[33–36],

t (δ, z) = Vπe−(d−a)/r0 sin2α + Vσ e−(d−h)/r0 cos2α, (4)

where Vπ = −t , Vσ = 0.18t , r0 = 0.0453 nm, d is the sep-
aration between two atoms d =

√
|δ|2 + z2, and α is the

angle between displacement vector (δ, z) and the z axis. For
a given sliding vector δs, we can substitute Eq. (4) into
Eqs. (1)–(3), thereby allowing us to numerically determine the
tight-binding Hamiltonian.

III. RESULTS AND DISCUSSIONS

A. Berry curvature and dipole density distributions

With the Hamiltonian established as in Eq. (1), we can
numerically compute the Berry curvature distribution in the
k space. For a 4×4 matrix, there will be four bands. Here we
focus on the first conduction band, and the Berry curvature is
given by [37]

�3 = i

∑
j �=3 [〈φ j |∂H/∂kx|φ3〉〈φ3|∂H/∂ky|φ j〉 − c.c.]

(ε3 − ε j )2 , (5)

where φ j and ε j denote the jth eigenvectors and eigenvalues,
respectively; we arrange the eigenvalues in ascending order
and therefore index j = 3 corresponds to the first conduction
band. We set the interlayer potential difference V = 0.03t ,
approximately 80 meV, a value readily attainable by applying
a displacement field using dual gates [38,39]. We first set δs to
be along the y direction. Berry curvature distributions under
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FIG. 2. Simulated Berry curvature and Berry curvature dipole
density in the k space. The potential difference between two layers
is set to be V = 0.03t , with the sliding vector oriented along the y
direction. The Berry curvature and Berry curvature dipole density
distributions are plotted with three different sliding distances: (a) and
(d) 0, (b) and (e) 0.08a, and (c) and (f) 0.15a.

different sliding distances are plotted in Figs. 2(a) for δs = 0,
2(b) for δs = 0.08a, and 2(c) for δs = 0.15a.

The simulated Berry curvature distribution of the AB
stacking (δs = 0) case is presented in Fig. 2(a). In this sim-
ulation, k is chosen to be around Dirac point K. It is seen
that the Berry curvature distribution exhibits a distinctive
threefold rotational symmetry around the K point, a charac-
teristic stemming from the threefold rotational symmetry of
carbon lattice. The three nonzero Berry curvature pots are
related to the Lifshitz transition but slightly different from
Ref. [20] due to different choices of hopping parametrization.
However, when interlayer sliding occurs along the y axis,
this threefold rotational symmetry of lattice is broken, as
evident in Figs. 2(b) and 2(c). It’s important to note that a
mirror symmetry in the lattice structure remains intact (par-
ticularly when sliding parallel to the y axis). This can be
easily verified by considering the y direction interlayer sliding
in Fig. 1; the quadrilateral formed by the four carbon atoms
would become an isosceles trapezoid with the x axis to be
the mirror symmetry line. Consequently, the periodic part of
the Bloch wavefunciton must satisfy u(kx, ky) = u(kx,−ky),
thereby leading to the Berry curvature also exhibiting mir-
ror symmetry, �(kx, ky) = �(kx,−ky ), as shown in Fig. 2.
Based on the calculated Berry curvature distribution, we can
readily evaluate the Berry curvature dipole density using
�x = ∂�/∂kx. The calculated dipole density is summarized
in Figs. 2(d)–2(f) for δs = 0, 0.08, and 0.15a, respectively.
It is shown that the Berry curvature dipole density centered

FIG. 3. Simulated Berry curvature dipole Dx in the unit of a as a
function of Fermi energy for different sliding distances. The potential
difference V is fixed at 0.03t with sliding vector along the y axis.
The sliding distance varies from 0 to 0.15a. Inset is the simulated
Berry curvature dipole Dy which is consistently zero due to the mirror
symmetry of the Berry curvature distribution.

around the Berry curvature dips observed in Figs. 2(a)–2(c),
with positive and negative values in proximity to each other.
As the interlayer sliding distance increases, the maximum
absolute value of dipole density also increases. It should be
noted that we have only calculated the x component of dipole
density, due to the facts that the y component cancels out when
calculating the net Berry curvature dipole for any fixed Fermi
energy.

B. Berry curvature dipole with y-direction interlayer sliding

For a given Fermi energy, Berry curvature dipole Dx should
be obtained by integrating �x over the k space of occupied
states [17,20] as follows:

Dx =
∫

k
f (�x ), (6)

where f is the Fermi-Dirac distribution and for our cal-
culations we assume the zero-temperature limit, making f
essentially a heaviside step function. To perform this integra-
tion, the knowledge of electronic bandstructure of the system
is also required. The integrated dipole Dx is shown in Fig. 3.
In line with the conditions in Fig. 2, we keep the interlayer
potential difference V = 0.03t and the sliding vector along
the y direction with distance varied from 0 to 0.15a. It should
also be noted that the time reversal symmetry requires Berry
curvature to be an odd function in k space (e.g., antisymmetric
between K and K’ valleys). Consequently, the Berry curvature
dipole density emerges as an even function. Therefore, when
integrated over the entire k space, the Berry curvature dipole
doubles rather than canceling out.

The Dx-E curve exhibits distinct characteristics: it starts
with a positive value, sharply declines to a negative value, and
eventually approaches zero as the Fermi energy increases. For
δs = 0.15a, the maximum absolute value of Berry curvature
can reach up to 40a (around 6 nm), which is comparable with
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FIG. 4. (a) Simulated Berry curvature dipole Dx in the unit of
a as a function of Fermi energy for various interlayer potential
differences. The sliding vector is set to be (0, 0.15a) and the potential
difference V varies from 0.01 to 0.05t . For the V = 0.03t case,
(b) depicts the enlarged image of Dx as a function of Fermi energy,
while (c) illustrates the bandstructure with ky = 0 (upper panel),
�x (indicated by varying colors), and isoenergy lines in k space
(lower panel). Four representative energy point in (b) and (c)—black
triangle (0.01t), yellow square (0.03t), green pentagon (0.043t) and
purple hexagon (0.05t)—are selected for detailed discussions.

that measured in WTe2 [19]. We later demonstrate that this
value can increase further with a weaker interlayer potential
difference. As the sliding distance increases, there is a no-
table decrease in the onset energy of positive Berry curvature
dipole. This reduction can be attributed to the narrowing of the
band gap resulting from interlayer sliding, similar to what was
reported in Ref. [15]. Moreover, we have also calculated the y
component of Berry curvature dipole Dy, which consistently
yields values close to zero (<10−4Dx), as shown in the inset
of Fig. 3. This verification underscores the accuracy of our
numerical results.

Berry curvature dipole Dx as a function of Fermi en-
ergy for different interlayer potential differences V , ranging
from 0.01t to 0.05t, is summarized in Fig. 4(a), where the
sliding vector is fixed at δs = (0, 0.15a). It can be seen
that the onset energy of positive Dx increases with V due
to the widening of band gaps. Additionally, the maximum
absolute value of Berry curvature density Dx increases as V
decreases, consistent with what was reported in Ref. [20].
For V = 0.01t , Berry curvature dipole with a magnitude of
76a (around 10 nm) is obtained. This behavior arises be-
cause the Berry curvature is confined to a more compact
k space when the potential difference V is smaller, leading
to a larger Berry curvature dipole within a narrower energy
range.

To gain further insight to the characteristics of nonzero
Berry curvature dipole as a function of Fermi energy, we take
the case of V = 0.03t and δs = (0, 0.15a) as an example to
discuss in detail. The energy dependency of Berry curvature
dipole Dx is shown in Fig. 4(b). Four representative energy
points—black triangle (0.01t), yellow square (0.03t), green
pentagon (0.043t), and purple hexagon (0.05t)—are selected
to elucidate how the Fermi level influences Dx. Notably, there
are two local energy minima, which can be easily identified

from the bandstructure in the upper panel of Fig. 4(c). When
the Fermi level is tuned from zero to the black triangle point,
the left Berry curvature pot is encountered, where the posi-
tive �x (in red) slightly dominates, explaining the onset of
positive Dx. Increasing the Fermi level to the yellow square
point results in a significant cancellation between negative
and positive �x, leading to the decrease of Dx. Upon reach-
ing the green pentagon point, the Fermi surface encompasses
the additional Berry curvature pot on the right, where the
negative �x (in blue) dominates, results in a sharp drop of
Berry curvature dipole Dx to a negative value. As the Fermi
level is tuned to the purple hexagon point, where the Fermi
surface deviation induces an equal amount of positive and
negative �x, a maximum absolute value of Dx is obtained.
The appearance of a maximum magnitude of Dx is observed
in various systems, including strained graphene and WSe2

[20,24,26]. It is interesting to note that the sign change of
the Berry curvature dipole has been observed to be associated
with topological phase transitions in previous study [24]. In
our case, this behavior is linked to the Fermi surface en-
compassing an additional Berry curvature pot, and nonlinear
Hall effect measurements could potentially be employed to
detect complex Lifshitz transitions in bilayer graphene with
interlayer slidings.

C. Sliding angular dependence of Berry curvature dipole

In this subsection, we explore the angular dependence of
the Berry curvature dipole under interlayer sliding. We in-
troduce a variable θ , which denotes the angle between the
sliding vector δs and the x axis. Up to this point, our investi-
gation has been limited to interlayer sliding exclusively along
the y axis (corresponding to the θ = π/2 case). However, in
this subsection, we extend our examination to encompass a
wide range of θ values, spanning from 0 to 2π , with sliding
distance fixed at 0.08a and the interlayer potential difference
fixed at 0.03t . It’s important to note that when sliding along
arbitrary directions, the ky axis mirror symmetry of the Berry
curvature �(kx, ky) is no longer applicable. Consequently,
both the x component (Dx) and the y component (Dy) of the
Berry curvature dipoles will be subject to investigation in this
subsection.

By employing the same methodology as described earlier,
we can compute both Dx and Dy for various sliding angles
and Fermi energies. In Figs. 5(a) and 5(b), we present the
Berry curvature dipole Dx(y) as a function of Fermi energy
(on the radial axis) and sliding direction θ (on the angular
axis). For Dx, we observe that the maximum absolute value is
attained when sliding occurs along the ±y axes, corresponding
to θ = ±π/2. Additionally, we notice the onset of positive
Berry curvature dipole values switching to negative values
when sliding along θ = π/2, which aligns with our previous
observations in Figs. 3 and 4. Notably, a symmetric relation
emerges, expressed as Dx(θ ) = Dx(π − θ ). In contrast, for
the Dy component, we observe an antisymmetric relation,
specifically Dy(θ ) = −Dy(π − θ ). When we set θ = π/2, we
obtain Dy(π/2) = 0, which is consistent with Fig. 5(b) and
also aligns with the mirror symmetry analysis presented in
Sec. III A.
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FIG. 5. Berry curvature dipole Dx(y) plotted as a function of Fermi energy and sliding angle in (a) and (b). The sliding distance is fixed at
0.08a and the interlayer potential difference is set to be 0.03t .

To elucidate the (anti)symmetric observation of Berry cur-
vature dipole Dx(y) with respect to θ = π/2 (i.e., y axis), we
demonstrate two cases with symmetric sliding angles: θ1 =
2π/3 and θ2 = π/3, as shown by the sliding vector δs1(2) in
Figs. 6(a) and 6(b). In both cases, the four carbon atoms in the
unit cell are represented by the dashed quadrilateral as shown
in Figs. 6(a) and 6(b). It becomes evident that these two cases
are symmetric with each other when considering the mirror
line symmetry of the x axis. Therefore, one expects that the
periodic part of Bloch wavefunction must satisfy the relation-
ship u1(kx, ky) = u2(kx,−ky ), where subsets 1 and 2 represent
the two cases with symmetric sliding angles in Figs. 6(a) and
6(b). It follows that the Berry curvature distribution should
obey �1(kx, ky) = �2(kx,−ky ), which is numerically veri-
fied in Figs. 6(c) and 6(d). As a result, we can obtain the
symmetric relation for the x component of Berry curvature
dipole Dx(θ ) = Dx(π − θ ) and the antisymmetric relation for
y component Dy(θ ) = −Dy(π − θ ).

FIG. 6. Demonstration of interlayer sliding along (a) θ = 2π/3
and (b) θ = π/3; these two cases are symmetric with respect to
mirror reflection along the y axis. Berry curvature simulation results
for fixed sliding distance 0.08a and interlayer potential difference
0.03t for (c) θ = 2π/3 and (d) θ = π/3. These two cases are mirror
symmetric to each other with respect to ky = 0.

Our examination of the angular dependence of the Berry
curvature dipole reveals that a nonzero Berry curvature can
be achieved by introducing interlayer sliding along arbitrary
directions in a gapped bilayer graphene system. Notably,
the properties of the Berry curvature dipole are strongly in-
fluenced by the spatial symmetry of the carbon lattice. In
addition to its substantial magnitude, our simulation results
vividly demonstrate that the Berry curvature dipole can be
finely tuned by various parameters, including sliding dis-
tances, sliding directions, and perpendicular displacement
fields (potential differences). Consequently, we anticipate the
emergence of a robust nonlinear Hall effect signal in bilayer
graphene systems subject to interlayer sliding, offering a high
degree of tunability.

IV. SUMMARY

In summary, our study has demonstrated that the introduc-
tion of interlayer sliding in bilayer graphene can result in a
nonzero Berry curvature dipole due to the breakdown of three-
fold rotational symmetry. Our numerical simulations have
revealed that this nonzero Berry curvature can be finely tuned
by adjusting interlayer potential differences, sliding distances,
and directions. Remarkably, even a tiny sliding distance of
0.02 nm can yield a substantial Berry curvature dipole on the
order of 10 nm. Our work presents an innovative approach to
control the Berry curvature dipole in graphene systems, and
we anticipate that this method can be extended to other 2D
materials, such as TMDCs with inherent threefold rotational
symmetry, for effective engineering of their topological prop-
erties.
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